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Abstract
We explore a way of finding the link between a non-Hermitian Hamiltonian
and a Hermitian one. Based on the analysis of Bethe ansatz solutions for
a class of non-Hermitian Hamiltonians and the scattering problems for the
corresponding Hermitian Hamiltonians, it is shown that a scattering state of
an arbitrary Hermitian lattice embedded in a chain as the scattering center
shares the same wavefunction with the corresponding non-Hermitian tight
binding lattice, which consists of the Hermitian lattice with two additional on-
site complex potentials, no matter whether the non-Hermitian is broken PT
symmetry or even non-PT symmetry. Exactly solvable models are presented
to demonstrate the main points of this paper.

PACS numbers: 11.30.Er, 03.65.−w, 03.65.Nk, 42.82.Et

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In general, a non-Hermitian Hamiltonian is said to be physical when it has an entirely real
energy spectrum. Much effort has been devoted to establish a parity-time (PT ) symmetric
quantum theory as a complex extension of the conventional quantum mechanics [1–9] since the
seminal discovery by Bender [1]. It is found that non-Hermitian Hamiltonian with simultaneous
PT symmetry can have an entirely real quantum mechanical energy spectrum and has profound
theoretical and methodological implications. Research works and findings relevant to the
spectra of the PT -symmetric non-Hermitian systems are presented, such as exceptional points
[10–13], spectral singularities for complex scattering potentials [14–16], complex crystal and
other specific models [17] have been investigated. At the same time, the PT symmetry is
also of great relevance to the technological applications based on the fact that the imaginary
potential could be realized by a complex index in optics [18–24]. In fact, such PT optical
potentials can be realized through a judicious inclusion of index guiding and gain/loss regions,
and the most interesting aspects associated with thePT -symmetric system are observed during
the dynamic evolution process [25].
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Thus one of the ways of extracting the physical meaning of a pseudo-Hermitian
Hamiltonian with a real spectrum is to seek for its Hermitian counterparts [26–28]. The metric-
operator theory outlined in [7] provides a mapping of such a pseudo-Hermitian Hamiltonian
to an equivalent Hermitian Hamiltonian. Thus, most of the studies are focused on the quasi-
Hermitian system, or unbroken PT -symmetric region. However, the obtained equivalent
Hermitian Hamiltonian is usually quite complicated [7, 29], involving long-range or non-local
interactions, which is hardly realized in practice.

To anticipate these problems, alternative proposals for the connection between a pseudo-
Hermitian Hamiltonian and a real physics system have been suggested in the context of
scattering problems [30, 31]. Central to that analysis was the recognition that the PT -
symmetric non-Hermitian Hamiltonian may be used to depict the resonant scattering for
an infinite system. It is shown that any real-energy eigenstate of a certain PT -symmetric non-
Hermitian tight-binding lattice shares the same wavefunction with a resonant transmission
state of the corresponding Hermitian lattice. In such a framework, further questions to ask are
whether the requirements of the entireness of the real eigenvalues and the PT symmetry of
the non-Hermitian system are really necessary.

In this paper, we propose a physical interpretation for a general non-Hermitian
Hamiltonian based on the configurations involving an arbitrary network coupled with the
input and output waveguides. Relevant to our previous discussion is the interpretation of the
imaginary potentials. Based on this, we make a tentative connection between a non-Hermitian
system and the corresponding large Hermitian system. It is shown that for any scattering state
of such a Hermitian system, the wavefunction within the center lattice always corresponds
to the equal energy eigenfunction of the non-Hermitian Hamiltonian, no matter whether it is
PT -symmetric or not. Our formalism is generic and is not limited to the pseudo-Hermitian
system.

This paper is organized as follows. Section 2 is the heart of this paper which presents a
formulism to reduce a scattering process of a Hermitian system to the eigenproblem of the
non-Hermitian system. Section 3 consists of two exactly solvable examples to illustrate our
main idea. Section 4 is the summary and discussion.

2. Non-Hermitian reduction of a Hermitian system

A typical scattering tight-binding network is constructed by a scattering-center network and
two semi-infinite chains as the input and output leads. The well-established Green function
technique [32–34] can be employed to obtain the reflection and transmission coefficients for
a given incoming plane wave. The corresponding wavefunction within the scattering center
should be obtained via the Bethe ansatz method, which has been widely applied to the systems
with real as well as complex potentials [35–38]. In the following, we will show that this can
be done by solving a finite non-Hermitian Hamiltonian when dealing with the real potential
scattering problem. In our previous work [30], a PT -symmetric non-Hermitian Hamiltonian
has been connected to a physical system in such a manner that any real-energy eigenstate of
a PT -symmetric non-Hermitian tight-binding lattice with on-site imaginary potentials shares
the same wavefunction with a resonant transmission state of the corresponding Hermitian
lattice embedded in a chain. The main aim of this paper is to answer the question whether such
a statement still holds for the broken PT -symmetric non-Hermitian or non-PT -symmetric
non-Hermitian lattice. In the following, we will show that a scattering state of the Hermitian
system always has connection to the eigenstate of its non-Hermitian reduction. For certain
incident plane wave, the scattering problem of the whole infinite Hermitian system can be
reduced to the eigenproblem of a finite non-Hermitian system.
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Figure 1. Schematic illustration of the configuration of the concerned network. It consists of an
arbitrary graph of a Hermitian tight-binding network (shadow) connecting to two semi-infinite
chains L and R as the waveguides. The wavefunction within the scattering center for a scattering
state of the whole system is identical to an equal-energy eigenfunction of the non-Hermitian
Hamiltonian which is constructed by the center Hermitian network with imaginary potentials
added at the joint sites A and B.

