
Physics Letters A 365 (2007) 315–327

www.elsevier.com/locate/pla

Adaptive full state hybrid projective synchronization of chaotic systems
with the same and different order ✩

Manfeng Hu a,b,∗, Zhenyuan Xu a, Rong Zhang a,b, Aihua Hu a

a School of Science, Southern Yangtze University, Wuxi 214122, China
b School of Information Technology, Southern Yangtze University, Wuxi 214122, China

Received 11 September 2006; received in revised form 13 January 2007; accepted 22 January 2007

Available online 2 February 2007

Communicated by A.R. Bishop

Abstract

This Letter further investigates the full state hybrid projective synchronization (FSHPS) of chaotic and hyper-chaotic systems with fully un-
known parameters. Based on the Lyapunov stability theory, a unified adaptive controller and parameters update law can be designed for achieving
the FSHPS of chaotic and/or hyper-chaotic systems with the same and different order. Especially, for two chaotic systems with different order,
reduced order MFSHPS (an acronym for modified full state hybrid projective synchronization) and increased order MFSHPS are first studied in
this Letter. Five groups numerical simulations are provided to verify the effectiveness of the proposed scheme. In addition, the proposed FSHPS
scheme is quite robust against the effect of noise.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Synchronization is a fundamental phenomenon that enables coherent behavior in coupled systems. In 1990, Pecora and Carroll
proposed a successful method to synchronize two identical chaotic systems with different initial conditions [1]. The idea of syn-
chronization is to use the output of a drive (master) system to control a response (slave) system so that the response of the latter
follows the output (or the function of output) of the drive system asymptotically. Due to many potential applications in secure
communication, biological science, optical science, chemical reaction, social science, and many other fields, the synchronization
of coupled chaotic dynamical systems has been one of the most interesting topics in nonlinear science and many theoretical and
experimental results have been obtained.

According to the classification [2,3] about the research of chaos synchronization, there are two main directions (i) analysis
and (ii) synthesis. The problem of synchronization analysis consists of understanding and/or giving theoretical description of syn-
chronization. So far, there exist many types of synchronization such as complete synchronization [1], phase synchronization [4],
anti-synchronization [5], partially synchronization [6], generalized synchronization [7], projective synchronization [8–12], Q–S
synchronization [13], etc. The problem of synchronization synthesis concerns on finding or designing a synchronization control
signal, such that two coupled chaotic systems exhibit different type of synchronization behaviors. Up to now, a wide variety of
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approaches have been used to design a synchronization control signal, for example, PC method [1,14], impulsive control method
[15], active control [16–18], adaptive control [19–24], etc.

Recently, we investigated a new type of synchronization phenomenon—full state hybrid projective synchronization (FSHPS),
which bridges a gap from chaos control to chaos synchronization, to generalized synchronization in works [17,18,20]. For two
coupled chaotic systems

ẋ(t) = F(x) ←− drive system, (a)

ẏ(t) = G(y) + u(x, y) ←− response system (b)

where x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T ∈ Rn are the n-dimensional state vector, F,G :Rn → Rn are two continuous
vector functions and u(x, y) is a controller, the FSHPS means that there exists constant matrix H = diag(h1, h2, . . . , hn) ∈ Rn×n

such that limt→∞ ‖y − Hx‖ = 0 i.e., limt→∞ |yi − hixi | = 0, i = 1,2, . . . , n. Here H is called scaling matrix, h1, h2, . . . , hn are
called scaling factors. The novelty feature of this synchronization phenomenon is that the scaling factors of the synchronization can
be arbitrarily designed to different state variables by means of control. It is believed that, in application to secure communications,
this feature could be used to extend binary digital to variety M-nary digital communications for getting more secure and fast
communications. The general scheme for achieving FSHPS in continuous and discrete chaotic systems is respectively presented in
[17] and [18]. Shortly afterwards, we presented a adaptive FSHPS scheme which guarantees one can achieve simultaneously the
FSHPS and parameter identification of coupled identical chaotic systems in [20].

At present, most of theoretical results about synchronization of chaos focus on the systems whose models are identical, similar or
with mismatched parameters [25]. However, synchronization of chaos also can be induced even in strictly different systems [2,26]
and systems of different order [3,21–23,27,28], especially the systems in biological science and social science [29]. One example is
the synchronization that occurs between heart and lung, where one can observe that both circulatory and respiratory systems behave
in synchronous way, but their models are essentially different and they have different order. So, the study of synchronization for
strictly different dynamical systems and different order dynamical systems is both very important from the perspective of control
theory and very necessary from the perspective of practical application. Whereas, this kind of research is just at the beginning stage.
To the best of our knowledge, there are few theoretical results about FSHPS of different order chaotic systems.

