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Abstract

Absorbing boundary conditions for the nonlinear Euler and Navier–Stokes equations in three space dimensions are pre-
sented based on the perfectly matched layer (PML) technique. The derivation of equations follows a three-step method
recently developed for the PML of linearized Euler equations. To increase the efficiency of the PML, a pseudo mean flow
is introduced in the formulation of absorption equations. The proposed PML equations will absorb exponentially the differ-
ence between the nonlinear fluctuation and the prescribed pseudo mean flow. With the nonlinearity in flux vectors, the
proposed nonlinear absorbing equations are not formally perfectly matched to the governing equations as their linear coun-
ter-parts are. However, numerical examples show satisfactory results. Furthermore, the nonlinear PML reduces automatically
to the linear PML upon linearization about the pseudo mean flow. The validity and efficiency of proposed equations as absorb-
ing boundary conditions for nonlinear Euler and Navier–Stokes equations are demonstrated by numerical examples.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Non-reflecting boundary condition is a critical component in the development of computational fluid
dynamics (CFD) and computational aeroacoustics (CAA) algorithms. It remains a significant challenge par-
ticularly for problems involving nonlinear governing equations. Perfectly matched layer (PML) is a technique
of developing non-reflecting boundary conditions by constructing matched equations that can absorb out-
going waves at open computational boundaries. It was originally designed for computational electro-magnet-
ics [5,6,8,28,27,7]. The significance of the PML technique lies in the fact that the absorbing zone is theoretically
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reflectionless for multi-dimensional linear waves of any angle and frequency. In the past few years, substantial
progress has been made in the development of the PML technique for the Euler equations, starting with the
studies for cases with constant mean flows, followed by extensions to cases with non-uniform mean flows
[16,17,14,1,18,19,4,10,9]. Most recently, applications of PML to linearized Navier–Stokes equations and non-
linear Navier–Stokes equations have been discussed in [12,13]. A recent progress review is given in [21].

Although the PML technique itself is relatively simple when it is viewed as a complex change of variables in
the frequency domain, it is important to note that, for the PML technique to yield stable absorbing boundary
conditions, the phase and group velocities of the physical waves supported by the governing equations must be
consistent and in the same direction [3,4,9,18]. For governing equations that support physical waves of incon-
sistent phase and group velocities, such as the Euler or Navier–Stokes equations for fluid dynamics, a space–
time transformation may be required before applying the PML technique in the derivation process [18,19].
This space–time transformation corrects the inconsistency in the phase and group velocities and thus permits
the application of the PML technique. An emerging method of formulating PML involves essentially three
steps [21]:

1. A proper space–time transformation is determined and applied to the governing equations.
2. A PML complex change of variables is applied in the frequency domain.
3. The time domain absorbing boundary condition is derived by a conversion of the frequency domain

equations.

This procedure has been successfully applied to the derivation of PML for the linearized Euler equations in
[18,19].

In this paper, further application of the PML technique to the nonlinear Euler and Navier–Stokes equa-
tions is considered. Derivation of the absorbing equation is proceeded by applying the three steps outlined
above to the nonlinear Navier–Stokes equations, which include the Euler equations as a special case. How-
ever, unlike the PML for linear equations, the conversion to time domain equations does not result in formally
perfectly matched equations due to the nonlinearity in flux vectors. Nonetheless, the proposed absorbing
equations are still effective for nonlinear problem as we will show in numerical examples. Furthermore, the
nonlinear PML reduces automatically to the linear PML upon linearization. The current formulation offers
a natural extension of the linear PML to nonlinear equations. For convenience of implementation in most
existing CFD and CAA codes, all PML equations are formulated for the governing equations in the conser-
vation form.

To absorb the nonlinear disturbances, a concept of ‘‘pseudo mean flow” is introduced. This makes the PML
possible without knowing the exact mean flow at the start of the computation. Equations are derived that
absorb the difference between the pseudo mean flow and the nonlinear disturbances, including the vorticity,
acoustic, and entropy waves. One limitation of the current paper is that the pseudo mean flow is assumed
to be aligned with one of three spatial axes. Recent efforts and new developments on extending the PML
for oblique mean flows can be found in [11,2,24].

The rest of the paper is organized as follows. In the next section, the PML absorbing boundary condition is
derived for the nonlinear Navier–Stokes equations. Further discussions on the formulation are given in Sec-
tion 3. In Section 4, numerical examples that validate the effectiveness and stability of the PML for nonlinear
Euler and Navier–Stokes equations will be presented. They include the absorption of a convective isentropic
vortex in compressible flows, shear flow vortices and vortices shedded from flow over a circular cylinder, cal-
culation of flat plate boundary layers, and propagation of a 3D acoustic pulse. Concluding remarks are given
in Section 5.