The Hamiltonian of a typical scattering tight-binding network has the form

H = HA + HB + Hc, (1)

where

HA = − J
−∞∑

i=−1

b†
i−1bi − gAb†

−1aA + h.c., (2)

HB = − J
+∞∑
i=1

b†
i bi+1 − gBb†

1aB + h.c., (3)

represent the left (HA) and right (HB) waveguides and

Hc = −
N∑

i, j=1,i� j

(
κi ja

†
jai + h.c.

)
(4)

describes an arbitrary N-site network as a scattering center. Sites A and B are arbitrary sites
within the center network as the joints connecting the waveguides HA and HB, respectively.
Here ai and bi are boson (or fermion) operators for the scattering center and waveguides,
respectively. Parameter −κi j (i �= j) represents the hopping between sites i and j of the
scattering center, while −κii − κ∗

ii indicates the real potential on the ith site. In the following,
we denote VA = −κAA −κ∗

AA, VB = −κBB −κ∗
BB as the potentials on the joint sites for the sake of

simplicity. Also, J is the hopping integral between the nearest-neighbor sites of the waveguide,
while gA (gB) is the hopping integral across the left (right) waveguide to the scattering center.∑N

i, j=1,i� j stands for a summation of i and j both from 1 to N with constraint i � j.
Figure 1(a) represents a schematic scattering configuration to illustrate the concerned network.

For an incident plane wave with momentum k incoming from the left waveguide A with
energy E = −2J cos(k), the scattering wavefunction |ψk〉 can be obtained by the Bethe ansatz
method. The wavefunction has the form

|ψk〉 =
∑

l

flb
†
l |vac〉 +

∑
l

hla
†
l |vac〉, (5)
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where

fl =
{

eik(l+1) + r e−ik(l+1), l ∈ (−∞,−1]

t eik(l−1), l ∈ [1,∞),
(6)

hl = hl, l ∈ [1, N]. (7)

Here, r and t are the reflection and transmission coefficients of the incident wave, respectively.
Substituting the wavefunction (5) into the Schrödinger equation

H|ψk〉 = E|ψk〉, (8)

the explicit form of the Schrödinger equations for the waveguides HA and HB are

− J f j−1 − J f j+1 = E f j,

( j ∈ (−∞,−2] ∪ [2,+∞)) (9)

−J f−2 − gAhA = E f−1,

−J f2 − gBhB = E f1.

The first equation of (9) admits E = −2J cos(k). The Bethe ansatz wavefunction (6) admits

gAhA = J(eik + r e−ik),

gBhB = J e−ikt,

or equivalently

hA = J

gA
(eik + r e−ik), (10)

hB = J

gB
t e−ik. (11)

Vanishing hA (hB) is beyond our interest. From (10) and (11), one can establish the connections
between the wavefunctions of two joints (A, B) and the ends of the waveguides as the form

f−1 = gA

J

1 + r

eik + r e−ik
hA, (12)

f1 = gB

J
eikhB. (13)

Here, the expressions f−1 = 1 + r and f1 = t have been employed, which is obtained by
taking l = ±1 in (6).

Similarly, the explicit form of the Schrödinger equations for Hc can be written as

−
N∑

i=1,i� j

κi jhi −
N∑

i=1,i� j

κ∗
jihi = Ehj, ( j �= A, B),

−
N∑

i=1,i<A

κiAhi −
N∑

i=1,i>A

κ∗
Aihi − g∗

A f−1 = (E − VA)hA, (14)

−
N∑

i=1,i<B

κiBhi −
N∑

i=1,i>B

κ∗
Bihi − g∗

B f1 = (E − VB)hB.
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Our aim is to obtain a reduced equation for the wavefunction within the center network.
To this end, substituting the expressions of f−1 and f1 from (12) and (13) into the above
equation (14), we get the following Schrödinger equations for the center network:

−
N∑

i=1,i� j

κi jhi −
N∑

i=1,i� j

κ∗
jihi = Ehj, ( j �= A, B),

−
N∑

i=1,i<A

κiAhi −
N∑

i=1,i>A

κ∗
Aihi = (E − UA)hA, (15)

−
N∑

i=1,i<B

κiBhi −
N∑

i=1,i>B

κ∗
Bihi = (E − UB)hB,

with

UA = VA − |gA|2
J

1 + r

eik + r e−ik
, (16)

UB = VB − |gB|2
J

eik. (17)

This is equivalent to the effective non-Hermitian Hamiltonian

H = Hc + (UA − VA)a†
AaA + (UB − VB)a†

BaB, (18)

which indicates that UA (UB) acts as the on-site potential on the site A (B) for the effective
non-Hermitian reduction Hamiltonian.

