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The pricing of convertible bonds (CB) is still a problem that needs to be addressed
because it is a kind of hybrid financial instrument. This article proposed a novel
method with support vector machine (SVM) integrated to copula function. Unlike
existing single-factor or bi-factor pricing models based on corporate value and the
underlying stock price, respectively, this model can cope with many limitations on
the pricing of CB, such as nonlinearity, the departure from normality, multivariate
joint normality distribution, market incompleteness, and so on. And above all, the
new model exhibited great flexibility in that copula function can portray dependence
structure between the underlying stock price and interest rate and that SVM can
further tackle nonlinear relationship among variables. Moreover, the integration of
SVM and copula function rendered the sensitivity analysis more convenient and
accurate. Empirical analysis showed that the proposed model enhanced generation
ability of out-of-sample, with satisfactory robustness and mark increase in pricing
accuracy and hedging effectiveness compared with the traditional models.

Keywords Bivariate dependence structure; Convertible bond (CB); Copula
function; Statistical learning theory; Support vector machine (SVM).

Mathematics Subject Classification 68Q32; 68T05; 62H20.

1. Introduction

Most convertible bonds (CB) have many embedded options compared to the
straight bonds, such as conversion option, call option, put option, option to lower
the conversion price, and even to accumulate interest rate, and so on. These options
are mainly American and path-dependent, and make the pricing considerably
complicated, thus resulting in the increasing difficulties in CB pricing (Kihn, 1996).
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1564 Shen and Wang

So far, there are, in general, two categories of pricing models of CBs, namely
single-factor and bi-factor models which are based on corporate value and corporate
stock price, respectively. Ingersoll (1977) and Brennan and Schwartz (1977) applied
Black-Scholes option pricing theory to CB pricing and constructed a single-factor
corporate value model. By adding interest rate volatility into the model above,
Brennan and Schwartz (1980) deeply improved the model and proposed the bi-
factor corporate value model. On the other hand, McConnell and Schwartz (1986)
first presented another kind of CB pricing model with corporate stock being
the underlying asset, and Ho and Pfeffer (1996) developed a corresponding bi-
factor stock pricing model with interest rate being another underlying variable.
Tsiveriotis and Fernandes (1998), Duffie and Singleton (1999), and Takahashi
et al. (2001) expanded simplified structured model by adding default probability
and recovery rate. Ammann and Seiz (2006) employed the modified Black-Scholes
European option pricing model, and Yigitbasioglu and Alexander (2006) proposed
that a nonlinear, multi-factor, reduced-form, equity-linked default model leads to
a set of nonlinear partial differential complementarity equations governed by the
volatility path. Chambers and Lu (2007) presented a binomial tree model for pricing
convertible bonds, different from Das and Sundaram (2006) through differences in
the specification of the correlation between interest rates and stock prices, and found
that the correlation between the stock price and interest rate levels is especially
important in the pricing of CBs of financial institutions. And above all, by taking
into account the characteristics of CBs in the Chinese market and using the basic
theories and methods of financial engineering, Zheng and Lin (2004) and Lai et al.
(2005) presented different pricing models and made corresponding empirical studies,
which all showed that, compared with the theoretical prices, CBs in China were to
some extent underpriced.

However, the poor performance of most of the models for CB pricing above
is attributed to a lot of restrictions or assumptions, such as linearity, normality
distribution, constant correlation between the underlying stock price and interest
rate, fixed default probability and recovery rate, market completeness, and so
on, most of which were far from the market reality and neglected complicated
interaction among options within CBs.

As flexible analysis tools for tackling the problems mentioned above, support
vector machines (SVM) and copula function have seldom been applied to CB
pricing (except for Shen et al., 2010). Therefore, this article is aimed at proposing
a novel method of CB pricing based on integration of SVM and copula function,
which will absorb some previous study viewpoints mentioned above and make an
attempt to the innovation of CB pricing. By illustrating dependence structure among
the important features using a copula function and training SVM through the data
of selected features along with the dependence structures that significantly affect CB
value in Chinese financial markets, this approach can predict CB value with more
accuracy and determine hedging ration effectively. The remainder of this article is
organized as follow. The methodologies are described in Sec. 2 with the Clayton
copula and LS-SVM mainly introduced. Section 3 presents empirical analysis of
application of the model proposed to CB pricing and hedging. Section 4 concludes.