2. Derivation of PML equations for nonlinear Navier–Stokes equations

2.1. Governing equations

We consider the three-dimensional compressible nonlinear Navier–Stokes equation written in the conser-
vation form as
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and heat transfer terms
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where l is nondimensionalized viscosity which, unless noted otherwise, will be assumed to be a function of
temperature T by the Sutherland’s formula [25]. The equation of state and the energy function are
cp ¼ qT ; e ¼ u2 þ v2 þ w2

2
þ p
ðc� 1Þq ð10Þ
In the above, u, v and w are the velocity components in x, y and z directions, respectively, p is the pressure, q is
the density, and T is the temperature. The velocity is nondimensionalized by a reference speed of sound a1,
density by q1 and pressure by q1a2

1. Viscosity l is nondimensionalized by a reference value l1 and
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Re ¼ q1U1L1=l1 is the Reynolds number based on a characteristic flow velocity U1 and length scale L1. M

is the Mach number U1=a1. Pr is the Prandtl number and c is the specific heats ratio.
To facilitate the derivation of PML equations for (1), we denote GðuÞ as a vector that contains all variables

whose spatial derivative is present in formulating the flux vectors, i.e.,
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We then re-define the flux vectors of (3)–(5) as explicit functions of u, e1, e2 and e3 and re-write (1) as
ou
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Eqs. (12) and (13) form a system of partial differential equations for unknowns u, e1, e2 and e3. This system is
only a re-writing of the original Navier–Stokes equation (1) and thus is equivalent to (1). We note that now the
flux vectors F1ðu; e1; e2; e3Þ, F2ðu; e1; e2; e3Þ and F3ðu; e1; e2; e3Þ do not explicitly involve spatial derivatives of u.
In what follows, we shall derive the PML equations for (12) and (13).

2.2. Pseudo mean flow

As shown in Fig. 1, at non-reflecting boundaries, we introduce PML domains to absorb out-going distur-
bances. We wish to formulate the equations to be used in the added zones so that out-going waves can be
exponentially reduced once they enter the added zones while causing as little numerical reflection as possible.
By reducing the disturbances to a negligible level toward the end of the PML domain, the use of PML makes a
non-reflecting boundary condition at the outer boundaries of the whole computational domain unnecessary.

In nonlinear simulations, a solution u of (1) can be regarded as consisting of a time-independent mean state
and a time-dependent fluctuation that has to be governed by the nonlinear equations. However, it may not be
most efficient to absorb the total variable u and to reduce it to nearly zero inside the PML domain. On the
other hand, the exact mean state is usually not known at the start of the computation. The PML formulation
Nonlinear  Equations

PM
L

PM
L

PML

PML

Fig. 1. Schematics of physical and PML domains.
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presented here will not require the exact mean flow. Instead, as in [17], we shall partition the solution inside the
PML domain into two parts as follows,
u ¼ �up þ u0; e1 ¼ �e1 þ e01; e2 ¼ �e2 þ e02; e3 ¼ �e3 þ e03 ð14Þ

with
�e1 ¼
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ox
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oy
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oz
ð15Þ
where �up denotes a prescribed time-independent ‘‘pseudo mean flow” [17,20]. We only require that the chosen
�up satisfy the steady state equation:
oF1ð�up;�e1;�e2;�e3Þ
ox
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oy
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oz

¼ 0 ð16Þ
It is important to emphasize that this pseudo mean flow is not required to be the exact mean flow at the non-
reflecting boundary. The use of �up is to make the PML domain more efficient since we now need only to ab-
sorb u0, e01, e02 and e03, namely, the differences between total flow variables and that of a prescribed pseudo mean
flow, as illustrated in Fig. 2. In practical computations, any known steady state solution that resembles the
actual flow could serve as a pseudo mean flow. It also follows that the choice for �up is not unique. Of course,
the closer the pseudo mean flow is to the actual mean flow the better.

By (12)–(16), the governing equations for u0, e01, e02 and e03 are
ou0
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For brevity, the arguments for the flux vectors F1, F2, F3 and vector G are not shown explicitly in (17) and (18),
and an over-bar indicates that the vector is computed using the pseudo mean flow. We shall now derive the
PML equations that absorb u0, e01, e02 and e03.

