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In recent works, it was reported that the distributions of specific binary profiles associated with DNA
sequences can be used for rapid homology assessment in genome space. In this work, following
this line of research, we propose a new and effective approach to identify protein coding domains
using binary profiles. In our method, a set of DNA segments having similar algebraic structures
are represented by one binary profile. The binary profiles with higher appearance rates in known
protein coding domains can be used to find unknown or potential protein coding domains. We test
our method on complete sequence of Halalkalicoccus jeotgali B3 plasmid 1, genome of Escherichia
coli ATCC 8739 and genome of Gallus gallus. Experiment results show that the binary profile
method performs significantly in identifying unknown protein coding domains. By statistic analysis,
we conclude that the obtained experimental results are statistically significant.

Keywords: Gene Identification, Binary Profile, Protein Coding Domain Identification, Protein
Coding Domain Prediction.

1. INTRODUCTION

It was stated in Ref. [1] that “Nature is a tinkerer and
not an inventor” to emphasize the fact that DNA seg-
ments with high similarity hold similar biological func-
tions in distinct species. As usual, after a new genome
is sequenced, the first step is to identify its protein cod-
ing domains and the putative function of the proteins
by aligning with known genes. In the alignment, DNA
sequences are compared with some reference functioning
DNA segments to detect potential protein coding cites.
Experimental methods of DNA sequences alignment, such
as DNase foot-printing2 and gel shift assay,3 are feasible in
laboratories, but are labor-intensive, time consuming and
expensive when high-throughput sequencing approaches
have grown in recent years (since even a single exper-
iment can generate a huge number of genomic data).
With the purpose of using computers to identify genes
and protein coding sites, many computational methods
for pair-wise sequences alignment have been proposed in
Refs. [4–8], as well as some multiple sequences alignment
tools were introduced in Refs. [9–11]. Some of these align-
ment approaches have been widely used as elemental tools
in understanding newly sequenced genome. But, in recent

∗Author to whom correspondence should be addressed.

decades, available genomic data were growing rapidly at
the rate specified by Moore’s law, so developing more effi-
ciently computational tools for sequences alignment is still
a hot researching field in both bioinformatics and func-
tional genomics.
The idea of the alignment methods is taking advan-

tage of genetic information from other species to iden-
tify unknown protein coding domains, but sometimes
the internal information in the genome should be paid
more attentions, because many individual functions in
various organisms have been found and proved to be
evolutionary independent.12–15 Inspired by this biologi-
cal fact, alignment-free sequence analyzing methods were
developed, such as the average mutual information pro-
files were used as genomic signatures in Refs. [16, 17],
k-words statistic method was proposed in Ref. [18], the
approach of compression-based classification was dis-
cussed in Ref. [19] and fast model based homology protein
detection was developed in Ref. [20] and so on. More use-
ful reviews of the alignment-free methods can be found in
Ref. [21].
Recently, the method of aligning distribution sequences

of �7�3�1�-difference set in genome space was developed
in Ref. [22] for rapid sequence homology assessment.
(In the filed of combinatorial design, a difference set cor-
responds to a specific binary profile, which can be utilized
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to represent a class of binary sequences with similar com-
plexity and taken as a basic functional unit with specific
algebraic structures. Specifically, the �7�3�1�-difference
set corresponds to binary profile 011010023). It was found
that distributions of �7�3�1�-difference set have a high
similarity in homology organisms.22

In this work, we propose an approach using binary
profiles to identify unknown protein coding domains in
genomes. In our method, DNA segments having similar
algebraic structures are represented by one binary profile.
By sampling specific binary profiles from DNA sequences,
we can calculate the appearance rates of the binary profiles
in known protein coding domains, and the binary profiles
with higher appearance rates are used to predict unknown
or potential protein coding domains. This method has fol-
lowing several advantages:
—The notion of algebraic structure becomes close to bio-
logical phenomena. DNA segments corresponding to the
same binary profile have similar repetitive structures as the
binary profile.22

—DNA sequences with similar algebraic structures and
repetitive subsequences can be represented by one binary
profile. This can reduce the cost of time and space to rec-
ognize repetitive segments from long DNA sequences.
—The genetic information hidden in binary profiles can
be dug out and utilized to discover potential protein coding
domains.

