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Support vector machine (SVM) is a popular tool for machine learning task. It has been suc-
cessfully applied in many fields, but the parameter optimization for SVM is an ongoing
research issue. In this paper, to tune the parameters of SVM, one form of inter-cluster dis-
tance in the feature space is calculated for all the SVM classifiers of multi-class problems.
Inter-cluster distance in the feature space shows the degree the classes are separated. A lar-
ger inter-cluster distance value implies a pair of more separated classes. For each classifier,
the optimal kernel parameter which results in the largest inter-cluster distance is found.
Then, a new continuous search interval of kernel parameter which covers the optimal ker-
nel parameter of each class pair is determined. Self-adaptive differential evolution algo-
rithm is used to search the optimal parameter combination in the continuous intervals
of kernel parameter and penalty parameter. At last, the proposed method is applied to sev-
eral real word datasets as well as fault diagnosis for rolling element bearings. The results
show that it is both effective and computationally efficient for parameter optimization of
multi-class SVM.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Support vector machine (SVM) is based on the structural risk minimization (SRM) principle [1], which makes it less prone
to over-fitting. By maximizing the margin between two opposite classes, SVM can find the optimal separating hyper-plane
that minimizes the upper bound of the generalization error, which enables SVM to have strong capability of fitting and gen-
eralization. By introducing the kernel tricks, SVM has the ability of dealing with infinite or nonlinear features in a high
dimensional feature space. With the above attractive features, SVM is regarded as state-of-the-art classifier. It is generally
acknowledged that SVM has a good performance in solving nonlinear and high dimensional pattern recognition problems
with good generalization ability. Although SVM has so many advantages and has been successfully applied in many fields,
such as biomedicine [2,3], text categorization [4,5] fault diagnosis [6,7] and so on, in practice, its parameters, the kernel
parameters (for instance, width parameter g of RBF kernel function) and penalty parameter C, must be selected judiciously
so that the performance of SVM can be brought into full play. Changing the kernel parameters is equivalent to selecting the
feature spaces, and tuning C is corresponding to weighting the slack variables, the error terms. Consequently, the perfor-
mance of SVM depends on its parameters largely. However, there is no systematic methodology or priori knowledge for
determining the parameters of SVM.

A wide range of studies have been carried out on this topic. A simple and straightforward way is grid search (GS) [8]. This
procedure requires a grid search over the parameter space. It trains SVMs with all desired combinations of parameters and
. All rights reserved.
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screens them according to the training accuracy. It makes the training process time-consuming, and when the number of
parameters exceeds two it will become intractable. Another approach is to build estimates or bounds for the true generation
error, and to use numerical optimization methods [9,10] to minimize some analytical criterions which are proxies of these
estimates or bounds. The numerical methods are generally more efficient than GS, for their fast convergence rate. However,
they are sensitive to the initial point. If the initial point is not proper, the numerical methods might not properly solve the
parameter optimization problem. Additionally, these methods require that the kernel functions and the bounds of general-
ization error have to be differentiable with respect to kernel and penalty constant parameters. Recently, some evolutionary
algorithms (EAs), such as genetic algorithm (GA) [11,12], particle swarm optimization algorithm (PSO) [13,14], artificial
immunization algorithm (AIA) [6,15] and ant colony optimization algorithm (ACO) [16] have been adopted to optimize
the SVM parameters for their better global search abilities. These EAs provide an alternative for finding global optimal solu-
tions in non-convex, highly nonlinear, noisy, time-dependent or flat solution spaces. Consequently, they can find the optimal
parameters combination for SVM with a high probability. However, these methods select the best parameter combination
from the population evolved generation by generation, which requires training many SVMs. Thus, they are still time-con-
suming, especially when the search ranges of the parameters are large.

SVM uses kernel functions to map the input data into a high dimensional feature space. Hence, the feature space is deter-
mined by the kernel function and its parameters. When the kernel function is selected, the feature space is only determined
by the kernel parameters. Selecting kernel parameters is equivalent to selecting the feature space. Obviously, we need a fea-
ture space in which the classes are more separated. The inter-cluster distances in the feature spaces (ICDF) indicate the sep-
aration of two classes in the feature space. The larger the ICDF, the easier to classify the two classes in feature space. Wu and
Wang [17,18] used ICDF to choose the kernel parameters. For binary classification problem, the optimal kernel parameters
are found according to the largest ICDF. Then, the selected kernel parameters with different candidate penalty parameter C
are used to train SVM models. The parameters combination which results in a highest cross-validation accuracy is selected as
the best one. Since calculating ICDFs does not require the information of the trained SVMs, the time needed for the training
process for different kernel parameters is saved. This method can get the parameter combinations which result in SVM mod-
els perform as good as the models chosen by traditional GS method in testing accuracy, while the training time is shortened
largely. However, in this method, the candidate penalty parameters and kernel parameters for calculating ICDFs are given as
discretization. It needs to locate the interval of feasible solution and a suitable sampling step, which is a tricky task since a
suitable sampling step varies from kernel to kernel and the grid interval may not be easy to locate without prior knowledge
of the problem [19]. Furthermore, in practice, most of the classification problems are multi-class, how to extend the binary
SVM with parameter optimization by ICDF to multi-class problems is a challenging task.