2.3. Formulation of PML equations

We will assume in the present paper that the pseudo mean flow is in the direction of x-axis. By following the
three-step method for the derivation of PML described in Introduction, we first apply a space–time transfor-
mation of the form
�t ¼ t þ bx ð19Þ

to Eqs. (17) and (18) where b is a parameter dependent on the pseudo mean flow profile, as suggested in [19].
This transformation is necessary to maintain linear stability of the PML equations. More discussions on
up

u

u

PMLPhysical Domain

Fig. 2. Schematics of wave absorption in the PML domain.
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parameter b and the pseudo mean flow will be given in the next section. Transformation (19) gives the follow-
ing changes in partial derivatives, with respect to t and x,
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In frequency domain, the above is
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where a tilde indicates the time Fourier transformed variable.
In the second step, we apply the PML complex change of variables to (23) and (24), which amounts to a

modification of spatial derivatives as
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where rx, ry and rz are absorption coefficients, positive, and could be functions of x, y and z, respectively
[6,7,19]. Application of the PML complex change of variables yields the following:
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In the third step, we try to re-write (25) and (26) in the time domain to obtain the absorbing boundary con-
dition. This can be done in many different ways [20]. In order to keep the number of auxiliary variables small
for the general three-dimensional equations considered here, we will use a ‘‘split” approach in the derivation
below. Let
u0 ¼ q1 þ q2 þ q3 ð27Þ
where q1, q2 and q3 are auxiliary variables that satisfy the following equations split from (25),
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We note that by adding the three equations in (28) and (29), we will recover (25). The auxiliary variables q1, q2

and q3 are introduced only to facilitate the conversion of Eq. (25) into one in the time domain.

By multiplying 1þ irx
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to the equations for ~q1 and ~e01, ~q2 and ~e02, and ~q3 and ~e03,

respectively, we get the following set of equations,



4404 F.Q. Hu et al. / Journal of Computational Physics 227 (2008) 4398–4424
ð�i�xþ rxÞ~q1 þ bð�i�xþ rxÞ g½F1 � F1� þ
o g½F1 � F1�

ox
¼ 0 ð30Þ

ð�i�xþ ryÞ~q2 þ
o g½F2 � F2�

oy
¼ 0; ð�i�xþ rzÞ~q3 þ

o g½F3 � F3�
oz

¼ 0 ð31Þ

1þ irx

�x

� �
~e01 ¼ bð�i�xþ rxÞ g½G�G� þ o

g½G�G�
ox

ð32Þ

1þ iry

�x

� �
e02 ¼

o
g½G�G�

oy
; 1þ irz

�x

� �
e03 ¼

o
g½G�G�
oz

ð33Þ
We next write the time domain equations for the above as
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where a second set of auxiliary variables r1, r2, r3 are defined as
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Finally, by writing back in the original space and time variables, we obtain the time-domain absorbing bound-
ary equations as follows,
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where Fi and G are functions of u and ei, i ¼ 1; 2; 3, as defined by (3)–(5) and (11), and ei are computed by
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(38)–(44) are the governing equations to be solved in the PML domain. We should point out that, when the
flux vectors are nonlinear functions, unlike in linear cases, the time domain equations (34)–(37) are no longer
the exact inverse Fourier transformation of the frequency domain equations (30)–(33). As a result, Eqs. (38)–
(44) are not deemed formally perfectly matched to the nonlinear governing equation (1), although numerical
results are still quite satisfactory as we will demonstrate later in the paper.

We note that Eq. (38) is equivalent to the sum of Eqs. (39)–(41) and thus is not formally an independent
equation, because the following relation holds true in the PML domain,
Fig. 3.
arrows
u ¼ �up þ q1 þ q2 þ q3 ð48Þ

However, Eq. (38) can often be implemented easily as it is written in the original physical variables. The use of
(38) will also reduce the requirement on storage, because an inspection of Eqs. (38)–(44) shows that not all the
auxiliary variables are needed everywhere inside the PML domain. The auxiliary variables are only needed
where the corresponding absorption coefficient is non-zero. For instance, q1 and r1 are only necessary at x-lay-
ers where rx is not zero; similarly, q2, r2 and q3, r3 are only necessary where ry and rz are respectively not zero.
Since absorption coefficients rx, ry and rz are functions of x, y or z, respectively, regions of non-zero absorp-
tion coefficients, as well as the required auxiliary variables, are as shown in Fig. 3 for a section of computa-
tional domain with PML.

Therefore, the equations to be solved in a PML domain will be (38), for u, plus additional equations from
(39)–(44) for the auxiliary variables qi and ri wherever the corresponding absorption coefficient is non-zero. At
the corner layer where all the absorption coefficients are non-zero, the equation for one of the q variables may
be substituted by relation (48) if so desired.