We test our method on complete sequence of Halalka-
licoccus jeotgali B3 plasmid 1, genome of Escherichia coli
ATCC 8739 and genome of Gallus gallus, which contain
362, 4199 and 16855 protein coding domains, respectively.
In each data experiment, a number of known protein cod-
ing domains are initially selected at random and taken
as unknown domains, and then we use the binary pro-
files with higher appearance rates in left known domains
(called label binary profiles) to identify the initially chosen
domains. Experimental results show that our method per-
forms superior to the average mutual information profiles
method and the k-words statistic method on detecting pro-
tein coding domains, if fewer protein coding domains are
initially chosen to identify and binary profiles with appear-
ance rates at top 0�05% are selected as label binary pro-
files. For statistical analysis, we do another 30 experiments
with the label binary profile being randomly chosen. As
results, the accuracy rates of our method decrease greatly
and performance coefficients of our method become even
worse. This indicates that our method is statistically sig-
nificant. The binary profile method has been implemented
using MATLAB and the original code is available upon
request from the authors.

2. THE BINARY PROFILE METHOD

This section is started by introducing the notion of binary
profile. With the notion, a set of DNA segments having

similar algebraic structures can be represented by one
binary profile.

2.1. Binary Profile

Before introducing the notion of binary profile, it is nec-
essary to describe how to split a DNA sequence into four
binary subsequences.

Definition 1. Let � be a DNA sequence of length n> 0.
For any nucleotide � ∈ �A�T �C�G�, we denote the binary
subsequence of � with nucleotide � is Subs����, which
is obtained by writing 1 on the ith bit of Subs���� if �
occurring at the ith site of �; otherwise writing 0 on the
ith bit of Subs����.

For any DNA sequence, there are four binary subse-
quences. For example, DNA sequence

�= ATTACGTCGCTATCGCTAA

can be split into four binary subsequences

SubsA���= 1001000000010000011

SubsT ���= 0110001000101000100

SubsC���= 0000100101000101000

SubsG���= 0000010010000010000�

For any DNA sequence �, we can obtain the following
proposition.

Proposition 1. Let � be a DNA sequence of length
n > 0. It holds that SubsA���+ SubsT ���+ SubsC���+
SubsG���= 11� � � � �1.

Definition 2. Let 	 be a non-zero binary sequence of
length m > 0. By Prof 	 , we denote the set of DNA seg-
ments of length m whose binary subsequences include 	.
The binary sequence 	 is called the binary profile of Prof 	 .

It is not hard to find that DNA segments in Prof 	 have
similar algebraic structures with its binary profile 	. For
example, for binary profile 	 = 110110110 having three
repetitive segments of 110, each DNA segment in Prof 	
consists of three repetitive structures of the form ��
,
where �∈ �A�T �C�G�, 
∈ �A�T �C�G�/� and ��
 can
be AAT �TTC�GGC or GGT etc. For any binary profile
	, the size of Prof 	 has a close relation with the number
of bits with value 0 in 	.

Proposition 2. Let 	 be a binary profile with length
m> 0, and the number of bits with value 0 in 	 be m0.
There are 4×3m0 DNA segments of length m in Prof 	 .

Proof Let 	 = 	1	2 � � � 	m be a binary profile with m0

bits being value 0. If nucleotide � ∈ �A�T �C�G� corre-
sponds to the bits with value 1 in binary profile 	, then
any bit with value 0 corresponds to one of the left three
nucleotides in �A�T �C�G�/�. Hence, there are 4× 3m0

DNA segments in Prof 	 .
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2.2. Distribution Sequence and Appearance Rate

Let us now introduce how to calculate the distribution
sequence of a binary profile in a DNA sequence. From the
distribution sequence, we can obtain the appearance rate
of the binary profile in known protein coding domain(s).
Let �= �1�2 � � ��n be a DNA sequence of length n >

0, whose binary subsequences is

Subs����= Subs���1�Subs���2� � � �Subs���n�

with � ∈ �A�T �C�G�, and 	 = 	1	2 � � � 	m be a binary
profile of length m with n ≥ m > 0. We can sam-
ple 	 from each Subs���� by checking the appearance
of 	 in Subs����. Specifically, for any 1 ≤ i ≤ n −
m+ 1, if it satisfies that Subs���i� = 	1� Subs���i+1� =
	2� � � � � Subs���i+m� = 	m� then write 1 on the ith bit of
Rec���	�; otherwise write 0, where Rec���	� is the record-
ing sequence of 	 on Subs����. As results, four recoding
sequences are obtained.
By summing the four recoding binary sequences, the

distribution sequence of 	 on � can be achieved, which is

Dis	���=
∑

�∈�A�T �C�G�

Rec���	�

The length of each Rec���	� and Dis	��� are both
n−m+1. By the following proposition, we emphasize the
fact that the bits with value 1 in recoding sequences are
preserved in the distribution sequence.