In this paper, a hybrid method of ICDF index and self-adaptive differential evolution (ADE) algorithm (ICDF–ADE) is pro-
posed to optimize the parameters of SVM. The proposed method capitalizes on the strengths of both the ICDF heuristic and
ADE strategy. Firstly, for each class pair of a multi-class problem, the ICDFs are calculated, and the optimal kernel parameter
for the SVM of this class pair is found according to the largest ICDF. Then, a small and effective search interval of kernel
parameter covering the optimal kernel parameter of each class pair is determined. At last, ADE is used to search the optimal
parameter combination of SVM in the continuous intervals of kernel parameter and penalty parameter. Since the search
range of kernel parameter is much smaller than that of traditional methods, the training time of the proposed method is
much shortened. Moreover, differential evolution (DE) has shown performance superior to that of PSO and other EAs in
the widely used benchmark problems [20] and has fewer parameters to set. Thus, it outperforms other methods in optimiz-
ing the parameters of SVM. The proposed method is tested on several real word datasets as well as fault diagnosis for rolling
element bearings. The experimental results show that it has good performance in optimizing the parameters of multi-class
SVM, and thus is suitable for fault diagnosis of rolling element bearings.

The remaining of this paper is organized as follows. The brief introduction of SVM is presented in Section 2. Several forms
of ICDF are given in Section 3. The basic ideas of ADE are introduced in Section 4. The proposed method as well as numerical
experiments is described in detail in Section 5. In Section 6, the proposed method is applied in fault diagnosis for rolling ele-
ment bearings and the experimental results are compared. Finally, a general conclusion is drawn in Section 7.
2. Support vector machines

2.1. Brief introduction of support vector machines

Support vector machines (SVM) were first suggested by Vapnik [1]. The principles of SVM stem from statistical learning
theory. By using the information of limited samples, SVMs search for a compromise between the model complexity and
learning ability to obtain good generalization ability. In this section, some basic conceptions for SVMs are introduced. For
a more detailed discussion of SVM can be found in Cristianini and Shawe-Taylor [21].

Given a dataset ðxi
!
; yiÞ; i ¼ 1; . . . ; l; xi

!2 Rd; yi 2 f1;�1g, where Rd is the d-dimensional input space, l is the number of train-
ing samples, xi

! is the ith training sample and yi is its corresponding bipolar label. A linear decision surface can be defined by
the equation f ð~xÞ ¼ h~w;~xi þ b ¼ 0, where ~w is a weight vector orthogonal to the decision surface, b is an offset term, h�, �i indi-
cates the inner product operation. The original formulation of SVM algorithm seeks a linear decision surface that separates



X. Zhang et al. / Applied Mathematics and Computation 218 (2012) 4973–4987 4975
the two opposite classes with a maximal margin 1=k~wk. Maximizing the margin 1=k~wk is equivalent to minimizing k~wk2,
whose solution is found after resolving the following quadratic optimization problem:
min
~w;b

1
2
k~wk2

;

Subject to yi h~w; xi
!i þ b

� �
P 1; i ¼ 1; . . . ; l:

ð1Þ
This optimization problem can be transformed into its corresponding dual problem:
WðaÞ ¼
Xl

i

ai �
1
2

Xl

i;j¼1

aiajyiyj xi
!
; xj
!D E

; ð2Þ
with constraints: ai; aj P 0; i ¼ 1; . . . ; l;
Pl

i¼1yiai ¼ 0. Where ai are Lagrange multipliers, they can be found by optimizing Eq.
(2).

Considering ~w ¼
Pl

i¼1aiyi xi
!, the decision function can be got as follows:
f ð~xÞ ¼ sgn
X

xi
!
2SVs

aiyi xi
!
;~x

D E
þ b

0
B@

1
CA; ð3Þ
where sgn is a signum function. SVs correspond to the set of support vectors, training examples for which the associated
Lagrange multipliers are larger than zero.

In order to relax the margin constraints for the non-linearly separable data, the slack variables are introduced into the
optimization problem. The following two forms of soft margin SVMs are generally discussed and applied:
min
n;~w;b

1
2
k~wk2 þ C

Xl

i¼1

ni;

Subject to yi ~w; xi
!D E
þ b

� �
P 1� ni; i ¼ 1; . . . ; l; ni P 0;

ð4Þ

min
n;~w;b

1
2
k~wk2 þ C

2

Xl

i¼1

knik2
;

Subject to yi ~w; xi
!D E
þ b

� �
P 1� ni; i ¼ 1; . . . ; l; ni P 0;

ð5Þ
where ni, i = 1, . . . , l are slack variables and C is the penalty parameter of error. Eqs. (4) and (5) are called as L1-SVM and L2-
SVM, respectively.