We also note that, the three terms involving spatial derivatives of F1, F2 and F3 can obviously be dropped
from (38) if the pseudo mean flow satisfies the steady state equation (16). However, the equations as written in
(38)–(43) would still be self-consistent in the limit of u! �up even if the pseudo mean flow �up, �e1, �e2 and �e3 do
not exactly satisfy (16). That is, u ¼ �up with qi ¼ ri ¼ 0 will always satisfy the equations written as (38)–(43).
This could be helpful for problems where only a pseudo mean flow that approximately satisfies the steady state
equation (16) would be available. For such cases, inclusion of the flux expressions from the pseudo mean flow
as written in (38) can prove to be useful.

The equations given above, (38)–(44), include the PML for the inviscid nonlinear Euler equations as a spe-
cial case, by neglecting the viscous terms. Exclusion of viscous effects leads to the elimination of terms involv-
ing e1, e2 and e3 and, consequently, the necessity for auxiliary variables r1, r2 and r3. Thus, the equations to be
solved in the absorbing zone for inviscid problems will be (38)–(41).
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Schematics of physical and PML domains. The sub-domains where the absorption coefficients are non-zero are indicated by
. Left: a section of 3D domain; Right: a 2D domain layout.
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3. Pseudo mean flow and value for b

In our derivation above, the only requirement on the pseudo mean flow �up is that it would satisfy the steady
state equation (16). As pointed out earlier, the exact mean flow is often unknown at the start of a computation.
A suitable known solution to the steady equation (16) that resembles the actual flow can be a viable pseudo
mean flow in the formulation of the PML equation. In this sense, the choice of pseudo mean flow is not
unique. For many practical problems, such a pseudo mean flow would be relatively easy to find [17,21].
For instance, a parallel flow will satisfy the steady state Euler equation and thus can be used as a pseudo mean
flow for the appropriate nonlinear Euler simulations. For example, in primitive variables,
q

u

v

w

p

2
6666664

3
7777775 ¼

�qpðyÞ
�upðyÞ

0

0

�pp

2
6666664

3
7777775 ð49Þ
will satisfy (16) without the viscous terms, where �qpðyÞ and �upðyÞ can be freely adjusted to resemble the flow at
the non-reflecting boundary. Likewise, a constant uniform mean flow also satisfies the steady state Navier–
Stokes equations.

Once the pseudo mean flow is chosen, the parameter b in the PML equations is to be determined as
described in [19]. The purpose of the space–time transformation given in (19) is to ensure linear stability of
the PML equations. It is used to correct the inconsistency in the phase and group velocities of the acoustic
wave modes in the derivation process.

For inviscid problems, since the linearization of PML equations derived in this paper is equivalent to the
linearized Euler equation given in [19] in frequency domain, the value for b can be found in the same way as
that described in [19] based on the pseudo mean flow employed. In general, a study on the dispersion relation
Dðx; kÞ ¼ 0 for the linear waves supported by the pseudo mean flow would be required to determine the value
of b. For the special case where the density of the pseudo mean flow is constant, i.e., �qpðyÞ ¼ 1, we may use a
simple empirical formula given in [19],
b ¼ Um

1� U 2
m

; U m ¼
1

b� a

Z b

a
�upðyÞdy ð50Þ
where the computational domain for y is ½a; b�.
For viscous problems, it has been found that the presence of viscosity will not substantially affect the value

for b, since the inconsistency in the phase and group velocities occurs only for the acoustic waves for a parallel
flow in the direction of x, to which viscous effects are usually small. As an example, we consider a pseudo mean
flow given by
�upðyÞ ¼
1

2
ðu1 þ u2Þ þ

1

2
ðu1 � u2Þ tanh

y
0:2

� 	
; �vp ¼ 0; �qpðyÞ ¼ 1; �pp ¼

1

c

with
u1 ¼ 0:8; u2 ¼ 0:2; and � 1 6 y 6 1
A numerical study of the dispersion relations of linear waves gives the following values for b:
Inviscid : b � 0:63

Re ¼ 5000 : b � 0:63

Re ¼ 500 : b � 0:63

Re ¼ 50 : b � 0:64
while the empirical formula (50) gives b � Um=ð1� U 2
mÞ ¼ 2=3 � 0:67 by using U m ¼ 1=2, the average of �up.
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4. Numerical examples

In this section, we present numerical examples of using the absorbing boundary conditions derived in the
present study for the nonlinear Euler and Navier–Stokes equations, based on a viscous computational aeroa-
coustic approach [23,22]. The dispersion-relation-preserving scheme [26] is applied for spatial discretization
and the optimized 5- and 6-stage alternating low-dissipation and low-dispersion Runge–Kutta scheme [15]
is used for time integration.