We now investigate the feature of the effective potentials UA and UB. Without losing
generality, we take r = |r| eiδ with |r| < 1 (case of r = 1 leads vanishing hA (hB), which is
beyond our interest), where δ is the phase of the reflection coefficient. Submitting r = |r| eiδ

into (16) and (17), we have

Im(UA) = |gA|2
J

(1 − |r|2) sin k

1 + 2|r| cos(δ − 2k) + |r|2 , (19)

Im(UB) = − |gB|2 sin k

J
. (20)

Based on the inequality 1 + 2|r| cos(δ − 2k) + |r|2 � 1 − 2|r| + |r|2 > 0, we obtain

Im(UA)Im(UB) = − (|gAgB| sin k)2(1 − |r|2)
J2[1 + 2|r| cos(δ − 2k) + |r|2]

< 0, (21)

which means that the imaginary parts of the additional potentials have opposite signs, one
providing gain and the other loss. This is in accordance with the conservation law of the
current. It is important to stress that the magnitude of the two imaginary potentials may not be
equal, which deviates from the general understanding of an imaginary potential.

The existence of the scattering solution of the Hermitian system H ensures that there
must exist at least one real solution of H with the eigenvalue equals the incident energy E.
It possesses the identical wavefunction as that of the scattering state within the region of the
scattering center. Then a scattering problem is reduced to the eigenproblem of a non-Hermitian
Hamiltonian. This conclusion is an extension of our previous result [30]. In this work, our
formalism is generic. The central network is not limited to the linear geometry and the
scattering is not restricted to be resonant transmission. Thus, the scattering interpretation for
the non-Hermitian Hamiltonian is not limited to the pseudo-Hermitian system. This rigorous
conclusion has important implications in both theoretical and methodological aspects.
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Likewise, we consider the inverse scattering process, i.e. taking the time-reversal operation
on the above-mentioned scattering process. The corresponding Bethe ansatz wavefunction has
the form ⎧⎪⎨

⎪⎩
e−ik(l+1) + r∗ eik(l+1), l ∈ (−∞,−1]

t∗ e−ik(l−1), l ∈ [1,∞)

h∗
l , l ∈ [1, N]

(22)

with energy E = −2J cos k. The above conclusion still holds. The straightforward algebra
shows that the corresponding non-Hermitian reduction is H∗. In the framework of non-
Hermitian quantum mechanics,H† takes an important role to construct a complete biorthogonal
basis set, which has no physical correspondence. In the context of our approach, H∗ has the
same physics as H, in describing the scattering problem of the same Hermitian system.

3. Illustrative examples

In this section, we investigate simple exactly solvable systems to illustrate the main idea
of this paper. We will discuss two examples which correspond to a PT -symmetric non-
Hermitian Hamiltonian and a non-PT -symmetric non-Hermitian Hamiltonian, respectively.
In the following, based on the formalism presented in this paper, we will demonstrate that
the scattering problem of the Hermitian Hamiltonian Hss is equivalent to the eigenproblem
of the PT -symmetric non-Hermitian Hamiltonians H[n]

ss and H[ε]
ss . The second example

shows the same relation between the Hermitian Hamiltonians Has and the non-PT -symmetric
non-Hermitian Hamiltonian H[ϑ]

as . The advantage of these examples is that the non-Hermitian
HamiltoniansH[n]

ss , H[ε]
ss and H[ϑ]

as are exactly solvable (detailed solutions are shown in the
appendices B and C).

3.1. Exactly solvable PT -symmetric non-Hermitian Hamiltonian

To exemplify the previously mentioned analysis of relating the stationary states of a PT -
symmetric non-Hermitian Hamiltonian to a scattering problem for a Hermitian one, we take
the center network to be a simple network: a uniform ring system as shown in figure 2. We
start with the scattering problem for a class of symmetric systems; the Hamiltonian can be
written as

Hss = −J
2N∑
i=1

a†
i ai+1 + h.c. − ε

2

g2

J2

(
a†

1a1 + a†
N+1aN+1

)

− J
−∞∑

i=−1

b†
i−1bi − J

+∞∑
i=1

b†
i bi+1 + h.c. − g

(
b†

−1a1 + b†
1aN+1 + h.c.

)
, (23)

where we denote the connection sites as aA = a1 and aB = aN+1, and the periodic boundary
condition denotes a1 = a2N+1. We note the on-site potentials VA = VB = −εg2/(2J2).

The corresponding non-Hermitian reduction Hamiltonian depends on the energy E of the
incident plane wave as well as the parameters ε and g. To be concise, as an illustrative example,
we would like to present the exactly solvable model, which is helpful to demonstrate our main
idea. Therefore, we will focus on the following configurations:

(i) g �= √
2J, E = ε = εn = −2J cos(nπ/N), where n ∈ [1, N − 1]. Here, we restrict

the energy of the incident plane wave since it will lead to the pure imaginary potential
for the corresponding non-Hermitian reduction Hamiltonian, thus ensures the existence
of the exact solution. According to the analysis in section 2, the straightforward algebra

6
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Figure 2. Schematic illustration of the concrete configuration for a scattering system. A ring as a
scattering center connects to two semi-infinite chains L and R as waveguides with coupling −g.
The on-site potentials at the connections are VA and VB. The wavefunction within the scattering
center for a scattering state of the whole system is identical to an equal-energy eigenfunction of
the non-Hermitian Hamiltonian which is constructed by the center Hermitian ring with imaginary
potentials UA and UB added at the joint sites A and B.