Motivated by the above discussion, the aim of this Letter is to study the FSHPS of drive and response chaotic (hyper-chaotic)
systems with fully unknown parameters (means the parameters of both drive system and response system are all unknown) based
on the Lyapunov stability theorem. A general controller and parameters update law is proposed for the FSHPS of chaotic systems
which can be with the same and different order, based on active control idea.

The rest of this Letter is organized as follows. In Section 2, the adaptive FSHPS scheme of chaotic systems with the same order
is presented. In Section 3, the applications of results of Section 2 to Lorenz and Genesio chaotic systems, hyper-chaotic Chen and
Lü systems are considered respectively. In Section 4, the adaptive FSHPS scheme of chaotic systems with different order is given.
Especially, for two chaotic systems with different order, reduced order MFSHPS and increased order MFSHPS are first studied in
this Letter. In Section 5, the applications of results of Section 4 to generalized Lorenz and Lorenz chaotic systems, Lorenz chaotic
system and hyper-chaotic Lü system are considered respectively. The effect of noise is also considered in all numerical simulations,
from which we can see that the proposed scheme is quite robust against the effect of noise. Finally, concluding remarks end the
Letter.

2. Adaptive FSHPS scheme of chaotic systems with the same order

Consider an n-dimensional chaotic (hyper-chaotic) system in the form of

(1)ẋ = f (x) + F(x)Λ,

where x ∈ Rn is the state vector of the system, f :Rn → Rn is a continuous vector function, F :Rn → Rn×d is a matrix function
and Λ ∈ Rd is parameter vector.

Remark 1. Nonlinear dynamical system (1) in this Letter depends linearly on the parameters and many well-known chaotic and
hyper-chaotic systems belong to (1), such as Lorenz, Genesio chaotic systems and hyper-chaotic Lorenz, Chen, Lü systems.

Eq. (1) is considered as a drive system. A controlled response system is given by

(2)ẏ = g(y) + G(y)Θ + U,

where y ∈ Rn is the state vector, g :Rn → Rn is a vector function, G :Rn → Rn×k is a matrix function, Θ ∈ Rk is parameter vector
and U ∈ Rn is a controller.
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Let the vector error state be e(t) = y(t) − Hx(t), where H is a n-order diagonal matrix, i.e. H = diag(h1, h2, . . . , hn). Thus the
error dynamical system between the drive system (1) and the response system (2) is

(3)ė(t) = ẏ − Hẋ = g(y) + G(y)Θ − Hf (x) − HF(x)Λ + U = R(e, x) + G(e,x)Θ − HF(x)Λ + U,

where R(e, x) = g(e + Hx) − Hf (x). The aim of FSHPS is to design a controller U , which is able to synchronize the state of the
drive system and the response system up to different arbitrary scaling factors.

Noting that the parameters of both drive and response system are fully unknown, by using adaptive control techniques, the
controller can be determined as

(4)U = −R(e, x) − G(e,x)Θ̃ + HF(x)Λ̃ + Ae,

where the matrix A is determined in the later, Θ̃ and Λ̃ are the estimated values of unknown parameters Θ and Λ, respectively.
From (3) and (4), the error dynamics is described by

(5)ė = Ae + HF(x)(Λ̃ − Λ) − G(e,x)(Θ̃ − Θ).

Hence the FSHPS problem becomes the stability of error dynamics (5). If it is globally stabilized at the origin, the FSHPS of drive
system (1) and response system (2) can be globally realized. If the updating laws of the estimated parameters are chosen by

(6)˙̃
Θ = GT (e, x)e,

˙̃
Λ = −FT (x)He

and construct a Lyapunov function

(7)V = 1

2

(
eT e + Θ̂T Θ̂ + Λ̂T Λ̂

)
,

where Λ̂ = Λ̃ − Λ and Θ̂ = Θ̃ − Θ .
With the choice of the controller (4) and the updating laws (6), the time derivative of V along the trajectories of Eq. (5) is

(8)
dV

dt
= eT ė + ˙̂

ΘT Θ̂ + ˙̂
ΛT Λ̂ = eT Ae.