2. A Model Based on Integration of SVM and Copula Function

The framework of the model construction contains the copula choosing and the
SVM optimization consists of two steps, shown in Fig. 1. Step 1 explores the
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Analysis of Convertible Bond Value 1565

Figure 1. The framework of the integration of LS-SVM and the Clayton copula used for
analysis of convertible bond value.

dependence structure of the underlying stock price and interest rate through a
copula function. LS-SVM is then established in Step 2, with the outcome of Step 1
as one of its inputs, to investigate CB’s price.

2.1. Dependence Structure Analysis Using Copula Function

Here, only the bivariate copula is considered. According to Nelsen (1999), its
definition is described as follows.

A two-dimensional copula C is a real function defined on I2 = �0� 1�× �0� 1�,
with range I = �0� 1�, such that

for every �u� v� of I2� C�u� 0� = 0 = C�0� v�� C�u� 1� = u� C�1� v� = v�

for every rectangle �u1� u2�× �v1� v2� in I2� with u1 ≤ u2 and v1 ≤ v2�

C�u2� v2�− C�u2� v1�− C�u1� v2�+ C�u1� v1� ≥ 0�

As such, it can represent the joint distribution function of two standard uniform
random variables U1 an U2:

C�u� v� = P�U ≤ u� V ≤ v��

This feature can be used to re-write copulas for the joint distribution function of
two (even nonuniform) random variables. The most interesting fact about copulas
in this sense is Sklar’s theorem (Sklar, 1959): Let F�s� t� be a joint distribution
function with continuous marginals F1�s� and F2�t�. Then there exists a unique
copula such that

F�s� t� = C�F1�s�� F2�t��� (1)

Conversely, if C is a copula and F1�s� and F2�t� are continuous univariate
distributions, F�s� t� = C�F1�s�� F2�t�� is a joint distribution function with marginals
F1�s� and F2�t�.

The theorem suggests then to represent the multiplicity of joint distributions
consistent with given marginals through copulas. There are mainly three kinds of
copulas, namely normal copula, extreme value copula, and Archimedean copula,
and three copulas are commonly used in financial risk management with the
specification as follows:

Normal copula: C�u� v� =
∫ �−1�u�

−�

∫ �−1�v�

−�
1

2	
√
�1− 
2�

exp
{
�s2 − 2
st + t2�

2�1− 
2�

}
ds dt

= �
��
−1�u���−1�v���
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1566 Shen and Wang

Gumbel copula: C�u� v� = exp�−��− ln�u��
 + �− ln�v��
�
1

 �, 
 ≥ 1;

Clayton copula: C�u� v� = �u−
 + v−
 − 1�−
1

 .

Copulas are linked to nonparametric association measures, namely dependence
measure by useful relationships. As an example, Kendall’s  may be proved to be

 = 4
∫∫

�0�1�2
C�u� v�dC�u� v�− 1� (2)

Here, assume that the bivariate vectors of the underlying stock price and interest
rate exhibit continuous marginals so that each copula is defined in a unique way.
Now, it seems hard to characterize exactly each distribution law of such vectors’
variables, and moreover, Durrleman et al. (2000) showed that a misspecification
of marginals leads to a biased estimation of the copula function. Such a problem
leads us to directly consider the copula function without specifying any marginal
law. Therefore, rather than specifying given marginals ex ante and inducing then
the related copula function, a given copula function is specified consistent with the
studied empirical dependence structure.

To be able to fit conveniently estimated copulas, one-parameter Archimedean
copulas are chosen here. Specifically, the choice restricts to the Clayton copula
because, according to Servigny and Renault (2002), the correlation between assets
in the falling market becomes much higher than that of the rising market, and the
Clayton copula depicts the down tail well. Moreover, the Clayton copula functions
exhibit the nice property with an analytical expression such that its related Kendall’s
tau is a function of its parameter 
. Namely, there exists the expression:

 = 
/�
+ 2�� (3)

where  is observed here.
This simplified framework leads us to an estimation method of copulas based

on dependence measures: the dependence measure used here is Kendall’s tau 
statistic. Therefore, the parameter’s value can be computed directly given a value of
Kendall’s tau such as 
 = 2/�1− �. When it is not the case, the equation above
may be solved numerically to get the parameter’s value.

