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A Blichfeldt-type Theorem for H-points

Penghao Cao and Liping Yuan

Abstract. Let H be the set of vertices of a tiling of the plane by regular hexagons of unit area.
A point of H is called an H -point. Let [s] denote the greatest integer less than or equal to
s, and let {s} = s − [s]. In this paper we prove a Blichfeldt-type theorem for H -points. It is
shown that for any bounded set D ⊂ R2 of area s, if 0 ≤ {s} < 1/3, then D can be translated
so as to cover at least 2[s] + 1 H -points; if 1/3 ≤ {s} < 1, then by a translation D can be
made to cover at least 2[s] + 2 H -points. Furthermore, we show that the results obtained are
the best possible.

1. INTRODUCTION. Let Eu and Ev be two linearly independent vectors in R2. The
set of all points P = m Eu + nEv with m, n ∈ Z is called the lattice3 generated by Eu and
Ev. A point of the lattice3 is called a lattice point. The parallelogram Q induced by the
four vertices of the form m Eu + nEv, where m, n ∈ {0, 1}, is said to be the fundamental
parallelogram of the lattice 3. Let det(3) be defined as the area of the fundamental
parallelogram of the lattice 3. In particular, if Eu and Ev are mutually orthogonal unit
vectors, then the lattice 3 is called an integral lattice, and is denoted by Z2.

In 1896, Hermann Minkowski proved a famous theorem, and then developed a new
research area, namely, the geometry of numbers.

Minkowski’s Theorem ([8]). Let C ⊂ R2 be a convex set, centrally symmetric about
the origin. If the area of C is greater than 4, then C contains at least one point from
Z2 different from the origin.

Later, a new principle in the geometry of numbers was discovered. The credit for
this breakthrough goes to Hans Frederik Blichfeldt, who in 1914 published a theorem
from which a great portion of the geometry of numbers follows.

Blichfeldt’s Theorem ([1, 8]). For any nonnegative integer A, any bounded planar
region with area > A can be translated so that the number of points of Z2 inside the
region will be at least A + 1.

Since the integral lattice Z2 can be considered as the set of vertices of the Archi-
medean tiling by squares of unit area, it is interesting to extend results from classical
geometry of numbers to other Archimedean tilings, especially to that formed by regu-
lar hexagons [3–7]. Now let H be the Archimedean tiling formed by regular hexagons
of unit area, and let H be the set of vertices of H. A point of H is called an H-point.
In this paper we prove a Blichfeldt-type theorem for H -points in R2.

2. MAIN RESULTS. In fact, H can be considered as the union of two disjoint sets
H+ and H− such that for any two points, either both from H+ or both from H−, there
exists a translation of the plane which maps one of the two points to the other and H
to H . To be specific, all points in H+ have three tiling edges leaving the points in the
same three directions, while all points in H− have edges which leave in the opposite
three directions. A point of H+ is called an H+-point and a point of H− is called an
H−-point, as shown in Figure 1.
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Figure 1. H+-points, H−-points, and C-points.

Without loss of generality, we establish a cartesian coordinate system of R2 with
an H+-point as the origin, and the x-axis lying along one edge of a regular hexagonal
tile, as shown in Figure 1. Let Eu0 = (

4
√

12/2, 4
√

108/6), Ev0 = (0,
4
√

108/3). Then the
set H+ is the lattice generated by Eu0 and Ev0.

Let C denote the set of all centers of the hexagonal tiles which determine H. A
point of C is called a C-point. Let τ be the transformation defined by x ′ = x + 4

√
12/3,

y′ = y. The inverse transformation of τ is denoted by τ−1
: x ′ = x − 4

√
12/3, y′ = y.

It is not difficult to see that H− = τ−1(H+) and C = τ(H+).
It is clear that H+, H−, and C are pairwise disjoint and the union H+ ∪ H− ∪ C is

the lattice generated by Eu = ( 4
√

12/6, 4
√

108/6) and Ev = ( 4
√

12/3, 0), which is denoted
by T . A point of T is called a T -point. Trivially, det(T ) = 1/3.

Let NA(B) = card(A ∩ B). We have the following lemma immediately.

Lemma 2.1. Let D ⊂ R2 be a bounded set. Then ND(H+) = Nτ(D)(C) =
Nτ−1(D)(H

−), ND(H−) = Nτ(D)(H+) = Nτ−1(D)(C), and ND(C) = Nτ(D)(H−)
=Nτ−1(D)(H

+).

Let [s] denote the greatest integer less than or equal to s, and let {s} = s − [s]. We
rephrase Blichfeldt’s theorem (see [2]) in the following way.

Lemma 2.2. Let D ⊂ R2 be a bounded set of area s and3 ⊂ R2 an arbitrary lattice.
Then D can be translated so as to cover at least [s/det(3)] + 1 lattice points.

Now we present a Blichfeldt-type theorem for H -points in R2.