4.1. Isentropic vortex using nonlinear Euler equations

We first present a numerical example that verifies the effectiveness of the PML for the nonlinear Euler equa-
tion. The two-dimensional nonlinear Euler equations support an advective solution of the form
qðx; tÞ
uðx; tÞ
vðx; tÞ
pðx; tÞ

0
BBB@

1
CCCA ¼

0

U 0

V 0

0

0
BBB@

1
CCCAþ

qrðrÞ
�urðrÞ sin h

urðrÞ cos h

prðrÞ

0
BBB@

1
CCCA ð51Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where r ¼ ðx� U 0tÞ2 þ ðy � V 0tÞ2. For any given urðrÞ and qrðrÞ, the pressure prðrÞ is found by
d

dr
prðrÞ ¼ qrðrÞ

u2
r ðrÞ
r

ð52Þ
Eq. (51) gives a solution that advects with constant velocity ðU 0; V 0Þ.
For our numerical tests, we consider a velocity distribution of the form
urðrÞ ¼
U 0max

b
r e

1
2 1�r2

b2

� 	
ð53Þ
where U 0max is the maximum velocity at r ¼ b. For isentropic flow, we assume
pr ¼
1

c
qc

r ð54Þ
and, by integrating (52), we get the following density and pressure distributions,
qrðrÞ ¼ 1� 1

2
ðc� 1ÞU 02max e1�r2

b2

� �1=ðc�1Þ

ð55Þ

prðrÞ ¼
1

c
1� 1

2
ðc� 1ÞU 02max e1�r2

b2

� �c=ðc�1Þ

ð56Þ
The v-velocity contours of a numerical solution is shown in Fig. 4. The initial condition is that given in (51)
with ðU 0; V 0Þ ¼ ð0:5; 0Þ, U 0max ¼ 0:5U 0 ¼ 0:25, and b ¼ 0:2. The nonlinear Euler equation is solved by a finite
difference scheme in a computational domain of ½�1:2; 1:2� � ½�1:2; 1:2� with a uniform grid of
Dx ¼ Dy ¼ 0:02, including the surrounding PML domain of 10 grid points in width. In particular, the PML
absorption coefficient is taken to be
rx ¼ rmax

x� x0

D

��� ���a

with rmax ¼ 20, a ¼ 4 and x0 is the location of interface between PML and physical domains. A similar model
for ry is used. A grid stretching in the PML domain is also used to increase the efficiency of the absorbing zone
[28]. The stretching factor is
aðxÞ ¼ 1þ 2
x� x0

D

��� ���2



Fig. 4. v-Velocity contour levels from �0:02 to �0:24.
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as noted in [19]. The pseudo mean flow is taken to be the same as the uniform background flow with parameter
b ¼ U 0=ð1� U 2

0Þ.
Fig. 4 shows the v-velocity contours at time t ¼ 0, 1.5, 2.5 and 3.5, respectively, at levels from �0:02 to

�0:4. Absorption of the vortex by PML at the outflow boundary is clearly demonstrated. Fig. 5 shows the
v-velocity as a function of x along y ¼ 0, as the vortex exits the computational domain. Also plotted in dashed
lines are the exact solution. The numerical solution matches the exact solution in the Euler domain while
decays exponentially in the PML domain.

To further assess the magnitude of reflection error, Fig. 6 plots the maximum difference between the numer-
ical solution and a reference solution obtained using a larger computational domain, along a vertical line near
the outflow boundary, as a function of time. The reflection errors are indeed quite small and decrease with an
increase in the width of the PML domain employed. Fig. 7 shows the trend in the reduction of the maximum
reflection error, for the v-velocity component as well as the pressure, as the PML width increases.



Fig. 5. v-velocity profile along y ¼ 0 at progressive time frames. Solid line: numerical solution; dashed line: exact solution. Vertical dashed
lines indicate the Euler/PML interface.
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Fig. 8 shows the maximum reflection error in v-velocity component relative to the maximum velocity of the
vortex U 0max along x ¼ 0:9 near the outflow boundary for various strengths of the vortex. Although reflection
error generally increases with the strength of the vortex, a relative error of less than 1% is achieved for all cases
with PML width of 20 grid points. Fig. 9 plots the maximum reflection error, for the v-velocity component and
the pressure, as a function of the vortex strength U 0max=U 0 in a log scale, showing the trend of increase in reflec-
tion error with the increase in the nonlinearity.

