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ABSTRACT. In this paper, we establish an anisotropic regularity criterion for
the 3D incompressible Navier-Stokes equations. It is proved that a weak solu-
tion u is regular on [0, T, provided g—zg € L*1(0,T; L*1 (R3)), with %—i—% <2
s1 € (3,400] and Vyug € L2(0,T; L2 (R3)), with either % + % <B4 ﬁ
S0 € (%,3] or % + % < %—i— &, s2 € (3,400]. Our result in fact improves a

regularity criterion of Zhou and Pokorny [ Nonlinearity 23 (2010), 1097-1107].

1. Introduction. We consider the following three-dimensional Navier-Stokes e-
quations (NSE) of viscous incompressible fluids in (0,7) x R?,

Ou+ (u-V)u+ Vp = vAu,
div u =0, (1)
u(0, ) = uo(),

where u = (up(t, ), us(t, ), us(t,z)) : (0,T) x R® — R? is the velocity field,
p(t,z) : (0,T) x R® — R is the scalar pressure, uo(x) with divuy = 0 in the sense of
distribution is the initial velocity field, and v > 0 is the viscosity. Since the value of
the viscosity does not play any role in our further considerations, we assume v = 1
in the sequel.

The existence of a weak solution to the three-dimensional Navier-Stokes equations
is well known since the pioneering works by Leray [1] and Hopf [2]. However, its
uniqueness and global regularity are still major challenging open problems in applied
analysis.

On the other hand, starting from the famous papers of Prodi [3] and of Serrin [4],
many sufficient conditions ensuring the smoothness of a weak solution are known.
The classical Prodi-Serrin’s type criteria (see [3, 4], and for the case s = 3, see
[5]) say that if a weak solution u additionally belongs to L!(0,T; L*(R?)), with

% + % =1, s € [3,400], then it is regular and unique in the class of all weak
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solutions satisfying the following energy inequality

t
lut, )72 re) +/O IVu(r, I rsy d7 < u(0, )17 (gs),

for all ¢ € [0,+00). Analogous result in terms of the gradient of velocity, i.e.,
Vu € LY0,T; L3(R%)), with 2 + 2 = 2, s € [2,+00] is established by Beirdo da
Veiga (see [6]).

Later, some articles were dedicated to providing regularity criteria via one veloc-
ity component. The first result in this direction is due to Neustupa, Novotny and
Penel [7] (see also Zhou [8]), where they proved that if us € L*(0, T; L*(R?)), with
% + % = %, s € (6, +00], then the solution is smooth. A similar criterion in terms of
the gradient of one velocity component is independently obtained by Zhou [9] and
Pokorny [10].

Recently, several interesting improvements appeared (see, e.g., [13, 12, 11, 14,
15]). In particular, by applying the multiplicative embedding theorem, Cao and
Titi [11] showed the smoothness under the condition uz € L*(0,T; L*(R?)), 2+ 3 <
2+ 4, s> I Based on the method from [11], Zhou and Pokorny [15] proved that
the weak solution is regular, provided uz € L*(0,T; L*(R?)), with 2 243 <344
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Vuz € L'(0,T; L*(R?)), 2 3 3 3 ®
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In view of the divergence free condition divu = gzl + gzj + 8"3 = 0, we believe

that 8’;1 may contain more useful information than 651 (i # ]) When we estimate
i 0: J

the convective term. Therefore, a natural question is whether the criterion of g—x in
(2) can be relaxed to the natural scaling of the Navier-Stokes equations: % + % =2.
In this paper, we give a positive answer to this question.

Before we state the main theorem, let us introduce some notations which will
be used in what follows. We will use || - ||, to represent the norm of the standard
Lebesgue spaces LP(R?’) and denote by L'* the spaces L'(0,T; L*(R?)) for fixed
T. We set Vj, = (M , ar ) to be the horizontal gradient, VhVu to be the tensor

9%y o —
(Wgzk)’jk (7=1,2; k, i =1,2,3), while A} = ﬁ + m is the horizontal
Laplacian. In addition, we denote

J(t) = sup |Vau(r)[3 + / IV Vu(r) |2 dr,

T€(0,t)

which plays an important role in our proof.
The main result of this paper reads:

Theorem 1.1. Let ug € HI(RS) with divug = 0 and u be a Leray-Hopf weak
solution to the NSE (1) corresponding to ug. Let additionally

Ous 2 3 3
e LSt — <2, el -, , 3
8553 tl + S1 51 (2 +OO:| ( )
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and

L2 3 TR
VhU;gGLtQ’ 2, g‘kgﬁ 122 382 3 (4)
S

then u is regular on the interval [0,T).

Remark 1. Note that although our condition added on Vjus is the same to Zhou

and Pokorny’s (see [15]), the condition added on g—zz reaches to the natural scal-

ing of the Navier-stokes equations, i.e., %

improvement of Zhou and Pokorny’s result.