In practice, most of the problems are linearly inseparable, even though soft margin SVM is adopted. Thus, the input data is
mapped into a high dimensional feature space, in which the data are sparse and possibly more separable. Suppose the map-
ping function is ~/, then the inner product hxi

!
;~xi in Eq. (3) can be replaced by h~/ðxi

!Þ;~/ð~xÞi. In SVM, ~/ is not given explicitly,
instead a kernel function Kðxi

!
;~xÞ ¼ h~/ðxi

!Þ;~/ð~xÞi is used. Consequently, the decision function Eq. (3) becomes:
f ð~xÞ ¼ sign
X

xi
!
2SVs

yiaiK xi
!
;~x

� �
þ b

0
B@

1
CA: ð6Þ
The kernel function allows access to spaces of high dimensions without the need to know the mapping function ~/ explic-
itly. The performance of SVM depends on the kernel function and its parameters largely. The generally used kernel functions
are reported in Table 1. One of the most popular kernel functions is radial basis function (RBF). When use RBF kernel, the
parameters (d,g) should be set properly. Generally, d is set to be 2, thus the kernel value is related to the Euclidean distance
between the two samples. g is related to the kernel width, it is the key performance factor for SVMs. Too large or too small of
a g value will lead to over-fitting or underfitting, respectively. This paper employs the RBF kernel. Then, only g and penalty
parameter C need to be optimized for SVM.
Table 1
Generally used kernel functions.

Kernel Formula

Linear Kð~x; x0
!
Þ ¼ h~x; x0

!
i

Polynomial Kð~x; x0
!
Þ ¼ ðgh~x; x0

!
i þ rÞd ; g > 0

RBF Kð~x; x0
!
Þ ¼ expð�gk~x� x0

!
kdÞ; g > 0

Sigmoid Kð~x; x0
!
Þ ¼ tanhðgh~x; x0

!
i þ rÞ
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To show the influence of various (C,g) effect on the performance of SVM, Fig. 1 plots the fivefold average testing accuracy
for two public available datasets, vowel [22] and segment [23], in a three dimensional surface, where the x-axis and the
y-axis are log2C and log2g, respectively. The z-axis is the fivefold average testing accuracy. Each mesh point in the (x,y)-plane
stands for a parameter combination (C,g). It is easy to see that the performance of SVM not only fluctuates dramatically with
the changes of (C,g), there also are many local maxima. Also these plots show that these surfaces have low-degree of regu-
larity, which further hinders the use of traditional methods. Thus it is significant to adopt some both effective and efficient
algorithm to optimize the parameters of SVM.

2.2. Performance measures for SVM parameter optimization

In the process of tuning SVM parameters, performance measures are needed to evaluate the selected parameters. The per-
formance of SVM is mainly referred to its generalization capability, namely the capability of recognizing the new data. Obvi-
ously, the true risk of the SVM classifier is the best one. But this quantity is not accessible as the data distribution in real
world is unknown. Thus, we have to select estimates or bounds for the true risk of the SVM classifier as the performance
measures.

The commonest performance measures are probably the leave-one-out (LOO) procedure [9] and the k-fold cross-validation
[24], both of which require the learning engine be trained multiple times to obtain a performance measure for each parameter
combination. In LOO procedure one sample is left out in turn for testing, and the training and testing will be repeated l times,
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Fig. 1. The performance of RBF kernel SVM varies with parameters (C,g) in two datasets.
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where l is the number of training samples. LOO procedure gives an almost unbiased estimate of the expected generalization
error. However, it is very costly to actually compute. k-fold cross-validation is an alternative for LOO. In k-fold cross-
validation, the training data is randomly split into k mutually exclusive subsets (the folds) of approximately equal sizes.
One subset is left out in turn for testing, and the training and testing will be repeated k times. By averaging the test errors
over the k trials it gives an estimate of the expected generalization error. However, it also is time-consuming as it should train
k SVMs for each parameter combination. Since a non-support vector can be correctly classified by the remaining training
samples when it is omitted, a coarse estimate of the LOO generalization error rate can be approximated as: nSV/l, where
nSV denotes the number of support vectors, l is the number of training samples [21]. It only needs training one SVM for each
parameter combination when nSV/l is selected as performance measure. This measure is both simple and effective.

3. Inter-cluster distance in the feature space

One of the important tricks of SVM is the introduction of kernels, which enables SVM to have the ability of dealing with
infinite or nonlinear features in a high dimensional feature space. Training an SVM is equivalent to looking for the hyper-
plane that separates the data of the two classes in the feature space. When kernel function is selected, the high dimensional
feature space is determined by kernel parameters. A better kernel parameter will result in a pair of more separated classes.
To judge the degree of the separation of clusters in the feature space, several distance functions are introduced from
[18,25,26].