4.2. Isentropic vortex with nonlinear Navier–Stokes equations

The example in the previous section is repeated using the nonlinear Navier–Stokes equations. The compu-
tational domain and initial condition are similar but viscous terms in the governing equations are now
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included. The numerical solution is compared with a large domain solution to obtain a measure of the reflec-
tion error. Fig. 10 shows the reflection error for the v-velocity component relative to the maximum perturba-
tion velocity U 0max of the initial vortex, at various Reynolds numbers which is based on the velocity U 0. Fig. 11
shows the reflection error for the pressure relative to the maximum pressure perturbation caused by the vortex,
P 0max, which is defined by jprð0Þ � prð1Þj � 1

2
U 02max as given in (56). It is seen that generally reflection errors

shown in Figs. 10 and 11 decrease with the Reynolds number. This reduction in reflection error is partly
due to a weakening of vortex by viscous diffusion effect when it reaches the outflow boundary from its initial
position ðx; yÞ ¼ ð0; 0Þ. Fig. 12 shows the trend of reduction of the maximum reflection error as a function of
the Reynolds number.
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Fig. 13 shows the effect of the strength of vortex on the reflection errors in the Navier–Stokes simulation. In
this example, the background uniform flow is taken to be U 0 ¼ 0:2 while the maximum velocity of the vortex
perturbation is increased from U 0max ¼ 0:1U 0 up to 2:0U 0, a very high nonlinearity. It is observed that reflec-
tion errors increase with the strength of the vortex. This is not unexpected because the nonlinearity increases
with U 0max. In particular, we note that when U 0max is greater than U 0, part of the vortex region actually have a
total velocity in direction opposite to the background mean flow.

Fig. 14 shows the effects of the mean flow Mach number on the effectiveness of the PML domain. The back-
ground flow Mach number U 0 is varied from 0.2 to 0.8 while the strength of vortex U 0max is kept as 0:5U 0 in
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each case. The maximum reflection errors are found to be of similar magnitude. This means that the effective-
ness of the absorbing boundary condition does not strongly depend on the mean flow Mach number.

4.3. Viscous flow over a circular cylinder

In this example, we show the absorption of nonlinear vortices shedded by a viscous flow over a circular
cylinder. The uniform incoming flow has a Mach number M ¼ U1=a1 ¼ 0:2. Here U1 and a1 denote the
velocity of the uniform flow and the speed of sound, respectively. The velocity and the length are nondimen-
sionalized by a1 and the diameter of the cylinder d, respectively. The Reynolds number is defined as
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Re ¼ U1d=m1, where m1 is the reference kinematic viscosity. For the present calculation, Re ¼ 150 and the
Prandtl number Pr ¼ 0:75.

Fig. 15 shows the multi-domain computational mesh layout with overset grids, for
ðx; yÞ 2 ½�7; 11� � ½�7; 7�. The cylinder is located at ðx; yÞ ¼ ð0; 0Þ with a radius of 0:5 and all PML domains
have a width of 20 grid points. The main computational domain is divided into two regions. An O-grid system
with non-uniform meshes is adopted around the cylinder, covering a region in polar coordinates of
0:5 6 r 6 1:5, 0 6 h 6 2p, with a non-uniform grid spacing of Drmin ¼ 0:005, Drmax ¼ 0:02, and Dh ¼ 1:2o.
Another region is composed of multi-block uniform meshes with Dx ¼ Dy ¼ D. In each block, the value of
D is specified in Fig. 15. A high-order Lagrange interpolation technique is utilized for the overset grids.
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Calculation is initiated with the uniform flow for the entire computational domain. A natural choice for the
pseudo mean flow is the incoming uniform flow at all four PML domains, namely,
�up ¼ M ; �vp ¼ 0; �qp ¼ 1; �pp ¼ 1=c ð57Þ

with b ¼ M=ð1�M2Þ. Fig. 16 shows the instantaneous pressure contours at t ¼ 5; 8; 10 and 450, calculated by
the direct numerical simulation, solving (1) in the physical domain and PML equations (38)–(44) in the
absorbing zones. The initial transient pressure wave exits the computational domain without noticeable reflec-
tion. After t ¼ 400, vortex shedding is observed. Fig. 17 shows the vorticity contours over a period of vortex
shedding. The absorption of the nonlinear vortices by the PML zone at the outflow is clearly seen.
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In Fig. 18, we show the v-velocity and pressure at a point ðx; yÞ ¼ ð9; 0Þ on the outflow boundary of the
physical domain as a function of time, from t ¼ 0 to t ¼ 700. Also plotted, in symbols, is the result of a ref-
erence solution computed using a larger computational domain. The reference solution is obtained using a
computational domain of ½�7; 30� � ½�7; 7�. The discrepancy seen in the pressure around time t = 300 is
due to the truncation of the initial wake flow by the smaller computational domain before the periodic vortex
shedding is started. Good agreement in the time history of the periodically shed vortices is observed. Figs. 17
and 18 indicate that the PML domain at the outflow boundary can effectively absorb these vortices as they
convect out of the computational domain.