After the copula function has been determined, an approximated correlation,
denoted by �, can be here expressed referring to the definition of the low-tail
dependence (Zhang, 2002):

� ≈ C�u� v�

�u+ v�/2
= 2C�u� v�/�u+ v�� (4)

The framework in Eq. (4) constitutes a reduced measure to be used for
consideration of the dynamics of dependence structure between the stochastic
variables s and t.

As for estimation of �, there exists two approaches, namely empirical
distribution function and quantile-based equation. This section will discuss the
former, with the later explored in Sec. 3.4.

With regard to empirical distribution function, it can be expressed:

F1�s� =
1
l

l∑
i=1

��s − si�� where ��x� =
{
1� if s > 0

0� otherwise
�
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Analysis of Convertible Bond Value 1567

where si is the sample of stochastic variable S, and F1�s� is its empirical distribution
function. Under the copula framework, u is equal to F1�s�. Likely, v is equal to F2�t�,
calculated through the same methodology as F1�s�. Then, the � in Eq. (4) can be
computed by:

� ≈ 2C�F1�s�� F2�t��/�F1�s�+ F2�t��� (5)

Obviously, this approach can only apply to estimate the past value of �.

2.2. LS-SVM for Nonlinear CB Price Estimation

Vapnik (1995) proposed the notion of the support vector machine (SVM) as a new
generation learning system for small samples based on recent advances in statistical
learning theory. It overcomes the shortcomings of the traditional pattern recognition
and neural network recognition algorithm, such as large samples, “the curse of
dimensionality”, local optimization, over-fitness, etc., and has a higher recognition
rate and better generalization performance. It is now being established as one of the
standard tools for machine learning and data mining, such as pattern recognition
and regression analysis (Cristianini and Shawe-Taylor, 2000). Then, the least square
support machine (LS-SVM) is introduced below (Suykens and Vandewalle, 1999).

Given a training set, {xi, yi}, i = 1� 2� � � �� l, where the input data x is assumed
to be a compact domain in a Euclidean space Rn and the output data y is assumed
to be a closed subset of R. Learning from data can be viewed as approximation of
a multivariate function f�x� that represents the relation between the input x and
output y. By some nonlinear mapping ��x�, the input x is mapped onto a hypothesis
space (or feature space) in which the learning machine (algorithm) selects a certain
function f�x�.

According to the learning theory, for constructing a nonlinear LS-SVM, the
decision function takes the following form:

f�x� = w · ��x�+ b�

Then, the decision function can be estimated by taking the following quadratic
programming:

minimize
1
2
�w�2 + �

l∑
i=1

e2i (6)

subject to yi = wT��xi�+ b + ei�

where the first term �w�2 is called the regulation term, � is the regularization
constant which plays a trading-off between the regularization performance and the
empirical error, and ei is the error variables.

According to the generalized representer theorem (Evgeniou et al., 2000), the
solution of f�x� can usually be expressed with regard to the basic elements of Hilbert
space with appositively defined kernel function K�·� ·�:

K�xi� xj� = ��xi�
T��xj�� i� j = 1� 2� � � �� l
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1568 Shen and Wang

Then, there exists a linear equation group:

[
0 1T

1 K + �−1I

] [
b
�

]
=

[
0
Y

]
� (7)

where 1 = �1� � � � � 1�T , Y = �y1� � � � � yl�
T , � = ��1� � � � � �l�

T , and I is unit matrix.
By taking Eq. (7), � and b can be obtained, and the resulting LS-SVM model

for nonlinear function estimation can be then denoted as follows:

f�x� =
l∑

i=1

�iK�xi� x�+ b� (8)

Any symmetric function which satisfies Mercer conditions can be used as the
kernel function here (Wahba, 1999), and different kernel functions can also be
constructed into variant learning machines.

The kernel functions most used presently are:

Polynomial kernel: K�xi� xj� = ��xi� xj�+ 1�d�

Radial basis function (RBF): K�xi� xj� = exp�−�xi − xj�2/�2��

Sigmoid kernel: K�xi� xj� = tanh�v�xi� xj�+ c�� where v > 0� c < 0�

And, any non negative linear combination of Mercer kernels is still a Mercer
one. Once the kernel is chosen, the parameters � and �2 (e.g., sig2) need to be
assigned next.