Theorem 2.3. Let D ⊂ R2 be a bounded set of area s. If 0 ≤ {s} < 1/3, then D can
be translated so as to cover at least 2[s] + 1 H-points. If 1/3 ≤ {s} < 1, then by a
translation D can be made to cover at least 2[s] + 2 H-points.

Proof. Case 1. 0 ≤ {s} < 1/3.
Since det(T ) = 1/3, we have [s/det(T )] = 3[s] if 0 ≤ {s} < 1/3. By Lemma

2.2, D can be translated to a position D′ so as to cover at least 3[s] + 1 T -points,
i.e., ND′(T ) ≥ 3[s] + 1. Recalling that T = H+ ∪ H− ∪ C , we have ND′(T ) =
ND′(H+)+ND′(H−)+ND′(C) ≥ 3[s] + 1. Without loss of generality, we suppose
that ND′(C) is the smallest of the three numbers ND′(H+), ND′(H−), and N ′

D(C).
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Otherwise, by Lemma 2.1 we have Nτ(D′)(C) is the smallest of the three numbers
Nτ(D′)(H+), Nτ(D′)(H−), and Nτ(D′) or Nτ−1(D′)(C) is the smallest of the three
numbers Nτ−1(D′)(H

+), Nτ−1(D′)(H
−), and Nτ−1(D′). It follows that ND′(H+) +

ND′(H−) ≥ (2/3)(3[s] + 1) = 2[s] + 2/3, and since ND′(H+) +ND′(H−) is an
integer, it follows that it must be at least 2[s] + 1.

Case 2. 1/3 ≤ {s} < 1.
Then [s/det(T )] ≥ 3[s] + 1, where det(T ) = 1/3. Lemma 2.2 implies that D can

be translated to a position D′ covering at least 3[s] + 2 T -points, i.e., ND′(T ) ≥
3[s] + 2. By a method similar to that described in Case 1, we suppose without loss of
generality that ND′(C) is the smallest of the three numbers ND′(H+), ND′(H−), and
N ′

D(C). It follows that ND′(H+) +ND′(H−) ≥ (2/3)(3[s] + 2) = 2[s] + 4/3, and
since ND′(H+)+ND′(H−) is an integer, it follows that it must be at least 2[s] + 2.

The proof is complete.

Remark 2.1. There are many applications of Blichfeldt’s theorem, and one of them is
to use it to prove Minkowski’s theorem [8]. In fact, we also obtain a Minkowski-type
theorem for H -points in R2.

Minkowski-type Theorem. Let D ⊂ R2 be a compact convex set which is centrally
symmetric about an H-point. If the area of D is greater than or equal to 4/3, then D
contains at least one other H-point.

By a method similar to that used in [8], the Blichfeldt-type theorem for H -points
presented in this paper can also be used to prove the Minkowski-type theorem for
H -points in R2. We omit the details of the proof here.

3. TWO EXAMPLES. Now we give two examples to show that both of the bounds
obtained in Theorem 2.3 are the best possible.

Example 3.1. Let D = e f gh be a parallelogram such that keh = k f g = 0 (here
keh denotes the slope of the line determined by e and h), ke f = kgh =

√
3, |eh| =

| f g| = (3n + 1)
4√12
3 − ε1 (here |eh| denotes the length of the line-segment eh),

and |e f | = |gh| =
4√12
3 −

ε1
2(3n+1) (see Figure 2), where n ∈ Z+ and ε1 is a pos-

itive number which can be made as small as we wish. Then the area of D is
s = sin π

3 · (
4√12
3 −

ε1
2(3n+1) )((3n + 1)

4√12
3 − ε1) = n + 1/3 − ε, where ε > 0 and

ε → 0 as ε1 → 0. By Lemma 2.2, the parallelogram D can be translated to a po-

H+H– H– H+ H–C

g

h

C

f

e

D

D ′

Figure 2. The sets D and D′.
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sition D′ such that it contains [ n+(1/3−ε)1/3 ] + 1 = 3n + 1 or more T -points. However,
according to our choice of D, it is clear that D′ cannot contain more than 3n + 1
T -points. Thus there is a translation of D, also denoted by D′, containing exactly
3n + 1 T -points. Since T = H+ ∪ H− ∪ C , and H−, H+, and C appear periodically
on each horizontal line containing T -points, it is not hard to see that we can chose a
position for D′ such that it contains exactly 2n + 1 H -points, but no translation of D
contains more. That is to say, the bound in the first part of Theorem 2.3 is tight.

Example 3.2. Let D = e f gh be the parallelogram described in Example 1. Now we
only replace the length of the sides eh and f g by |eh| = | f g| = (3n + 1) 4

√
12/3 +

ε1 and obtain a parallelogram D∗. Then by an argument similar to that presented in
Example 3.1, the area s∗ of D∗ satisfies 1/3 ≤ {s∗} < 1, and there is a translation
of D∗ covering exactly 2n + 2 H -points, whereas no translation of D∗ covers more.
Hence, the bound in the second part of Theorem 2.3 is also tight.
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