4.4. Shear layer roll-up vortices

In this example, we simulate a mixing layer with roll-up vortices induced by the Kelvin–Helmholtz insta-
bility. The PML equations developed in the present paper are applied as the absorbing boundary condition.
The Navier–Stokes equation (1) is solved in a computational domain of ½�1; 9� � ½�1; 1� by a finite difference
scheme, with Dx ¼ 0:05 and Dy ¼ 0:01. The Reynolds number for this computation is 10,000. PML domain
with a width of 10 grid points are added at four sides of the computational domain to absorb all out-going
waves. The initial condition is
q

u

v

p

0
BBB@

1
CCCA ¼

�qðyÞ
UðyÞ

0
1
c

0
BBB@

1
CCCA ð58Þ
where
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UðyÞ ¼ 1

2
ðU 1 þ U 2Þ þ ðU 1 � U 2Þ tanh

2y
d

� �� �
; �qðyÞ ¼ 1

T ðyÞ
ð59Þ
with
T ðyÞ ¼ T 1

U � U 2

U 1 � U 2

þ T 2

U 1 � U
U 1 � U 2

þ c� 1

2
ðU 1 � UÞðU � U 2Þ ð60Þ
where the mean temperature T ðyÞ is determined by the Crocco relation for compressible flows. The parameters
are
U 1 ¼ 0:8; U 2 ¼ 0:2; d ¼ 0:4; T 1 ¼ 1; T 2 ¼ 0:8; c ¼ 1:4:
A source term is added to the energy equation in (1) to induce the instability wave. The source term is of the
form
sðx; y; tÞ ¼ 5 sinðxtÞe�ðln 2Þ½ðx�x0Þ2þðy�y0Þ2�=r2
0

where x ¼ p=2, ðx0; y0Þ ¼ ð�0:5; 0Þ and r0 ¼ 0:03.
The added source term excites the Kelvin–Helmholtz instability wave which would grow exponentially and

develop into roll-up vortices. Fig. 19 gives a time sequence of vorticity contours showing the absorption of
out-going vorticities at the outflow boundary. Fig. 20 plots the time history of v-velocity and pressure at a
point close to the outflow boundary. Also plotted in symbols are the corresponding time histories from a large
domain calculation whose solution is not affected by the boundary. Very good agreement is found.

For the calculation shown in Fig. 19, the pseudo mean flow �up used in the PML equation is the same par-
allel flow as that of the initial condition (58), with a value of b ¼ 1=1:4 according to the linear wave analysis
given in [19]. Calculations have also been made using different pseudo mean flow profiles to study the effects of
pseudo mean flow choices on the accuracy of the absorbing boundary condition. In particular, three differ-
ent pseudo mean flows have been applied at the outflow boundary where the thickness parameter for the
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u-velocity profile is taken to be d ¼ 0:4; 0:6 and 0:8, respectively. Fig. 21 shows the instantaneous u-velocity
contours for the three cases. The velocity contours inside the physical domain are nearly identical in the three
cases. This indicates that the PML equation is relatively accommodating in the choice of pseudo mean flow as
long as it is reasonably close to the actual flow.

4.5. Flat-plate boundary layer

In this example, we apply the PML absorbing boundary condition to the computation of steady boundary
layer profile formed by a uniform flow over a flat plate. A schematic of the computational domain is shown in
Fig. 22. The incoming flow is uniform in the direction of x-axis with Mach number M ¼ 0:1. The Reynolds
number is Re = 10,000 and the Prandtl number Pr ¼ 0:708.

PML domains are used at all the three non-reflecting boundaries. For the left inflow and top radiation
boundaries, the pseudo mean flow is the same as the incoming uniform flow. For the PML at the outflow
boundary, in order to adjust for the no-slip boundary condition at the wall, the pseudo mean flow is taken
to be the following,
�up ¼
M y > d

M sinðpy=2dÞ 0 6 y 6 d

�
ð61Þ

�vp ¼ 0; �pp ¼
1

c
; �qp ¼

1þ 0:5ðc� 1Þ�u2
p

1þ 0:5ðc� 1ÞM2
ð62Þ
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The thickness parameter d in (61) is taken to be an estimated boundary layer thickness. For the present Rey-
nolds number, d ¼ 0:053 is used in the computation. The value of b is 0:0911 obtained by the formula given in
(50).