+ % = 2. Therefore, our result is an

Remark 2. It is a quite challenging open problem to prove regularity provided
Vuz € L, with 2 4+ 3 <2, s € [3, +0q].

2. Proof of the main result. In what follows we focus on the strong solution u
on its maximal interval of existence [0,77*). Suppose T" > T*, then it is sufficient
to show that the H! norm of the strong solution is bounded uniformly in time over
[0,7).

Our proof is under the framework of [15], but we estimate the convective term
and J2(t) more carefully by a new decomposition method and viewpoint.

2.1. Estimates for J2(¢). Taking the inner product of the equation (1) with —Aju
in L2(R3), integrating by parts and taking the divergence free condition divu = 0
into account, we obtain

1d
5 IVl + IVaul = [ (- V) Apuda, (5)
2 dt R3
Note that
/ (u-Vu) - Apudz
R3
2 3 2
8uj 8’&3 8uj
= Z / . uia—xiAhuj dx + Z / . uia—%Ahug dx + Z / . u387Ahuj dx
R = /R Zi/R

i, j=1 3
= Ji+J+ J;3.
As in [13], we have

2
1 8u3 8ui 8ul 8u3 (9’[1,1 8uQ 8u?, 8u1 8UQ
== - de — | ——Z2224 e et e
Jl 2 i,jzzl /R?’ 8373 axj 8wj * /R3 8.’173 8331 8:52 T /R3 81‘3 8372 83?1 *

Furthermore, by integration by parts, we find that

3 2
_ 8“7, aU;g 8U3
J2 B ;;/RS 6‘zk (3':171 8a:k dx
2 2
5‘U3 8u3 8U3 / 8ul 8u3 8’&3
= — 2272 84
]; (/Rd 8% 8303 837}.3 v ; R3 axk 8301 al‘k S

2
_ L[ Ous Ou; Ou; / us Ju; Ou;
Js = ,%::1 (2 /R3 Oxs3 Oz, Oxy, du Rr3 Oz, O3 Oy du |

7
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Therefore, by Holder’s, Gagliardo-Nirenberg’s and Young’s inequalities, we have

/ (u-Vu) - Apudx
R3

0
< C 5Vl dx+C/ \Vhus| |[Vaul |[Vu| de
R3 a R3
8U3 2
< |th|| 2o+ C - [Vius| |[Viu| [Vu| de

|th||2+€||VhVu||2+C/ Vus| [Vau| [Vu| dz, (6)

H 3U3

here and in what follows7 C' > 0 denotes a sufficiently large universal constant which
is allowed to change from line to line, while € > 0 is a sufficiently small universal
constant which is also allowed to change from line to line.

Next, we estimate J%(t) separately for so € (3,3] and s, € (3, +00].

case (i) s € (2,3].
We have

c/ Y us| [Vrul [V da
R3

< ClVauslly, [Vrullg Vel ox
2s9—3 3—sg

< ClVausl, ||thu||2||vu”252 IIWI b

+ 2—3 13—s9

3 s 37 s
< CIVausl, IVaTuly Iul, T A}
6sg 6(2s9—3) 2(3—s9) 9

< CIVMET T [Vl ™ Aul, T e[Vl (7)

where we used Holder’s inequality, Young’s inequality and the following multiplica-
tive Gagliardo-Nirenberg inequality (see [11])

oVu 1/3

5331
Combining (5), (6) with (7) yields

oVu
5‘x2

oVu
axg

IVulls < o”

2 2

d
*IIVhUIlg + IIVhVUIlg

6(2s9—3) 2(3—s2)

659
Tl A,

|VhUH2 + C || Vhus ss

< elaxl.”

Thus, by Gronwall’s inequality and (3), we get

t
J2(t) = sup [ Vau( )H%Jr/ IVRVu(r)|3 dr
0

7€ (0,t)

t 659 6(2s9—3) 2(3—s9)
< 0+C Hthglls” CIVully”2 " [Aully " dr
3(2s—3) 3—sg
2s9 559 —6 55 76
< C+C </ 1 Vhusls2~? ||Vu||2 dT) (/ ||AuH2 dT) . (8)
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case (ii) s2 € (3, +00].
By Hélder’s, Gagliardo-Nirenberg’s and Young’s inequalities, we obtain

C [ 1wl [95al [Val da < C[uall, [Vl Va2,
R3 S5-2

1—3 3
ClVauslg, [Vully IVaully ™ [[Vaulg®

IA

2

S valE o)

A

eIViVuli + C | Vhus| 2

Similarly, combining (5), (6) with (9) yields

2

o
S I Valls

IIthH2+ IViVull3 < C ||thH2+C||vhu3

o=,

Thanks again to Gronwall’s inequality and (3), we obtain

t
()= swp [VualE + [ [90Tu(r)3dr
0

7€(0,t)