Let the input vectors xi
!
; i ¼ 1; . . . ;m, belong to class 1 and the input vectors yj

!
; j ¼ 1; . . . ;n, belong to class 2, ~/ð�Þ denotes

the mapping function which maps the input vectors into the high dimensional feature space, K(�, �) denotes the kernel
function.

The Euclidian distance between the closet points of two classes in the feature space is calculated by
d1 ¼min
i;j

~/ xi
!� �
�~/ ~yj

� ���� ��� ¼min
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~/ xi
!� �
�~/ ~yj

� ���� ���2
r

¼min
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~/ xi
!� ���� ���2

� 2 ~/ xi
!� �
�~/ ~yj

� �� �
þ ~/ ~yj

� ���� ���2
r

¼min
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xi
!
; xi
!� �
� 2K xi

!
; yj
!� �
þ K yj

!
; yj
!� �r

ð7Þ
The longest and the average Euclidian distance between two points of two classes in the feature space are calculated by
d2 ¼max
i;j

~/ xi
!� �
�~/ yj

!� ���� ��� ¼max
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xi
!
; xi
!� �
� 2K xi

!
; yj
!� �
þ K yj

!
; yj
!� �r

; ð8Þ

d3 ¼
1

mn

Xm

i¼1

Xn

j¼1

~/ xi
!� �
�~/ yj

!� ���� ��� ¼ 1
mn

Xm

i¼1

Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K xi
!
; xi
!� �
� 2K xi

!
; yj
!� �
þ K yj

!
; yj
!� �r

: ð9Þ
The Euclidian distance between the means of two classes in the feature space is calculated by
d4 ¼
1
m

Xm

i¼1

~/ xi
!� �
� 1

n

Xn

j¼1

~/ yj
!� ������
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

i¼1

~/ xi
!� �
� 1

n

Xn

j¼1

~/ yj
!� ������
�����

2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m2

Xm

i¼1

~/ xi
!� ������
�����

2

� 2
mn

Xm

i¼1

~/ xi
!� �
�
Xn

j¼1

~/ yj
!� � !

þ 1
n2

Xn

i¼1

~/ yj
!� ������
�����

2
vuut
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1

m2

Xm

i¼1

~/ xi
!� �
�
Xm

j¼1

~/ xj
!� � !
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Xm

i¼1
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!� �
�
Xn

j¼1

~/ yj
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Xn

i¼1

~/ yi
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Xn

j¼1

~/ yj
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Xm

i¼1

Xm

j¼1
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j¼1

~/ yi
!� �
�~/ yj
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¼
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i;j¼1

K xi
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; xj
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i¼1

Xn

j¼1
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!
; yj
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þ 1
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i;j¼1

K yi
!
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!� �vuut : ð10Þ
In the above four forms of distances, d4 is less affected by noises than d1 � d3. It can indicate the class separation robustly,
and perform well in most cases. Here, Fisher’s iris data [22] is taken as an example to describe d4. Iris dataset includes three
different classes of flowers: setosa, virginica and versicolor. Each class consists of 50 samples, and each sample has four attri-
butes. These attributes are sepal length, sepal width, petal length and petal width. Fig. 2 plots the two-dimensional graphic of
Fisher’s iris data and the distances between different class means, where the x-axis and the y-axis are petal length and petal
width, respectively, and dsvir denotes the distance between means of setosa and virginic, dsver denotes the distance between
means of setosa and versicolor, dveir denotes the distance between means of versicolor and virginic. From Fig. 2 we can see
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that the location of class mean can indicate the class location, as for classes more separate, the distance between class means
increases. In this paper d4 is selected as the index to choose the optimal kernel parameters for SVMs.

4. Self-adaptive differential evolution

DE, an improved version of GA, is an exceptionally simple global optimization algorithm which is significantly faster and
robust at numerical optimization and is more likely to find a function’s true global optimum [27,28]. The optimization pro-
cess of DE is carried out with three basic evolution operators: mutation, crossover, and selection, which are described in de-
tail below.

Without loss of generality, global optimization problems can be transformed into solving the following minimization
problem:
min f x1; x2; . . . ; xDð Þ;
Subject to xL

j 6 xj 6 xU
j ; j ¼ 1;2; . . . ;D;

ð11Þ
where D is the dimension of solution space, xL
j and xU

j are the lower and upper bound of xj.
The initial population of NP vectors is randomly selected based on uniform probability distribution.
xj;ið0Þ ¼ xL
j;i þ randð0; 1Þ � xU

j;i � xL
j;i

� �
; ð12Þ
where i = 1,2, . . . ,NP, j = 1,2, . . . ,D, NP denotes population size, xj,i(0) is the jth dimension of xi(0), rand (0,1) denotes the ran-
dom number uniformly distribute in (0,1).