2.3. Integration of SVM and Copula Function

With the help of copula function, dependence structure of the underlying stock
and interest rate can be explored. As one of inputs into the SVM, the dependence
structure will exhibit significant impact on the CB’s price. The process of modeling,
detailed in Fig. 1, consists of two steps. Step 1 is responsible for the exploration
of dependence structure of the underlying stock price and interest rate, denoted by
the � in Eq. (5), and LS-SVM modeling is completed in Step 2, with CB’s price
outputted.

3. Empirical Analysis

“Xin-gang CB” (Code: 110003), discussed below, is issued by a steel company
“XINYU IRON STEEL GROUP CO., LTD.” in China, with the underlying asset
“Xin-gang stock” (Code: 600782). The data patterns are collected within the time
period 09/08/2008-12/31/2010, and 549 data patterns are obtained with some
inaccessible data eliminated. At the same time, these data patterns are divided
into two parts: one part is used for the train set with 425 data patterns between
09/08/2008-06/30/2010, and the other is used for the test set with 124 data patterns
within 07/01/2010-12/31/2010.

Most of data patterns are collected from the special data base: ESSET/DB and
the experiments below are implemented through MATLAB software.
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Analysis of Convertible Bond Value 1569

Figure 2. The descriptive statistical analysis of the data mainly involved in the histogram
and stats and the line graph of the prices of “Xin-gang CB” and its underlying stock,
“Xin-gang stock,” respectively. (color figure available online)

3.1. The Descriptive Statistics Analysis of the Data

The descriptive statistical analysis of the data is done underneath to obtain an
instruction for the feature selection and the parameter determination of LS-SVM
and copula function. The analysis is mainly involved in investigating the prices of
“Xin-gang CB” and its underlying stock, “Xin-gang stock” because the value of CB
varies with its underlying asset price tempestuously and principally (Fig. 2).

The kurtosis values of the prices of “Xin-gang CB” and “Xin-gang stock” are
3.54 and 2.44, respectiveiy, and a lot of prominent accumulations appear in their line
graphs correspondingly. In unit root test, the values of augmented Dickey-Fuller test
statistic are −2.052236 (prob. 0.2645) and −1.728280 (prob. 0.4164), respectively,
and display a unit root in all olthe two kinds of prices.

All of these characteristics above mean that the two kinds of prices both tolerate
the departure from the nomai distribution and the linearity and stationarity, which
are al1 dominantly used as assumptions by the traditional theories, and that some
improvements must be conducted to adapt the value analysis of CB to the financial
market, with the integration of SVM and copula function just discussed here.

3.2. Feature Selection and Kernel Parameter Determination of LS-SVM

First, estimation of the dependence structure is done. As a known feature, the
dependence structure � is first calculated. Under the notion of Kendall’s tau , it can
be estimated empirically and the parameter 
 of Clayton copula can be then deduced
through Eq. (3): 
 = 2/�1− �, with the � being naturally calculated using Eq. (5).
After these values of the � has been calculated, they naturally fall into two parts
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1570 Shen and Wang

according to the corresponding set, the train set or the test set, of the underlying
stock price and interest rate.

Except for the �, there are other features to be selected again. According to the
previous study and the references described in Sec. 1, factors (e.g., features) that
affect CB value can be summarized as follows: initial stock price, life time, volatility
of the underlying stock, risk-free interest rate, credit risk premium, compound rate,
call price, call conditions, put price, put conditions, conversation price, conversation
ratio, conversation price adjustment condition, etc.

Actually, under most scholars’ consideration, six other variables are selected
here, namely, the underlying stock price, beta (i.e., the systematic risk measure for
the stock), convertible premium rate, the yield of straight bond corresponding to the
CB, the time to maturity, and the stock market index. Therefore, the seven variables
consist of elements of the input vectors, which implies x is seven-dimensional. Of
course, y is necessarily the CB’s historical price.

As the dynamics of financial time series are strongly nonlinear, it is intuitively
believed that nonlinear kernel functions could achieve better performance than the
linear kernels. In this article, the RBF function is used as the kernel function of
LS-SVMs, because the RBF kernel tends to give good performance under general
smoothness assumptions. Consequently, it is especially useful if no additional
knowledge of the data is available.