(see appendix A.2.1) shows that the problem of solving the Schrödinger equation of the
Hermitian Hamiltonian Hss is reduced to the eigenproblem of the followingPT -symmetric
non-Hermitian Hamiltonian:

H[n]
ss = −J

2N∑
i=1

a†
i ai+1 + h.c. + iγna†

1a1 − iγna†
N+1aN+1, (24)

with the imaginary potential

γn = g2

J
sin

(nπ

N

)
. (25)

Obviously, this Hamiltonian depicts a 2N-site ring with two imaginary potentials at two
symmetrical sites 1 and N + 1, which is a PT -invariant non-Hermitian Hamiltonian.
Note that the magnitude of the imaginary potential is discrete in order to obtain the
exact solutions. In appendix B, it is shown that such lattices can be synthesized from
the potential-free lattice by the intertwining operator technique generally employed in
supersymmetric quantum mechanics. The eigenspectrum {ε j} of H[n]

ss consists of

ε j = − 2J cos( jπ/N), (26)

( j ∈ [1, N − 1], 2−fold degeneracy),

and two additional levels

ε± = ±
√

4J2 − γ 2
n . (27)

The eigenstates with eigenvalue ε j can be decomposed into two sets: bonding and
antibonding, with respect to the spatial reflection symmetry about the axis along the
waveguides. For the scattering problem, only the bonding states are involved. It shows
that there always exists a solution in {ε j} to match the energy εn of the incident wave.

From (25)–(27), one can see that a pair of imaginary eigenvalues appears, i.e. the
PT symmetry is broken when g >

√
2J. In general, a non-Hermitian Hamiltonian with

a broken PT symmetry is unacceptable because its complex energy eigenvalues make a
hash of the physical interpretation. On the other hand, the PT -symmetry breaking was
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observed in optics realm experimentally [39]. In theoretical aspects, PT symmetry in
a non-Hermitian spin chain system was discussed [40]. From the point of view of this
paper, we note that even H[n]

ss possesses a broken PT symmetry, the spectrum {ε j} still
contains the state with the energy ε j = εn. It is worth mentioning that the broken PT
symmetry does not contradict the interpretation of the non-Hermitian Hamiltonian (24).
H[n]

ss equivalently depicts the Hermitian-scattering Hamiltonian for the incident energy εn.
This indicates that even the PT symmetry is broken, the non-Hermitian Hamiltonian still
has physical significance.

(ii) g = √
2J, E = ε ∈ [−2J, 2J]. Here, we do not restrict the energy of the incident

plane wave but the magnitude of g. The straightforward algebra shows that the problem
of solving the Schrödinger equation is reduced to the eigenproblem of the following
non-Hermitian Hamiltonian:

H[ε]
ss = −J

2N∑
i=1

a†
i ai+1 + h.c. + iγεa†

1a1 − iγεa†
N+1aN+1, (28)

with the imaginary potential

γε =
√

4J2 − ε2. (29)

Similar as in appendix A.2.1, we obtain that the solution of the Hamiltonian H[ε]
ss has the

same form of (26), (27) with γn replaced by γε. Here, we would like to see the relation
between the Hamiltonians H[n]

ss and H[ε]
ss : both of them come from the same model with

different coupling constants (with g �= √
2J and g = √

2J) and different incident plane
waves (with discrete and continuous spectra). However, they have the same structure
but different values of the imaginary potentials. In appendix B, we provide the universal
solution that contains H[n]

ss and H[ε]
ss .

Obviously, Hamiltonian H[ε]
ss is always exact PT -symmetric. All the eigenvalues are

real. Among them we can find that ε± = ±√
4J2 − γ 2

ε = ±ε, and ε+ is equal to the
energy of incident plane wave ε and thus verifies the above-mentioned conclusion that
there always exists a solution of the correspondence non-Hermitian Hamiltonian to match
the incident wave energy. Furthermore, the solution of it has the following peculiar feature:
in the case of ε = εn, i.e. the incident wave has the wave vector nπ/N (n ∈ [1, N − 1]),
the exceptional points appear in H[ε]

ss . It is shown in appendix B.3 that the corresponding
eigenfunctions of ε− (ε+) and εn (εN−n) coalesce.

According to non-Hermitian quantum mechanics, in general, H[ε]
ss has the Hermitian

counterpart H[ε]
ss which possesses the same spectrum. When the potential γε approaches γεn ,

the similarity transform that connects H[ε]
ss and H[ε]

ss becomes singular. The Hamiltonian
H[ε]

ss becomes a Jordan-block operator, which is non-diagonalizable and has fewer energy
eigenstates (N − 1) than eigenvalues (N + 1), (i.e. the lack of completeness of the
energy eigenstates). Such a Hamiltonian has no Hermitian counterpart [41]. According
to our analysis, one can see that even at the exceptional points [10–13] the coalescence
eigenstates still have physical significance.