Mutation: The mutation of DE is realized by adding the weighted difference vector between two population members to a
third member:
v i
!ðg þ 1Þ ¼ xr1

�!ðgÞ þ F � xr2
�!ðgÞ � xr3

�!ðgÞ� �
; ð13Þ
where v i
!ðg þ 1Þ is a noisy vector after mutation, xr1

�!ðgÞ; xr2
�!ðgÞ and xr3

�!ðgÞ are selected randomly from Np vectors at the gth
generation and i – r1 – r2 – r3, the last term represents the mutation step size, F is a scale factor used to control the ampli-
fication of the differential variation.

Crossover: DE uses the binomial crossover to create a trial vector.
ui
!ðg þ 1Þ ¼ u1;iðg þ 1Þ; u2;iðg þ 1Þ; . . . ;uj;iðg þ 1Þ; . . . ;uj;Dðg þ 1Þ

� �
;

where
uj;iðg þ 1Þ ¼
v j;iðg þ 1Þ; if randð0; 1Þ 6 CR or j ¼ jrand;

xj;iðgÞ; otherwise;

	
ð14Þ
while CR is the probability of reproduction, which controls the diversity of the population and aids the algorithm to escape
from local optima, jrand is a random number in [1,2, . . . ,D].
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Selection: DE implements a very simple selection procedure. The generated offspring (trial vector), ui
!ðg þ 1Þ, replaces the

parent, xi
!ðgÞ, only if the fitness of the offspring is better than that of the parent.
xi
!ðg þ 1Þ ¼

ui
!ðg þ 1Þ; if f ui

!ðg þ 1Þ
� �

6 f xi
!ðgÞ
� �

xi
!ðgÞ; otherwise

8<
: ð15Þ
The key control parameters in DE are population size NP, scaling factor F, and crossover rate CR. In practice, F is not easy to
set, as it controls the amplification of the differential variation. A too big F will result in random search, and a too small F will
cause a low differential variation, which can make the algorithm premature. Hence, it is important to select a proper F for DE.

In this paper, we use a self-adaptive scaling factor operator [29], in which the scaling factor is determined according to the
evolved generations. The adaptive scaling factor operator is designed as follow:
k ¼ exp 1� Gm
Gm þ 1� G


 �
; ð16Þ

F ¼ F0 � 2k; ð17Þ
where F0 is mutation parameter, Gm is the maximum evolution generation, and G is the current evolution generation. At the
initial generations, F = 2F0, it has a bigger scaling factor to preserve the diversity of individuals. With the running of the algo-
rithm, the scaling factor reduces gradually. In the later stage, F is close to F0, which can enhance the probability of obtaining
the global optimum.
5. Multi-class SVM optimized by ICDF and self-adaptive DE

5.1. Procedures of the proposed method

In real world, most of pattern recognition problems are multi-class. However, the SVMs were originally conceived for the
solution of binary classification problems. Extending binary SVM to multi-class problems is still an ongoing research issue.
Several methods have been proposed for solving multi-class problems applying the SVMs, such as one-against-one [30], one-
against-rest [31] and direct acyclic graph (DAG) SVM [32] strategies. From the research of Hsu and Lin [8], the one-against-
one method outperforms other methods for extending binary SVM to multi-class.

When one-against-one strategy is used to extend the binary SVM to n-class, it will produce n(n � 1)/2 SVM classifiers.
There are two methods to set the parameters for these n(n � 1)/2 SVM classifiers. The first one is searching for a set of param-
eter values which will be common to all classifiers. The second approach, a set of values is selected for each binary classifier.
Intuitively, the second one is ideal, but it is complex, especially for the problem with very many classes. Relate work [11,33]
have shown that the use of the same parameter values in all binary SVMs is sufficient to obtain good results in most of the
problems. In this paper, we use the same parameter values in all binary SVMs. The optimal parameter combination is
searched in the intervals of kernel parameter and penalty parameter. Obviously, the wider or the finer the search intervals
are, the more possibility it finds the best parameter combination. However, the wider the search intervals are, the more time
it consumes. Consequently, it is significant to determine the both small and effective search intervals of kernel parameter
and penalty parameter.

The optimal kernel parameters for each class pair can be found by calculating the ICDFs. The optimal kernel parameter for
the multi-class problem most likely appears in the continuous search interval covering the optimal kernel parameter of each
class pair. Searching the optimal parameter combination of (C,g) essentially is an optimization problem. Thus, ADE is used to
search the best (C,g) in the continuous intervals of kernel parameter and penalty parameter. The overall process of the pro-
posed method is illustrated in Fig. 3. It mainly contains the following steps.

Step 1: For each class pair i of n(n � 1)/2 pairwise subsets of a n-class problem, the ICDFs for all the candidate kernel param-
eters are calculated and the largest one with its corresponding kernel parameter value gi is found.

Step 2: Sort these gi, where i = 1,2, . . . ,n(n � 1)/2, to find the minimum gmin and the maximum gmax.
Step 3: Determine the new search interval of kernel parameter g as (gmin,gmax).
Step 4: The population of (C,g) is randomly initialized in (Cmin,Cmax) and (gmin,gmax).
Step 5: SVM is trained with each parameter combination (C,g), and its corresponding fitness value for the SVM is evaluated.