Suppose we select an appropriate matrix A such that dV
dt

< 0, that is, dV
dt

is negative definite. Then, according to the Lyapunov
stability theorem, the FSHPS of chaotic (hyper-chaotic) systems (1) and (2) is achieved under the certain chosen feedback controller

U (4) and parameters update law ˙̂
Θ and ˙̃

Λ (6). In fact, the obtained result extend and improve that given in [24].

3. Application of the adaptive FSHPS scheme with same order

In this section we will choose Lorenz and Genesio chaotic systems, Chen and Lü hyper-chaotic systems to illustrate the effec-
tiveness of the adaptive FSHPS scheme with the same order.

3.1. Adaptive FSHPS between Lorenz and Genesio chaotic systems

The nonlinear differential equations that describe the Lorenz system [30] are

(9)

⎧⎨
⎩

ẋ1(t) = a(x2 − x1),

ẋ2(t) = bx1 − x2 − x1x3,

ẋ3(t) = x1x2 − cx3

and the Genesio system [31] are

(10)

⎧⎨
⎩

ẏ1(t) = y2,

ẏ2(t) = y3,

ẏ3(t) = −a1y1 − b1y2 − c1y3 + y2
1 ,

where a, b, c and a1, b1, c1 are unknown system parameters. Our purpose is to achieve the FSHPS between system (9) and (10).
Let Lorenz chaotic system drive Genesio chaotic system. We rewrite the drive system and controlled response system respectively
in the form

(11)

(
ẋ1
ẋ2
ẋ3

)
=

( 0
−x2 − x1x3

x1x2

)
+

(
x2 − x1 0 0

0 x1 0
0 0 −x3

)(
a

b

c

)
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Fig. 1. FSHPS of Lorenz and Genesio chaotic systems with fully unknown parameters.

and

(12)

(
ẏ1
ẏ2
ẏ3

)
=

(
y2
y3
y2

1

)
+

( 0 0 0
0 0 0

−y1 −y2 −y3

)(
a1
b1
c1

)
+

(
u1
u2
u3

)
,

where (u1, u2, u3)
T is the controller to be determined.

If the matrix A is chosen as A = diag(−1,−1,−1). Then, according to Eqs. (4) and (6), we get the controller:

(13)

⎧⎨
⎩

u1 = −(e2 + h2x2) + h1(x2 − x1)â − e1,

u2 = −(e3 + h3x3) − h2(x2 + x1x3) + h2x1b̂ − e2,

u3 = h3x1x2 − (e1 + h1x1)
2 + (e1 + h1x1)â1 + (e2 + h2x2)b̂1 + (e3 + h3x3)ĉ1 − h3x3ĉ − e3

and the estimates â, b̂, ĉ, â1, b̂1 and ĉ1 obey the following update laws:

(14)

⎧⎪⎨
⎪⎩

˙̂a = −h1e1(x2 − x1),

˙̂
b = −h2e2x1,
˙̂c = h3e3x3

and

(15)

⎧⎪⎨
⎪⎩

˙̂a1 = −(e1 + h1x1)e1,

˙̂
b1 = −(e2 + h2x2)e1,
˙̂c1 = −(e3 + h3x3)e1.

RK4 method is used to our all simulations with time step being equal to 0.001. In this numerical simulations, we select the
“unknown” parameters of the Lorenz system as a = 10, b = 28, c = 8/3 and the “unknown” parameters of the Genesio system
as a1 = 6, b1 = 2.92, c1 = 1.2 to ensure the chaotic behavior. The initial states of the drive system and response system are
x1(0) = 1, x2(0) = 1, x3(0) = 1, y1(0) = 1, y2(0) = 1, y3(0) = 1, the parameters have initial conditions a(0) = 0, b(0) = 0,
c(0) = 0, a1(0) = 0, b1(0) = 0, c1(0) = 0 and scaling factors are h1 = 1, h2 = 2, h3 = −1. Fig. 1 shows the chaotic FSHPS. Since
noise is ubiquitous in both man-made and nature systems, FSHPS of concrete models is unavoidably subject to internal and external
noise. Therefore, it is important to investigate the noise’s effect in FSHPS between chaotic systems. To consider the robustness of
the adaptive FSHPS scheme against noise, the additive noise with the strength 3 in time series x2 is added, and corresponding
numerical simulation is given in Fig. 2. The simulation results show sufficiently that the proposed adaptive FSHPS scheme is very
effective and quite robust against the effect of noise.
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Fig. 2. FSHPS of Lorenz and Genesio chaotic systems under the effect of noise.