3.2. Exactly solvable non-PT -symmetric non-Hermitian Hamiltonian

Now we turn to exemplify the previously mentioned analysis of relating the stationary states
of a non-PT -symmetric non-Hermitian Hamiltonian to a scattering problem for a Hermitian
lattice. We still take the center network as a simple network: a uniform ring system with

8
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uniform coupling but none on-site real potentials. The corresponding Hamiltonian can be
written as

Has = −J
2N∑
i=1

a†
i ai+1 + h.c. − J

−∞∑
i=−1

b†
i−1bi − J

+∞∑
i=1

b†
i bi+1 + h.c.

− Jb†
−1a1 − Jb†

1aN+1 + h.c., (30)

where we denote the connection sites as aA = a1 and aB = aN+1. In this model the on-site
potentials VA = VB = 0. We consider the incident plane wave with the wave vector ϑ and
energy E = −2J cos ϑ , where ϑ ∈ (π , −π) without any restriction. The straightforward
algebra (see appendix A.2.2) shows that the problem of solving the Schrödinger equation is
reduced to the eigenproblem of the following non-Hermitian Hamiltonian:

H[ϑ]
as = −J

2N∑
i=1

a†
i ai+1 + h.c. + UAa†

1a1 + UBa†
N+1aN+1, (31)

where the complex potentials are

UA = − J
eiϑN cos[(N − 1)ϑ] + i sin ϑ

eiϑN sin[(N − 1)ϑ] − sin ϑ
2 sin ϑ, (32)

UB = −J eiϑ . (33)

We can see that, in general, the Hamiltonian H[ϑ]
as is not PT -symmetric, except in some

special cases. It is hard to get the analytical solution of such a Hamiltonian in general cases.
Fortunately, what we need to do is to prove that the incident energy E = −2J cos ϑ is always
one of the eigenvalues of the Hamiltonian H[ϑ]

as . In fact, in single-particle basis the matrix
representation M[ϑ] of the Hamiltonian (31) satisfies

|M[ϑ] + 2J cos ϑ | = 0, (34)

according to the derivation given in appendix C. Now, we know that the incident energy
E = −2J cos ϑ is a solution of the non-PT -symmetric non-Hermitian Hamiltonian H[ϑ]

as and
the corresponding eigenfunction is the wavefunction within the scattering center. In this sense,
one can conclude that a non-PT -symmetric non-Hermitian Hamiltonian still has physical
significance when we refer to its real eigenvalue.

4. Conclusion

In summary, we have studied the connection between a non-Hermitian system and the
corresponding large Hermitian system. We propose a physical interpretation for a general non-
Hermitian Hamiltonian based on the configurations involving an arbitrary network coupled
with the input and output waveguides. We employed the Bethe ansatz approach to the scattering
problem to show that for any scattering state of a Hermitian system, the wavefunction within
the scattering center lattice always corresponds to the equal energy eigenfunction of the non-
Hermitian Hamiltonian. It is important to stress that such a physical interpretation for the
non-Hermitian Hamiltonian is not limited to the pseudo-Hermitian system. As an application,
we examine concrete networks consisting of a ring lattice as the scattering center. Exact
solutions for such types of configurations are obtained to demonstrate the results. Such results
are expected to be necessary and insightful for the physical significance of the non-Hermitian
Hamiltonian, as well as the descriptions of quantum mechanics. It would be interesting if the
present formalism could be extended to quantum composite systems [47, 48].
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(a)

(b)

UA UB

1(A) N2 N+1(B)

2 N

3

3

Figure A1. Schematic illustration of the reduction for a ring system by linear transformation. (a)
Represents the Hamiltonian Hα and (b) represents the Hamiltonian Hβ .
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Appendix A. The non-Hermitian reduction Hamiltonian

In this appendix, we will derive the central formulae in obtaining the non-Hermitian reduction
Hamiltonian of the Hermitian scattering systems we introduced in section 3.

A.1. Linear transformation

First of all, we introduce the linear transformation. The ring Hamiltonian with two potentials
at symmetric sites of the form (24) or (28) can be decomposed into two independent sub-
Hamiltonians as in figure A1:

H = Hα+Hβ, (A.1)

Hα = −J
N−1∑
i=2

α
†
i αi+1 −

√
2J

(
α

†
1α2 + α

†
NαN+1

) + h.c. + UAα
†
1α1 + UBα

†
N+1αN+1, (A.2)

Hβ = −J
N−1∑
i=2

(
β

†
i βi+1 + h.c.

)
, (A.3)

with [Hα,Hβ] = 0 by using the following linear transformation:

α1 = a1, αN+1 = aN+1,

α j = 1√
2
(a j + a2N+2− j), j ∈ [2, N], (A.4)

β j = 1√
2
(a j − a2N+2− j), j ∈ [2, N].

The anti-symmetric sub-Hamiltonian Hβ is a uniform (N − 1)-dimensional chain, whose
spectrum and eigenfunction are well known. We will focus on the solution of the symmetric
sub-Hamiltonian Hα .