If the fitness value satisfies the termination criterion, then the parameter combination (C,g) is selected as the opti-
mal one; If the fitness value does not satisfy the termination criterion, then the algorithm enters the next generation
to evolve.

Step 6: According to Eqs. (12)–(17), perform mutation, crossover and selection for the current population to generate a new
population of (C,g) in (Cmin,Cmax) and (gmin,gmax). Go to step 5.
Step (5)–(6) are repeated until the termination condition is satisfied.

Step 7: Train one-against-one multi-class SVM with the obtained optimal parameters and get the trained SVM model.
Step 8: Use the trained SVM model to predict the test data.



Fig. 3. The overall process of the proposed method.
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5.2. Numerical experiments

In this section, experimental results on several problems from the UCI Repository of machine learning datasets [22] and
Statlog collection [23] are presented to evaluate the proposed method. From UCI Repository the following datasets: iris,
wine, glass, and vowel are selected. The datasets: vehicle, segment, dna, satimage are from Statlog collection. Table 2 shows
the basic information of these datasets. Note that except problem dna whose attributes are binary value, all training data are
scaled to be in [�1,1]. Then test data are adjusted to [�1,1] accordingly, and training sets of dna and satimage are further
separated to training and validation sets.



Table 2
The basic information of datasets.

Dataset Number of training data Number of validation data Number of testing data Number of class Number of attributes

Iris 150 0 0 3 4
Wine 178 0 0 3 13
Glass 214 0 0 6 13
Vowel 528 0 0 11 10
Vehicle 846 0 0 4 18
Segment 2310 0 0 7 19
Dna 1400 600 1186 3 180
Satimage 3104 1331 2000 6 36
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The computing platform is a PC with the following features: Intel Pentium IV 3.0 GHz CPU, 1 GB RAM, a Windows XP
operating system and the Visual Studio 2008 and MATLAB R2011a development environment. All the experiments are done
with the help of LIBSVM [24]. We use the RBF kernel with d = 2, C 2 [2�7,27] and the candidate g are [2�20, 2�19, . . . ,220]. The
parameters employed for the ADE are set as follow: Population size NP = 40. Probability of reproduction CR = 0.9, maximum
evolution generation Gm = 200, the mutation parameter of adaptive scaling factor F0 = 0.5. When the number of iterations
exceeds Gm = 200, or when the fitness value does not change for 20 times iterations the algorithm is terminated.

For datasets dna and satimage where training, validation and testing sets are available, the validation rate is selected as
fitness function. For each pair of (C,g), the validation performance is measured by training the training set and testing the
validation set. Then, the pair of (C,g) that achieves the best validation rate is used to train all the training and validation
set. Finally, the trained SVM model is used to predict the testing set and the testing rate is reported. For the other six datasets
where validation set and testing set may not be available, for each pair of (C,g), we conduct a tenfold cross-validation on the
Table 3
A comparison between the proposed method and the traditional grid search (better rate bold-faced).

Datasets The proposed method Grid search

Search interval of g Chosen (C,g) Rate (%) Search interval of g Chosen (C,g) Rate (%)

Iris [2�3,2�1] (0.66,0.22) 97.78 [2�20,220] (2�2,2�1) 97.78
Wine [2�2,2�1] (1.15,0.25) 99.44 [2�20,220] (2�1,2�3) 99.20
Glass [2�1,25] (1.15,8) 71.50 [2�20,220] (21,22) 69.16
Vowel [2�1,23] (6.06,1.52) 99.05 [2�20,220] (22, 21) 98.73
Vehicle [2�2,20] (55.72,0.25) 85.14 [2�20,220] (26,2�2) 85.14
Segment [2�3,20] (111.43,0.38) 97.32 [2�20,220] (27,2�6) 97.14
Dna [2�6,2�1] (12.96,0.15) 95.87 [2�20,220] (23,2�5) 95.45
Satimage [20,24] (3.78,4.05) 92.35 [2�20,220] (23,21) 91.30
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whole training data. In tenfold cross-validation, the training data is randomly split into ten mutually exclusive subsets (the
folds) of approximately equal sizes. One subset is left out in turn for testing while the other nine subsets are in turn for train-
ing and the training and testing are repeated 10 times. The tenfold cross-validation rate is selected as fitness value for ADE.
At last, we report the optimal (C, g) and its corresponding best cross-validation rate.

The results are compared to those of the traditional GS method [8]. For GS the search step is set as 1 and the search range
of C and g are [2�7,27], [2�20,220], respectively.