Proposition 3. For any 1 ≤ i ≤ n − m + 1 and � ∈
�A�T �C�G�, if Rec���i�= 1, then it holds Dis	��i�= 1.

A domain r = �s� s+ t� in DNA sequence � means the
domain from the sth to s+ tth bit of �, where s ≥ 1 and
s+ t ≤ n−m+ 1. The appearance rate of 	 in domain r
is denoted by

App�	 �r�=
s+t∑
i=s

Dis	��i�

/n−m+1∑
j=1

Dis	��j�

where Dis	��k� ∈ �0�1� with k = 1�2� � � � � n+m−1.
The notion of appearance rate in one domain can be

extended to a set of domains R. Let R = �r1� r2� � � � � rk�
be a set of domains with any ri and rj being disjoint. The
appearance rate of 	 in R is

App�	 �R�=
k∑

i=1

App�	 �ri�

We will illustrate the notions introduced above by a con-
crete example. Let � = ATATGCTGTGACGCGC and
	 = 1010. The four binary subsequences of � are

SubsA���= 1010000000100000

SubsT ���= 0101001010000000

SubsC���= 0000010000010101

SubsG���= 0000100101001010

By checking the appearance of binary profile 	 = 1010,
we obtain four recording sequences:

Rec�A�	�= 1000000000000

Rec�T �	�= 0100001000000

Rec�C�	�= 0000000000010

Rec�G�	�= 0000000100001

Hence, the distribution sequence of 	 on � is

Dis	���=
∑

�∈�A�T �C�G�

Rec���	�= 1100001100011

The length of � and 	 are 16 and 4, so the length of
Rec���	� and Dis	��� are both 16−4+1= 13.

The appearance rate of 	 = 1010 in domain [1, 3] is

App�	 �r�=
3∑

i=1

Dis	��i�

/ 13∑
j=1

Dis	��j�= 33�33%

The appearance rate of 	 = 1010 in R= �r1 = �1�3�� r2 =
�4�5�� r3 = �7�9�� is

App�	 �R�=
3∑

i=1

App�	 �ri�= 66�67%

2.3. Time and Space Complexity

We discuss the efficiency of our method by considering
the cost of time and space to calculate appearance rate of
a binary profile in one domain.
Let � be a DNA sequence of length n and 	 be a

binary profile of length m with 0 < m ≤ n. To split �
into four binary subsequences, we need to check whether
a nucleotide is present or not on each of the n bits of �,
and then writing 1 or 0 on the corresponding bits of
Subs����. This progress costs n checking operations and
n writing operations. So, it costs 4×2n= 8n steps to split
� into four binary subsequences. To sample 	 from �,
it needs m�n−m+ 1� steps to check the appearance of
	 in each binary subsequence of �, as well as n−m+ 1
steps to generate recording sequence. Hence, it costs 4×
�m+ 1��n−m+ 1� steps to compute the four recording
sequences. We can calculate the distribution sequence of
	 on � by 8n+ �4m+ 7��n−m+ 1� steps. It will cost
at most 2�n−m+1� steps to calculate the appearance rate
of a binary profile in a given domain. Thus, the cost of
time to calculate appearance rate of a binary profile in one
domain is 8n+�4m+7��n−m+1�+2�n−m+1�, which
is O�n2�.
In the following, we will discuss the space complexity to

compute appearance rate of a binary profile in one domain.
Initially, we need O�n� bits to store DNA sequence �,
as well as 4n bits to store the four binary subsequences
of �. Further more, 4�n−m+ 1� bits are used to store
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the four recording sequences, �n−m+1� bits to store the
distribution sequence, and m bits to store 	. Thus, O�n�+
4n+ 5�n−m+ 1�+m bits are sufficient to compute the
appearance rate of any binary profile.
It is worth to point out that the number of binary pro-

files increases exponentially with respect to the length m,
which is

∑m
i=3 2

m − 1. (The binary profiles with all bits
being zero and length less than 3 are ignored in this work,
for they have no genetic meaning). In our research, distri-
bution sequences of all binary profiles of length from 3 to
13 are considered.

3. DATA EXPERIMENTS

In the data experiment, a number of protein coding
domains are initially chosen at random and taken as non-
functioning domains, and then we use the distribution
sequence of label binary profiles (binary profiles with
higher appearance rates in the left known protein coding
domains), to identify those initially chosen protein coding
domains. Specifically, if the distribution sequence of one
label binary profile has at least one bit with value 1 in the
domain, then this domain is said to identified by the label
binary profile. According to the description above, the data
experiment contains three main steps:
Step 1. Choosing a number of the protein coding

domains at random as non-protein coding domains.
Step 2. Selecting label binary profiles with a thresh-

old value of appearance rates in known protein coding
domains.
Step 3. Checking whether the protein coding domains

chosen in step 1 can be identified by label binary profile(s)
selected in step 2.