In order to make an LS-SVM model, two extra parameters: the regularization
parameter, � and the bandwidth of the RBF kernel, �2 (sig2) need to be determined
first. By using optimization command “bay_optimize” to the training set, the two
parameters can be optimized, respectively. Accounting for the disadvantage of
LS-SVMs in sparsity, the least relevant support vectors must be removed in order
to obtain sparsity by “sparselssvm” command. After these necessary processes, an
LS-SVM combined with copula, shown in Fig. 1, is established.

3.3. Estimation of CB Price

Using the test set, the CB price can be estimated. The prediction performance
is evaluated using the following statistical metrics, namely, the normalized mean
squared error (NMSE) and the mean absolute error (MAE), described, respectively,
as follows:

NMSE = 1
�2l

l∑
i=1

�yi − f�xi��
2� MAE = 1

l

l∑
i=1

�yi − f�xi���

where �2 is the normalized squared error of the data, not the same notion as the �2

in the radial basis function (RBF).
At the same time, for the sake of performance comparison of various models, a

single LS-SVM model is also set up. The testing result is showed in Table 1, with a
mark advantage in the model proposed over the single LS-SVM.

3.4. Stress Testing and Hedging

Stress testing and hedging ratio discussion are explored below for the deep analysis
of CB value based on the integration of LS-SVM and copula function.
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Analysis of Convertible Bond Value 1571

Table 1
The performance comparison between LS-SVM and the model

based on the integration of LS-SVM with copula function

Models NMSE MAE

LS-SVM 0.1513 0.6734
LS-SVM integrated with copula function 0.0259 0.3711

First, scenario needs to be first described. Here, some illustrations for using
copulas are given as risk estimation tools. Knowing now the chosen Clayton copulas
characterizing the studied dependence structures, such a characterization to realize
a scenario analysis could be used.

Only scenarios which could be unfavorable to the CB are considered. To
address this problem, tremendous fluctuation in price of the underlying stock or
interest rate must be taken into account, and the impact of change in dependence
structure on the CB’s price is also be quantified. In practice, the following
probability is given:

P�V > v �U ≤ u� = P�T > t � S ≤ s� = P�V > v�U ≤ u�

P�U ≤ u�
= u− C�u� v� 
�

u
�

where �u� v� ∈ �0� 1�2, �S� T� is here the bivariate vector of the underlying stock
price and interest rate respectively. Moreover, �U� V� corresponds to the uniform
transformation of �S� T� on the subset �0� 1�2 given the observed marginals (i.e.,
empirically estimated on data with Deheuvels, 1981 method). The formula above
implies a scenario where the underlying stock price is in declining condition
accompanied with an increase in the interest rate, all of which are disadvantageous
to the CB.

In particular, the following quantile-quantile dependence measure is preferred:

P�V > q� �U ≤ q�� =
q� − C�q�� q�� 
�

q�
= �� (9)

where � represents the required probability level or critical level and q� is the related
quantile.

Therefore, a scenario analysis could lead us to consider, for example, a
disturbing probability level of 10% or, differently, a stress scenario or a crisis
situation with a probability level of 1%. Then, with q� calculated using Eq. (9), the
� in Eq. (4) is correspondingly changed into:

� ≈ C�q�� q��/q�� (10)

Correspondingly, this approach in Eq. (10) is suitable for estimating the future
value of �, in contrast to Eq. (5), and the estimated expectation value of the � using
Eq. (10) is helpful to determine the hedging ration below.

Secondly, the hedging ratio is then discussed.
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1572 Shen and Wang

According to Eq. (8), take the partial derivative of the output f�xi� with respect
to the input xik (Cao et al., 2003):

�yi
�xik

= ��
∑l

j=1 �jk�xj� xi�+ b�

�xik
= ��

∑l
j=1 �jk�xj� xi��

�xik
+ �b

�xik

=
l∑

j=1

�j
�k�xj� xi�

�xik
� i = 1� 2� � � �� l� k = 1� 2� � � �� n�

To the Gaussian kernel K�xi� x� = exp
(− 1

�2

∑n
l=1 �xil − xjl�

2
)
, then

�k�xj� xi�

�xik
= − 2

�2
�xik − xjk� · exp

(
− 1

�2

n∑
l=1

�xil − xjl�
2

)
�

In this case,

�yi
�xik

= − 2
�2

l∑
j=1

�j�xik − xjk� exp
(
− 1

�2

n∑
l=1

�xil − xjl�
2

)
� (11)

As can be shown in Eq. (11), the derivative of the output to the inputs can be
calculated for any xik, and the value depends on the input xik, the support vector xj
as well as the converged Lagrange multipliers �j .