A.2. PT -symmetric non-Hermitian reduction Hamiltonian

A.2.1. Exactly solvable PT -symmetric non-Hermitian Hamiltonian. The scattering center
is a ring system; from the symmetry of the ring system, we perform the linear transformation
similarly as we do in appendix A.1 for the Hamiltonian H. After linear transformation, Hss can
be separated into symmetric and anti-symmetric sub-Hamiltonians. For the scattering problem

10
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of Hss only related to its symmetric sub-Hamiltonian Hα
ss, we can calculate the scattering of

Hα
ss to get the scattering result of Hss:

Hα
ss = −J

N−1∑
i=2

α
†
i αi+1 −

√
2J

(
α

†
1α2 + α

†
NαN+1

) + h.c. − εg2

2J2

(
α

†
1α1 + α

†
N+1αN+1

)

− J
−∞∑

i=−1

b†
i−1bi − J

+∞∑
i=1

b†
i bi+1 + h.c. − g

(
b†

−1a1 + b†
1aN+1 + h.c.

)
, (A.5)

where αi has a similar definition as in (A.4). We can obtain the transmission and reflection
coefficients by calculating Hα

ss. The Schrödinger equations for site h1 and hN+1 of Hα
ss are

−gf−1 − √
2Jh2 =

(
E + εg2

2J2

)
h1,

−√
2JhN − gf1 =

(
E + εg2

2J2

)
hN+1.

(A.6)

Schrödinger equations for the rest site give E = ε = −2J cos(k). Using the ansatz of f j in
(6), we get the continuity equation of the form

h1 = 1√
2
(uk eik + vk e−ik) = J

g
(eik + r e−ik),

h j = (uk eik j + vk e−ik j), j ∈ [2, N], (A.7)

hN+1 = 1√
2
(uk eik(N+1) + vk e−ik(N+1)) = J

g
t e−ik

and also f−1 = 1 + r together with f1 = t, where r and t are the reflection and transmission
coefficients, respectively, and uk and vk are the undetermined coefficients of the ansatz
wavefunction. In this example, we confine the momentum of the incident wave k = nπ/N,
n ∈ [1, N − 1]. The energy of the wave is E = ε = −2J cos (nπ/N), n ∈ [1, N − 1]; then by
substituting the ansatz (A.7) into (A.6), the Schrödinger and the continuity equations reduce
to

−g

J
(1 + r) −

√
2(uk e2ik + vk e−2ik) =

(
E + εg2

2J2

)
J

g
(eik + r e−ik), (A.8)

−(−1)n
√

2(uk + vk) − g

J
t =

(
E + εg2

2J2

)
J

g
t e−ik, (A.9)

1√
2

(
ukeik + vke−ik) = J

g

(
eik + re−ik) = J

g
(−1)n te−ik. (A.10)

From (A.9) and (A.10), we obtain

uk = (−1)n
√

2

4
e−2ik

(
g2

J2
+ 2

)
J

g
t, (A.11)

vk = − (−1)n
√

2

4

(
g2

J2
− 2

)
J

g
t. (A.12)

From (A.11), (A.12) and (A.8), we obtain

[e2ik − (−1)nt](e2ik − 1) = 0. (A.13)

We obtain the reflection coefficient r from (A.10) and (A.13):

r = (−1)n t − e2ik = 0. (A.14)

11
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Actually, site 1 denotes A and site N + 1 denotes B (a1 = aA, aN+1 = aB). In this example, we
have VA = VB = −εg2/(2J2) = (g2/J) cos k; substituting r = 0 into (16) and (17) gives UA

and UB as

UA = g2

J
cos k − g2

J
e−ik = i

g2

J
sin k, (A.15)

UB = g2

J
cos k − g2

J
eik = −i

g2

J
sin k, (A.16)

where k = nπ/N, n ∈ [1, N − 1]. The reduced non-Hermitian Hamiltonian H[n]
ss is then the

same as (24).

A.2.2. Exactly solvable non-PT -symmetric non-Hermitian Hamiltonian. Using the linear
transformation as introduced in appendix A.1, we note that the scattering problem for
Hamiltonian Has is equivalent to its symmetric sub-Hamiltonian Hα

as:

Hα
as = −J

N−1∑
i=2

α
†
i αi+1 −

√
2Jα

†
1α2 −

√
2Jα

†
NαN+1 + h.c.

− J
−∞∑

i=−1

b†
i−1bi − J

+∞∑
i=1

b†
i bi+1 + h.c. − Jb†

−1α1 − Jb†
1αN+1 + h.c., (A.17)

where αi has a similar definition as in (A.4); the Schrödinger equation of Hα
as for sites h1, h2,

hN, hN+1 is then

−J f−1 − √
2Jh2 = Eh1,

−√
2Jh1 − Jh3 = Eh2,

−JhN−1 − √
2JhN+1 = EhN,

−√
2JhN − J f1 = EhN+1.

(A.18)

The Schrödinger equation of Hα
as for the other site reduced to E = −2J cos k, where E is

energy and k is the momentum of the incident wave. The wavefunction ansatz f j of Hα
as is in

the form of (6) and h j is

h1 = 1√
2
(μk eik + νk e−ik),

h j = μk eik j + νk e−ik j, ( j ∈ [2, N]), (A.19)

hN+1 = 1√
2
(μk eik(N+1) + νk e−ik(N+1)),

where r and t are the reflection and transmission coefficients, and μk and νk are the
undetermined coefficients of the ansatz wavefunction. Together with the continuity condition,
the wavefunction must obey

h1 = eik + r e−ik = 1√
2
(μk eik + νk e−ik),

h2 = μk e2ik + νk e−2ik = 1√
2
(e2ik + r e−2ik),

hN = μk eikN + νk e−ikN = 1√
2
t e−2ik,

hN+1 = t e−ik = 1√
2
(μk eik(N+1) + νk e−ik(N+1)).