The comparison using the proposed method and GS is presented in Table 3 where the search interval of g, the chosen opti-
mal (C,g), the best validation rate or testing rate are compared. From Table 3 we can see that the search ranges of g in all
datasets are largely shortened by ICDF heuristic. Fig. 4 shows the ICDFs of iris data problem. In Fig. 4, gmin = 2�3 = 0.125,
gmax = 2�1 = 0.5, so the new search interval of g is determined as [0.125,0.5], which covers the maximum ICDF value of every
class pair. It is much smaller than that of traditional GS. Note that in GS the values of the chosen optimal C and g are the
power of 2, as in GS method both C and g are sampled as the integer power of 2. Obviously, it may omit the optimal (C,g)
by using the traditional GS method as the interval between two adjacent grid points is too large. For example the interval
value between 22 and 23 is 23–22 = 4. From Table 3 we also note that the proposed method yields better validation or testing
rate in datasets: wine, glass, vowel, segment, dna and satimage while in other datasets the two methods produce the same
results. These results prove that the proposed method outperforms the traditional GS in searching the optimal parameters
for multi-class SVM, as in the proposed method the ICDF can determine an effective and small range of g, and the ADE
searches the optimal (C,g) in the continuous intervals of C and g, which can avoid omitting the optimal parameters.
6. Applications in fault diagnosis for rolling element bearings

Rolling element bearings constitute a major part of almost every rotating machine, as for it is the interface between the
stationary and the rotating part of the machine. Faults occurring in the bearings may lead to fatal breakdowns of machines
and can drive to unacceptably long time maintenance stops, which will result in large personal casualties and economical
loss. Therefore, it is significant to detect fast, accurately and easily the existence and severity of the faults in the bearings.
Visual inspection of frequency–domain features of the vibration signals may be sufficient to identify the faults, but often this
kind of diagnostic requires a certain level of expertise to be carried out. Reliable, fast and automated diagnostic techniques
allowing relatively unskilled operators to make important decisions without a specialist to examine the data are therefore
valuable [34]. Much research has been devoted to this subject [34–36]. Vibration-based monitoring is the most widely
applied technique. It is possible to obtain vital diagnosis information from the vibration signals by using some signal pro-
cessing techniques. Then, the feature extraction and selection are undertaken. At last, the pattern recognition methods
are used to diagnose the faults. In this section the proposed ICDF–ADE method is applied to fault diagnosis for rolling
element bearings.

6.1. Data collection and feature extraction

Data collection: The data used in this paper comes from the dataset of the rolling element bearings [37], by installing the
deep groove ball bearings manufactured by SKF in a motor-driven mechanical system. Three faults, outer race fault, inner
race fault and ball fault, are introduced into the drive-end bearing of the motor. The fault seeded at the outer race was placed
at a position equivalent to 12:00 o’clock time configuration. The defect sizes (diameter, depth) of these three faults are the
same: 0.007 or 0.021 in. Each bearing was tested under the four different loads, 0, 1, 2 and 3 hp. Data was collected at
12000 samples/s and 24000 samples/s. In this paper, we use the data that collected at 24000 samples/s under 2 hp load,
and the defect sizes are 0.007 or 0.021 in. Each original signal was divided into 100 signals, and the length of the signal after
divided is 4096 data points. Consequently, 600 samples covering 6 types’ faults were produced, as list in Table 4. The time
responses of these three types’ faults are shown in Fig. 5.

Feature extraction: According to literature [36], one time-domain feature (F1), two frequency-spectrum features (F2,F3)
and one demodulation-spectrum feature (F4) were selected for fault diagnosis of the rolling element bearings. These four
features were selected from 43 features covering time-domain statistical characteristics, frequency-domain statistical char-
acteristics and empirical mode decomposition (EMD) energy entropies. They provide dominant fault-related information of
vibration signals. Consequently, they are superior to other features in fault diagnosis for rolling element bearings.
Table 4
Description of bearing fault dataset.

The number of fault samples Defect size (in) Position of fault Label of class

100 0.007 Outer race 1
100 0.007 Inner race 2
100 0.007 Ball 3
100 0.021 Outer race 4
100 0.021 Inner race 5
100 0.021 Ball 6
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6.2. Fault diagnosis by proposed method

After data collection and feature extraction, 600 samples with four dimensions were obtained. All of the data were scaled
to be in [0,1]. By using the first 3 attributes, F1, F2, F3, the three-dimensional data distribution of the fault samples is plotted
in Fig. 6. Where b007, b021, ir007, ir021, or007, or021 denote ball fault with 0.007 in, ball fault with 0.021in, inner race fault
with 0.007 in, inner race fault with 0.021 in, outer race fault with 0.007 in and outer race fault with 0.021 in, respectively.

The experimental setup and the parameter setting for ADE are the same as that of Section 5.2. The experiments were re-
peated 30 times. In each time experiment, 30 samples for each class were randomly selected as training data and the rest 70
samples were selected as testing data. The results obtained by the proposed method were compared with those of traditional
GS and ADE without ICDF. For the method ADE without ICDF, the ADE algorithm is directly used to search the optimal param-
eters (C,g) in [2�7,27] and [2�10,210]. The parameters for ADE without ICDF are the same as that of ICDF–ADE. Fitness function
has a decisive impact on the diagnosis results. Two types of fitness, fivefold cross-validation rate and nSV/l, which have been
described in Section 2.2, were selected for each method respectively and the results were compared.