Numerical calculation starts with an initialization of all variables in the physical domain by the uniform
incoming flow. After the transients are absorbed by the PML domains, the numerical solution approaches
to a steady state. Fig. 23 shows the time history of the residues of the steady state governing equations in
the physical domain. The L2 norm of the residues eventually becomes less than 10�8, an indication that the
numerical solution is close to the steady state solution. Fig. 24 shows the contours of the u-velocity in the
whole computational domain and Fig. 25 shows the normalized stream-wise velocity profile. Also plotted
in Fig. 25 are the theoretical Blasius similarity solution, with good agreement. We note that the PML has been
primarily designed to absorb time-dependent out-going waves. The purpose of this example is to demonstrate
the possibility of using the proposed absorbing boundary condition for steady state applications. Further
studies on the efficiency of PML for such calculations will be carried out in the future.

We also note that the pseudo mean flow (61) used in the outflow PML domain does not exactly satisfy the
steady state Navier–Stokes equations. Nonetheless, as pointed out earlier in Section 3, the equations written in
the form of (38)–(44) still appear to be effective. For steady state computations, it is also possible to update the
initial pseudo mean flow with an improved mean flow as the computation proceeds.

4.6. Three-dimensional acoustic pulse

In this example, the propagation of a three-dimensional nonlinear acoustic pulse in a uniform mean flow is
simulated using the nonlinear Navier–Stokes equations. The PML absorbing boundary conditions are applied
in all non-reflecting boundaries, similar to the situation depicted in Fig. 3. The initial condition is as follows,
t ¼ 0; q ¼ 1þ P 0max e�ðln 2Þðx2þy2þz2Þ=r2
0 ; u ¼ U 0; v ¼ 0; w ¼ 0; p ¼ 1

c
þ P 0max e�ðln 2Þðx2þy2þz2Þ=r2

0



X

Y

0 2 4 6 8
-1.0

0.0

1.0

up(y)
0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Y

0 2 4 6 8
-1.0

0.0

1.0

up(y)
0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Y

0 2 4 6 8
-1.0

0.0

1.0

up(y)
0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 21. Instantaneous u-velocity contours in three computations, using different pseudo mean flow thickness. (a) d ¼ 0:4; (b) d ¼ 0:6; (c)
d ¼ 0:8.

0 0.4 0.6 0.8 1.00.2−0.2

M=0.1

x

y PM
L

PM
L

Boundary Layer δ

PML

Fig. 22. Schematic of computational domain for the boundary layer computation.

4420 F.Q. Hu et al. / Journal of Computational Physics 227 (2008) 4398–4424
where c ¼ 1:4; r0 ¼ 1:0, U 0 ¼ 0:5, P 0max ¼ 0:5, and the Reynolds number is 500. The computational domain is
½�12; 12� � ½�12; 12� � ½�12; 12�, including the PML domain, with a uniform mesh Dx ¼ Dy ¼ Dz ¼ 0:2. The
PML domains have a width of 10 grid points on all six sides and the maximum of PML absorption coefficients
rmax is 10. The pseudo mean flow is set as the uniform background flow with the value of b ¼ U 0=ð1� U 2

0Þ.
Fig. 26 shows the pressure contours at t ¼ 8 and 12. The effectiveness of the PML boundary condition is

well demonstrated.
Fig. 27 shows the pressure at a point close to the outflow boundary, ðx; y; zÞ ¼ ð9; 0; 0Þ, as a function of

time. Very good agreement between the computational and reference solutions is observed. Also shown are
the differences between the two solutions relative to the pulse strength P 0max. For P 0max ¼ 0:1; 0:2 and 0.5, max-
imum relative reflection errors are all around 10�4.
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5. Conclusions

A time-domain absorbing boundary condition for the nonlinear Euler and Navier–Stokes equations has
been presented following a recently developed method for the linearized Euler equations. It offers a natural
extension of the linear PML equations to nonlinear equations of fluid dynamics. By introducing the concept
of pseudo mean flow, the efficiency of PML is increased as it becomes only necessary to absorb the difference
between the total variable and a prescribed pseudo mean flow. The pseudo mean flow is not required to be
exactly the same as the actual mean flow when the latter is not available. Although the proposed equations
are not theoretically perfectly matched to the nonlinear governing equations as their linear counter-parts
are, numerical examples demonstrated their effectiveness as absorbing boundary conditions in truncating open
boundaries in nonlinear Euler and Navier–Stokes simulations.

Since the proposed nonlinear equations reduce to the linear PML equations upon a linearization about the
pseudo mean flow, the linear stability property of the PML proposed here is expected to be the same as those
given in [19]. Although no numerical instability has been found in all our computations, theoretical property
on the nonlinear stability remains to be defined. The success of PML for the fully nonlinear Euler and Navier–
Stokes equations reported in the present paper is a significant step toward a wider application of the PML
technique for computational fluid dynamics and computational aeroacoustics.
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