(A.20)

Using the Gaussian elimination method, eliminating μk, νk and t, we obtain

r = e2ik −2 sin [k (N − 2)] + sin (kN)

−4e−ik(N−1) sin k + e−2ik sin (kN)
. (A.21)

Actually, site 1 denotes A and site N + 1 denotes B (a1 = aA, aN+1 = aB). We note that in this
example VA = VB = 0; substituting (A.21) into (16) and (17), we obtain (32) and (33). The
reduced non-Hermitian Hamiltonian H[ϑ]

as is then the same as (31).

12
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Appendix B. Construction of PT -symmetric non-Hermitian Hamiltonian by the
intertwining operator technique

In this appendix, we will derive the central formulae for studying the eigenproblem of the
PT -symmetric non-Hermitian ring system. Typically, the solution can be obtained via the
Bethe ansatz method as shown in [34]. In this appendix, we will use the intertwining operator
technique to get the solutions in order to reveal their characteristic features.

B.1. The intertwining operator technique

The intertwining operator technique is generally employed in supersymmetric quantum
mechanics, which provides the universal approach for creating new exactly solvable models.
Recently, it is applied to discrete systems in order to construct the model which supports the
desirable spectrum [42–46].

The critical idea of the intertwining operator technique is as follows. Consider an N × N
Hamiltonian H1 which has the form H1 = Q1R1 +μ1, where Q1 and R1 represent N × (N +1)

and (N+1)×N matrices, respectively. One can construct an (N+1)×(N + 1) new Hamiltonian
H2 (H2 = R1Q1 + μ1) by interchanging the operators R1 and Q1. The spectrum of H1 is
the same as that of H2 except for the energy level μ1. Iterating this method results in a series
of Hamiltonians H3, H4, H5, . . ., whose energy spectra differ from that of H1 owing to the
addition of the discrete energy levels {μ1, μ2}, {μ1, μ2, μ3}, {μ1, μ2, μ3, μ4}, . . ..

Our aim is to construct a PT -invariant non-Hermitian Hamiltonian H3 by adding two
energy levels E = −μ and E = μ (0 � μ � 2; the obtained conclusion will be extended
beyond this region later) into the energy spectrum of a uniform chain system. We will show
the processes of this construction explicitly. We start with the following (N − 1) × (N − 1)

uniform chain Hamiltonian:

H1 = −
N−2∑
n=1

(|n〉 〈n + 1| + h.c.), (B.1)

which depicts an (N − 1)-site uniform chain. The spectrum of H1 can be expressed as

εn = −2 cos
(nπ

N

)
, n ∈ [1, N − 1]. (B.2)

On the other hand, H1 can be written in the form

H1 = QR − μ, (B.3)

where

Q =
N−1∑
n=1

(qn |n〉 〈n| + q̄n |n〉 〈n + 1|), (B.4)

R =
N−1∑
n=1

(rn |n〉 〈n| + r̄n |n + 1〉 〈n|) (B.5)

and

μ = 2 cos κ, (κ > 0),

rn = qn = −e−iκ/2,

r̄n = q̄n = eiκ/2.

(B.6)

13



J. Phys. A: Math. Theor. 44 (2011) 375304 L Jin and Z Song

Then the Hamiltonian H2 can be constructed in the form

H2 = RQ − μ

= −
N−1∑
n=1

(|n〉 〈n + 1| + h.c.) − eiκ |1〉 〈1| − e−iκ |N〉 〈N| , (B.7)

which possesses an extra eigenvalue −2 cos κ based on the spectrum εn.
Next step, we repeat the above procedure based on a new Hamiltonian H ′

2, which is
obtained from H2 under parity operation P, i.e.

H ′
2 = P−1H2P

= −
N−1∑
n=1

(|n〉 〈n + 1| + h.c.) − e−iκ |1〉 〈1| − eiκ |N〉 〈N| , (B.8)

where

Pi j = δi,N+1− j (B.9)

is the matrix representation of the mirror reflection. Note that H ′
2 and H2 have identical spectra.

Accordingly, H ′
2 can be written in the form

H ′
2 = Q′R′ + μ, (B.10)

where

Q′ =
N∑

n=1

(q′
n |n〉 〈n| + q̄′

n |n〉 〈n + 1|), (B.11)

R′ =
N∑

n=1

(r′
n |n〉 〈n| + r̄′

n |n + 1〉 〈n|) (B.12)

and
r′

n = q′
n = ie−iκ/2,

r̄′
n = q̄′

n = ieiκ/2,

r′
1 = q′

1 = i
√

2e−iκ/2,

r̄′
N = q̄′

N = i
√

2eiκ/2.

(B.13)

Finally, the target Hamiltonian H3 can be constructed in the form

H3 = R′Q′ + μ (B.14)

= −
N−1∑

2

|n〉 〈n + 1| −
√

2 |1〉 〈2| −
√

2 |N〉 〈N + 1| + h.c.