8u 23 3
< Cexp< = )(whu 2+ / IV s | 5 ||w||2dr)
< o+cC / Vs 2 [ Vul? dr. (10)

2.2. Uniform H' estimates for u. This section is devoted to prove that the H'!
norm of the strong solution w is bounded uniformly in time over [0,7*). Similarly,
by adding the inner product of the equation (1) with —Awu in L?(R3), integrating
by parts and taking the divergence free condition into account, we have

5 dt||Vu||2 + [|Au||3 = /R (u-Vu) - Audx

2 3
_ Uj
= ZZ/ uz Aujdx—i—Z/ u38x3Aujdx
i=1 j=1
2 3 2 3
8ui an an 1 6u1 Buj an
;jkzl/d 0xy Ox; Oxy, T 2 ;j;I /Rs Ox; Oxy, Oxy, v

3

*Z/ Z%%%+%%% dz
R3 Oxy Ox3 Ox),  Oxs Oxz O3
1 8’&3 8Uj an
+2 Z /RS 81'3 al'k Bmkdx
7, k=1
8u3

C/ |th||Vu\2dx+C/ —
R3 R3 8 3

IN

\Vu|?>de =: I, + I. (11)
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As before, by Holder’s, Gagliardo-Nirenberg’s and Young’s inequalities, we get

8u3

L, < C|Z=2| IVl
2= Oy, M
aus 25\573 %
< o|g2| vl T A
6 51251
ug || 2177 2 2
< o||g2 " Ivall+ e A, (12)
s1

and by Hoélder’s and the multiplicative Gagliardo-Nirenberg inequalities, we obtain

I < ClIViulll|Vul3
1 3
< ClViull2l[Vull3 [[Vullg
1 1
< COlVrull2l Va3 [ViVaullz]| Aull3 (13)

Integrating (11) over the time interval (0,t), ¢ < 7™, and using the estimates (12)
and (13) yields

IVu(t)|3 + / ||AU<T>||ng

ou
< 2 IIVullz dT+C/ Vhull2 IIVUIlzllthUH ||Au||2 dr
0
< e N
¢ 3 t i
+C sup [|[Vauls (/ IV Val2 dT) (/ A2 dr>
T€(0,t) 0 0
t 8U3 3% 1,3 5 ) t ) %
< c4+c | |4 IVul? dr + 020 (| 1Au)2 dr) (14)
0 8$3 51 0

Now, by employing (3), (4) and the estimates of J2(t) from section 2.1, we can
bound the H' norm of u as follows.

case (i) s € (2,3].
Inserting (8) into (14), we get

IVu(t)|3 + / ||Au<r>||§dr

o 3
23| w3 ar + ( / Al dr)

T3
3(2s9—3) 3—so

2s 555—6 Boo— Fosti
+C( / N il A dT) ( / A dT) |

S1
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If we restrict that 52 + 2 <1, S9 >
inequalities, we have

IVu(t)[3 + / ||Au<r>||§dr

19, then by Holder’s and Young’s

0
< C’+C/ H 43 ||Vu||2 dT+E/ |Au(T)|3 dr
3(259—3)  20s9—24
) 555—6 X 19s5-30
e (/ 9l 557 9l ar)
8u3
< ||VU||2 dr +¢ HAU ()3 dr

3(253-3) 205524 195530

25y 12(2s5-3) ) 555—6 X 1055, —30 X 12(2s5—3)
e ( / Vg T 5 |2 dT)

< C+C <H8u3

Therefore,

24s9

t
Va7 30) IVull3 dT+€/ | Au(r)]3 dr.
0

IVu(t)|3 + / | Au(r) [ dr

< O+C <H8u3

_ 24sy )
Vsl T ) 1Vl dr.
According to Gronwall’s inequality, (3) and (4), we get

t
IVu)1+ [ lautr)ar < c

uniformly in time ¢ over [0, 7).
For the remaining case, sy € (3, +00], we use the similar approach.
case (ii) s2 € (3, +00).

We have

IVu()]3 + / HAU(T)H%dT

< c+c/ H‘9“3 Va2 dr
¢ I
e [1 ; / Vs 52 Va2 df} ( | 1z dT)
8U3 gl
< C+C HVU||2 dr + ¢ HAUH2 dr
+c( 1V 55 [V df)
8u3
< C+C HVU||2 dr + ¢ HAu )HQdT
T3 s1
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é
+C ||th3|\252 e ||Vu||§ dr

< C’+C JrHVhU3|

a t
H us ) Il dr e [ auldr,
0

This is,

T+ IIVhU3\

e |Vull3 dr.

IIVu(t)\|%+/ | Au(r )||2dT<c+c/ H%s

Again, using Gronwall’s inequality, (3) and (4) yields the desired bounds.
Thus, we complete the proof of Theorem 1.1.
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