Table 5 shows the comparison of diagnostic results. The values of chosen optimal (C,g) are the optimal parameters in one
time experiment. In the ‘‘mean (%) and variance of testing rate’’ column the average testing rate and its standard deviation
value are reported. In the last column, we report the average testing time and its standard deviation value. For the proposed
method, the training time is the sum of the time for calculating ICDF values for all kernel parameters and the time for train-
ing SVMs.

Fig. 7 shows testing accuracy for different methods with two types of fitness function. It is clear from Table 5 and Fig. 7
that the proposed method ICDF–ADE yields the best testing rate in these three methods. We also note that there are no sig-
nificant differences of testing accuracy between these two types of fitness for the same method. These results suggest that
the ICDF can determine an effective and small range of g. ADE searches the optimal (C,g) in the continuous intervals of C and
g, which can avoid omitting the optimal parameters. And selecting nSV/l as fitness function can achieve the same perfor-
mance as fivefold cross-validation. The training time for different methods with two types of fitness function is presented
in Fig. 8. From Table 5 and Fig. 8 we can see that for each method fivefold cross-validation consumes much more time than
nSV/l, as it needs training five SVM models for each parameter combination by using fivefold cross-validation, while it only
needs training one SVM model for each parameter combination by using nSV/l. From Fig. 8, it also can be seen that ADE is the
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Table 5
Comparison of diagnostic results.

Fitness Algorithms Chosen optimal (C,g) Mean (%) and variance of testing rate Mean(s) and variance of training time

Fivefold cross-validation rate GS (128,4) 94.98, 1.36 35.40, 0.070
ADE (74.44,37.48) 95.33, 2.15 205.21, 21.261
ICDF–ADE (126.0,6.16) 96.23, 2.48 48.11, 13.459

nSV/l GS (128,2) 94.48, 2.58 11.01, 0.008
ADE (21.31,75.14) 95.43, 1.53 54.15, 3.469
ICDF–ADE (75.59,2.59) 96.83, 2.55 13.93, 1.255



GS ADE ICDF−ADE
0

50

100

150

200

250

tr
ai

ni
ng

 ti
m

e 
(s

)

 

 
five−fold cross−validation
nSV/l

Fig. 8. Bar plot of average training time for different methods with two types of fitness function in Table 5.

GS ADE ICDF−ADE
93

93.5

94

94.5

95

95.5

96

96.5

97

97.5

98

te
st

in
g 

ac
cu

ra
cy

(%
)

five−fold cross−validation
nSV/l

Fig. 7. Bar plot of average testing accuracy for different methods with two types of fitness function in Table 5.

X. Zhang et al. / Applied Mathematics and Computation 218 (2012) 4973–4987 4985
most time-consuming method in these three methods. In ADE method, the search intervals of (C,g) are [2�7,27] and
[2�10,210] while in ICDF–ADE the search interval of g is largely shortened by ICDF. Since calculating ICDF is a simple non-iter-
ated process and does not require the information of the trained classifiers, the training time of ICDF–ADE is much less than
that of ADE. Note that the training time of GS is slightly less than that of ICDF–ADE as ADE selects the optimal parameter
combination from the population evolved generation by generation, it may require training more SVMs than GS even the
search interval of g is shortened. For GS it needs to train the same number of SVMs for each pair of (C,g), hence the standard
deviation values of both training time and testing accuracy for GS are lower than those of the other two methods which can
be seen from Table 5. However, ICDF–ADE also yields satisfactory results of standard deviation values. The combined results
suggest that the proposed method, ICDF–ADE with nSV/l as fitness function, can stably find the optimal parameters for mul-
ti-class SVM with high testing accuracy and satisfactory training time. Thus, it is feasible for fault diagnosis of rolling element
bearings.

7. Conclusion

In this paper, the inter-cluster distances in the feature spaces and self-adaptive differential evolution algorithm were used
to optimize the parameters of multi-class SVM. For each class pair of a multi-class problem, the inter-cluster distances were
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calculated, and the optimal kernel parameter for the SVM of this class pair was found according to the largest inter-cluster
distance. Then, a small and effective search interval of kernel parameter covering the optimal kernel parameter of each class
pair was determined. Self-adaptive differential evolution algorithm was used to search the optimal parameter combination
in the search intervals of kernel parameter and penalty parameter. In the proposed method, the search interval of kernel
parameter was much smaller than that of traditional methods, and Self-adaptive differential evolution algorithm could
search the optimal (C,g) in the continuous intervals of C and g, which can avoid omitting the optimal parameters. Hence,
the proposed method can yield high testing rate while the training time is much shortened. Some standard datasets were
used to evaluate the proposed method. At last the proposed method was used to diagnose the faults of rolling element bear-
ings. The experimental results show that the proposed method is both effective and computationally efficient for parameters
optimization of multi-class SVM.
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