+ 2i sin κ (|1〉 〈1| − |N + 1〉 〈N + 1|) .

We note that H3 is the symmetric sub-Hamiltonian of H[n] (H[ε]); together with the anti-
symmetric sub-Hamiltonian ((N − 1)-dimension uniform chain), we obtain H[n] (H[ε]). The
energy spectra ((26) and (27)) of H[n] and H[ε] can be obtained by adding the unit J.

B.2. Eigenfunctions of H3

Now we turn to derive the eigenfunctions of H3. The eigenfunctions of the Hamiltonians H1,
H2 and H3 are denoted by φn, ϕn and ψn, respectively. The eigenfunctions of a uniform chain
can be readily written as

φn( j) =
√

2

N
sin

(
nπ j

N

)
, (n ∈ [1, N − 1]). (B.15)

14
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According to the intertwining operator technique of supersymmetry theory, we have

ϕn( j) = Rφn, n ∈ [1, N − 1], (B.16)

ϕN ( j) = e−iκ j, j ∈ [1, N] (B.17)

and

ψn( j) = R′Pϕn, n ∈ [1, N], (B.18)

ψN+1( j) = (−1) j e−iκ j

(
1√
2
, j = 1, N + 1

1, j ∈ [2, N]

)
. (B.19)

Note that the eigenfunctions are not normalized.
In the above, we restricted μ in the region [0, 2] for the purpose of obtaining H3 as an

unbroken PT -symmetric non-Hermitian Hamiltonian with imaginary potentials at the edges
in the form of (B.14). However, the obtained result can be extended beyond the region.
Actually, one can simply replace κ by −iω in all the expressions. Then, one can obtain a
PT -symmetric Hermitian Hamiltonian with two added bound states with energy ±μ, where
μ = 2 cosh ω > 2. On the other hand, if κ is replaced by a complex number κ = π/2 − iω,
one can obtain a PT -symmetric non-Hermitian Hamiltonian in the broken phase. In this case,
the two added eigenstates have pure imaginary eigenvalues μ = ±2i sinh ω.

B.3. Coalescence of eigenstates

Now, we investigate the eigenfunctions in the case of κ = k (k = nπ/N, n ∈ [1, N − 1]). In
this situation, all the coalescence eigenfunctions in (B.18) can be written explicitly as⎧⎨

⎩
ψn(1) = −i

√
2(−1)n sin k

ψn ( j) = −2ie−(N+1− j)ik sin k
ψn (N + 1) = −i

√
2 sin k,

(B.20)

⎧⎨
⎩

ψN−n (1) = −i
√

2 (−1)N+n sin k
ψN−n ( j) = (−1)N+n+ j 2ie−i( j−1)k sin k
ψN−n (N + 1) = −i

√
2 sin k,

(B.21)

⎧⎨
⎩

ψN (1) = i
√

2 (−1)n e−ik/2

ψN ( j) = 2ie−(N+1− j)ike−ik/2

ψN (N + 1) = i
√

2e−ik/2,

(B.22)

⎧⎨
⎩

ψN+1 (1) = −e−ik/
√

2
ψN+1 ( j) = (−1) j e−ik j

ψN+1 (N + 1) = − (−1)N+n e−ik/
√

2.

(B.23)

For odd N, we have ψn ∝ ψN and ψN−n ∝ ψN+1, which means the coalescence of eigenstates.
Also the norms of the above four eigenstates vanish. For even N, we have the same conclusion
except when n = N/2. In this case, ψN is ψN−n, and we have ψn ∝ ψN = ψN−n ∝ ψN+1,
which means the coalescence of the three eigenstates. Also, the norms of the above three
eigenstates vanish.
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Appendix C. Zero determinant

In this appendix we will prove (34). Applying the linear transformation introduced in
appendix A, the 2N-dimensional matrix M[ϑ] can be written in a diagonal block form, i.e.

M[ϑ] + 2 cos ϑ =
[
D 0
0 A

]
, (C.1)

where D is (N + 1) dimensional, while A is (N − 1) dimensional. Here, we take J = 1 for
simplicity. Then, we have∣∣M[ϑ] + 2 cos ϑ

∣∣ = |D| |A| . (C.2)

Consider the (N + 1)-dimensional matrix D, where determinant D = |D| has the form

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

UA − E −√
2

−√
2 −E −1

−1 −E −1

−1
. . .

. . .
. . .

. . . −1
−1 −E −1

−1 −E −√
2

−√
2 UB − E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (C.3)

Using cofactor expansion along the first and last rows, we obtain

D = [E2 + UAUB − E(UA + UB) − 4]DN−1 − 2(UA + UB)DN−2, (C.4)

where Dj is the j × j determinant

Dj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−E −1
−1 −E −1

−1
. . .

. . .
. . .

. . . −1
−1 −E −1

−1 −E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (C.5)

Such kinds of determinants follow the recursion formula

Dj = −EDj−1 − Dj−2, (C.6)

which leads to

Dj = 1 − e2( j+1)iϑ

1 − e2iϑ
e− jiϑ , ( j < N). (C.7)

Substituting (32), (33), (C.7) and E = −2 cos ϑ into (C.4), we obtain D = 0. Thus, (34) is
proved.
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