3.1. An Experiment

We will illustrate the processes above by a concrete data
experiment on complete sequence of Halalkalicoccus jeot-
gali B3 plasmid 1. There are 362 protein coding domains
in Halalkalicoccus jeotgali B3 plasmid 1. Initially, we ran-
domly choose domain �118073�119122� encoding protein
ABC transporter ATP-binding as a non-protein coding
domain, and then we calculate the appearance rates of
binary profiles of length from 3 to 13 in the left 361 pro-
tein coding domains. The numbers of binary profiles with
different appearance rates are shown in Figure 1, where x
axis represents the appearance rates of binary profiles, and
y axis is the numbers of the binary profiles.
From all the binary profiles, the ones with appearances

rates at top 0�05% are chosen as label binary profiles,
which are given in Table I. The distribution sequences
of the 8 label binary profiles from 117500 to 112000 bit
are indicated in Figure 1, where we use bars to represent
bits with value 1 of distribution sequences. The binary
profiles 100100100101, 010010010110 101001001001,

Fig. 1. The number of binary profiles with different appearance rates.

001011001001, 10001001011 and 100100110100 can
identity domain �118073� 119122� (having bit(s) with 1 in
domain �118073� 119122�). This implies that the initially
chosen domain of protein ABC transporter ATP-binding
can be identified by the binary profile method.
We repeat the experiment for 1000 times. In each

experiment, one domain is randomly chosen to identify.
In 934 experiments, the randomly chosen protein coding
domain can be identified, hence the accuracy rate of the
method achieves 93�4%. We do another 30 experiments
for statistical analysis, where we randomly choose 8 label
binary profiles. The average accuracy of the 30 experi-
ments is 48�6%. The accuracy rates of the 30 experiments
are given by blue dots in Figure 3, and the accuracy rate
of our method is indicated by the red star in Figure 3.
So, we can conclude that our experimental results are sta-
tistically significant.

3.2. Experimental Results

We test the binary profile method on complete sequence
of Halalkalicoccus jeotgali B3 plasmid 1, genome of
Escherichia coli ATCC 8739 and genome of Gallus

Table I. Labeling binary profiles.

Number Binary profile Appearance rate (%) Length

1 100100100101 79.07 12
2 010010010110 77.10 12
3 11010010010 76.89 11
4 101001001001 76.76 12
5 001011001001 76.71 12
6 001001001011 76.64 12
7 10001001011 75.65 11
8 100100110100 75.43 12

4 J. Comput. Theor. Nanosci. 11, 1–6, 2014
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Table II. The experimental results on complete sequence of Halalkalicoccus jeotgali B3 plasmid 1, genome of Escherichia coli ATCC 8739 and
genome of Gallus gallus.

H. jeotgali Escherichia Gallus
B3 plasmid 1 coli ATCC 8739 gallus

AR PC k  AR PC k � AR PC
k � (%) (BPM) (%) (BPM) (%) k  (%) (BPM) (%) (BPM) (%) k � (%) (BPM) (%) (BPM) (%)

5 0.05 100 94�4 50 0.05 100 96�7 50 0.05 100 94
5 0.10 100 86�7 50 0.10 100 81�2 50 0.10 100 98
5 0.15 100 60�4 50 0.15 100 70�3 50 0.15 100 96
5 0.20 100 34�2 50 0.20 100 42�1 100 0.05 100 92�6
5 0.25 100 13�6 50 0.25 100 12�6 100 0.10 100 91�4
5 0.30 100 3�4 50 0.30 100 1�4 100 0.15 100 95�6
20 0.05 100 80�6 100 0.05 100 83�6 200 0.05 100 87
20 0.10 100 62�7 100 0.10 100 59�7 200 0.10 100 86
20 0.15 100 40�4 100 0.15 100 39�4 200 0.15 100 81
20 0.20 100 10�2 100 0.20 100 1�2 500 0.05 93 85�7
20 0.25 100 3�3 100 0.25 100 0�3 500 0.10 95 79�3
20 0.30 100 0�12 100 0.30 100 0�019 500 0.15 95 60�3
40 0.05 90 73�5 200 0.05 93 20�5 800 0.05 67 34�2
40 0.10 95 38�7 200 0.10 95 16�7 1200 0.05 43.2 9�3
40 0.15 100 19�4 200 0.15 95 3�4 1600 0.05 62 1�7
80 0.05 73.7 40�9 400 0.05 72 19�9
80 0.10 76.2 13�3 400 0.10 72 9�3
80 0.15 80 0�03 400 0.15 80 1�6
100 0.05 60 20�3 500 0.05 58 11�7
120 0.05 30 11�5 800 0.05 39 6�5
140 0.05 21.6 0�66 1000 0.05 18.6 0�3