It is imperative that the CB should be hedged because it suffers from the
exposure to the changes in not only the underlying stock price but also the �.
This means that all the changes in the underlying stock price and the � must be
considered (Das and Sundaram, 2006).

Here, the Delta, �S , and ��, are taken into account which represent the partial
derivative of the convertible bond price with respect to a change in the price of the
underlying stock and the �, respectively. Suppose P to be the price of CB and S the
price of the underlying stock. Now, �S can be expressed as below:

�S =
�P

�S
≈ 1

l

l∑
i=1

∣∣∣∣�yi�Si

∣∣∣∣�
where xik stands for Si �i = 1� 2� � � �� l�, with �S calculated using Eq. (11).

Likely, there exists:

�� =
�P

��
≈ 1

l

l∑
i=1

∣∣∣∣�yi��i

∣∣∣∣�
Thus, according to Taylor one-order expansions of P, the �P can be expressed:

�P ≈ �S · �S + �� · ���

Under assumptions that no transaction costs exist and position in short is
permitted, the delta-neutral hedging strategy demands that h units of the underlying
stocks should be sold short to hedge the exposure of the CB. Here, the delta-neutral
hedging strategy must be modified to account for the change in the �.
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Table 2
The hedging performance comparison of the model proposed, based on the

integration of LS-SVM with copula function, with other models including Simple
regression (OLS) and Black-Scholes equation. The model proposed is listed under

different scenarios, namely � = 1% and � = 10%, with the same �S value

�S value �� value H value

Simple regression (OLS) 0.7321 – 76.9%
Black-Scholes equation 0.6147 – 70.3%
The model based on the integration
of LS-SVM with Clayton copula

1.2126 � = 1% 0.7982 85.1%
� = 10% 1.1727 84.7%

Thus, once the change in the CB price happens, the number of the underlying
stock sold short is:

h = �P

�S
≈ �S · �S + �� · ��

�S
= �S +

��

�S
�� ≈

1
l

( l∑
i=1

∣∣∣∣�yi�Si

∣∣∣∣+ ��

�S
·

l∑
i=1

∣∣∣∣�yi��i

∣∣∣∣
)
�

where h stands for the hedging ration, which consists of two parts and considers
all the changes in the price of the underlying stock and the dependence structure
between it and interest rate.

The hedging effectiveness measurement is defined (Satyanarayan, 1998):

H = 1− EXP2

EXP1

� (12)

where EXP1 and EXP2 represent the exposure of CB before and after hedging
respectively.

According to the criterion given in Eq. (12), the hedging performance of the
model proposed under modified delta-neutral hedging is listed in Table 2, which is
the average of H values within the hedge period. Intuitively, the ability of the model
proposed is compared with conventional methods including simple regression (e.g.,
OLS) (Johnson, 1960) and Black–Scholes equation (Black and Scholes, 1973). The
corresponding results are also shown in Table 2.

4. Conclusions

It is a beneficial attempt to integrate SVM and copula function to analyze the value
of CB and this can effectively strengthen their advantages in tackling nonlinear,
nonnormal, and nonstationary financial issues. This article used the integration to
deal with embedded options and their interaction which greatly influence the value
of CB, and the integration conveniently made the dependence structure between the
underlying stock price and interest rate into one component of the input vectors of
LS-SVM, which carried out satisfactory results as illustrated in Table 1. Moreover,
the model proposed helped to analyze exposure of CBs caused by changes in the
underlying stock price and dependence structure between it and interest rate and
accurately determinate the hedging ration just illustrated in Table 2.

As a preliminary attempt, the methodology proposed has to be improved next
in two respects. First, the optimization of parameters for all the 
 in copula
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1574 Shen and Wang

functions and the � and the bandwidth of the RBF kernel, �2, in LS-SVM should
be implemented in the consistent principles and solution frameworks; otherwise,
the optimization of parameters in these two tools can’t achieve consistent objects.
Second, other kinds of SVM should be explored to overcome the drawbacks of
the LS-SVM in that the sparse solution of support vectors in LS-SVM is not
satisfactory.
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