gallus, which contain 362, 4199 and 16855 protein coding
domains, respectively.
The performances of the binary profile method on com-

plete sequence of Halalkalicoccus jeotgali B3 plasmid 1,
genome of Escherichia coli ATCC 8739 and genome of
Gallus gallus are given in Table I, where k is the num-
ber of initially chosen protein coding domains for iden-
tification, and  is the threshold value of selecting label
binary profiles (if  = 0�05%, then the binary profiles with
appearance rates in known protein coding domains at top
0�05% will be selected as label binary profiles). Let K be

Fig. 2. The partial distribution sequences of labeling binary profiles in
Table I.

the set of initially selected protein coding domains, and W
be the set of predicted protein coding domains by the label
binary profiles. The accuracy rate (AR) of identifying pro-
tein coding domains is �K∩W �/�K�. By �K∩W �/�K∪W �,
we denote the performance coefficient (PC) to evaluate the
performance of the binary profile method.
As shown in Table II, in data experiment on complete

sequence of Halalkalicoccus jeotgali B3 plasmid 1, when
k are assigned with small values (5 and 20), the binary
profile method can significantly identify the randomly cho-
sen protein coding domains. The performance coefficients
of our method are well when  is 0�05%. With the incre-
ment of  from 0�05% to 0�30%, although the accuracy
rates are still 100%, the performance coefficients decrease
rapidly. This is due to the fact when  is assigned with
large value, the number of label binary profiles increases,

Fig. 3. Accuracy rates of the 30 experiments for statistical analysis.
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hence the number of predicted protein coding domains
will greatly increase. In this case, many protein coding
domains that are NOT protein coding domains are iden-
tified by label binary profiles. As a result, the value of
�K ∪W � becomes rather large, so the performance coeffi-
cient rapidly decreases. When k becomes large (from 40 to
140), that is, more protein coding domains are considered
as unknown in the experiments, the accuracy rates will
become unacceptable. In the experiment on the genome
of Escherichia coli ATCC 8739, we get similar perfor-
mances of the binary profile method. Specifically, if k is
associated with small values, the accuracy rates and per-
formance coefficients are both significant. But, when k
becomes large, the accuracy rates and performance coeffi-
cients will decrease rapidly.
The accuracy rates of the average mutual information

profiles method on complete sequence of Halalkalicoc-
cus jeotgali B3 plasmid 1 and genome of Escherichia coli
ATCC 8739 are 96�5% and 89�6%, and the performance
coefficients are 87% and 91%, respectively. The perfor-
mance of the binary profile method is superior to the aver-
age mutual information profiles method and the k-words
statistic method when k are assigned with small values and
 = 0�05%. But, the binary profile method performs worse
when k becomes large.
Experimental results on genome of Gallus gallus show

that the binary profile method performs significantly on
accuracy rates to identify unknown protein coding domains
with k being from 50 to 200. But, when k becomes large,
the binary profile method can achieve well accuracy rates,
but the performance coefficients will become even worse.
The accuracy rate of the average mutual information pro-
files method to detect protein coding domains on genome
of Gallus gallus is 92�5% and performance coefficient
is 81%, while the accuracy rate of the k-words statistic
method is 87�1%, and the performance coefficient is 76%.
The performance of the binary profile method is superior
to the average mutual information profiles method and the
k-words statistic method when k is less than 200 and  is
0�05%.

4. CONCLUSION

In this work, we have proposed an efficient approach,
called binary profile method, to identify protein coding
domains in genomes. We test the method on the complete
DNA sequence of Halalkalicoccus jeotgali B3 plasmid

1, genome of Escherichia coli ATCC 8739 and genome
of Gallus gallus. The performances of the binary profile
method to identify protein coding domains are superior to
the the average mutual information profiles method and
the k-words statistic method when k are assigned small
values and  = 0�05%.
For further research, it remains open that if differ-

ent splitting strategies can improve the performances of
the binary profile method. Another interesting problem is
whether binary profiles can be used as a potential attempt
for handling huge computational cost problems of recog-
nizing DNA segments.
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