3.2. Adaptive FSHPS between hyper-chaotic Chen and Lü systems

For further illustrating the effectiveness of the proposed scheme, in this subsection, we select the hyper-chaotic Chen system [32]

(16)

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = a(x2 − x1) + x4,

ẋ2(t) = dx1 − x1x3 + cx2,

ẋ3(t) = x1x2 − bx3,

ẋ4(t) = x2x3 + rx4

and the hyper-chaotic Lü system [33]

(17)

⎧⎪⎪⎨
⎪⎪⎩

ẏ1(t) = a1(y2 − y1) + y4,

ẏ2(t) = b1y2 − y1y3,

ẏ3(t) = −c1y3 + y1y2,

ẏ4(t) = d1y4 + y1y3

as examples, where a, b, c, d , r and a1, b1, c1, d1 are unknown system parameters. Let hyper-chaotic Chen system drive hyper-
chaotic Lü system. We present the drive system and response system respectively in the form

(18)

⎛
⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎠ =

⎛
⎜⎝

x4
−x1x3
x1x2
x2x3

⎞
⎟⎠ +

⎛
⎜⎝

x2 − x1 0 0 0 0
0 0 x2 x1 0
0 −x3 0 0 0
0 0 0 0 x4

⎞
⎟⎠

⎛
⎜⎜⎜⎝

a

b

c

d

r

⎞
⎟⎟⎟⎠

and

(19)

⎛
⎜⎝

ẏ1
ẏ2
ẏ3
ẏ4

⎞
⎟⎠ =

⎛
⎜⎝

y4
−y1y3
y1y2
y1y3

⎞
⎟⎠ +

⎛
⎜⎝

y2 − y1 0 0 0
0 y2 0 0
0 0 −y3 0
0 0 0 y4

⎞
⎟⎠

⎛
⎜⎝

a1
b1
c1
d1

⎞
⎟⎠ +

⎛
⎜⎝

u1
u2
u3
u4

⎞
⎟⎠

where (u1, u2, u3, u4)
T is the controller to be determined.

According to Eqs. (4) and (6), the matrix A is chosen as A = diag(−1,−1,−1,−1). Then the control law is:

(20)

⎧⎪⎪⎨
⎪⎪⎩

u1 = −(e4 + h4x4) + h1x4 − (e2 − e1 + h2x2 − h1x1)â1 + h1(x2 − x1)â − e1,

u2 = (e1 + h1x1)(e3 + h3x3) − h2x1x3 − (e2 + h2x2)b̂1 + h2x2ĉ + h2x1d̂ − e2,

u3 = −(e1 + h1x1)(e2 + h2x2) + h3x1x2 + (e3 + h3x3)ĉ1 − h3x3b̂ − e3,

ˆ
u4 = −(e1 + h1x1)(e3 + h3x3) + h4x2x3 − (e4 + h4x4)d1 + h4x4r̂ − e4
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Fig. 3. FSHPS of hyper-chaotic Chen and hyper-chaotic Lü systems with fully unknown parameters.

and the estimates â, b̂, ĉ, d̂ , r̂ , â1, b̂1, ĉ1, d̂1 are updated according to the following algorithm:

(21)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂a = −h1e1(x2 − x1),

˙̂
b = h3e3x3,
˙̂c = −h2e2x2,

˙̂
d = −h2e2x1,
˙̂r = −h4e4x4

and

(22)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂a1 = e1(e2 − e1 + h2x2 − h1x1),

˙̂
b1 = e2(e2 + h2x2),
˙̂c1 = −e3(e3 + h3x3),

˙̂
d1 = e4(e4 + h4x4).

In this numerical simulations, we select the “unknown” parameters of the 4D Chen system as a = 35, b = 3, c = 12, d = 7,
r = 0.5 and the “unknown” parameters of the 4D Lü system as a1 = 36, b1 = 20, c1 = 3, d1 = 1.3 to ensure the chaotic behavior.
The initial states of the drive system and response system are x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, y1(0) = 1, y2(0) = 1,
y3(0) = 1, y4(0) = 1, the parameters have initial conditions a(0) = 0, b(0) = 0, c(0) = 0, d(0) = 0, r(0) = 0, a1(0) = 0, b1(0) = 0,
c1(0) = 0, d1(0) = 0 and h1 = 1, h2 = 2, h3 = −1, h4 = −1/2. The simulation results are shown as Figs. 3 and 4. Fig. 3 shows
the hyper-chaotic FSHPS and Fig. 4 shows that when an additive noise with the strength 1 is simultaneously added to the signals
x1 and x2, an additive noise with the strength 5 is added to the signals x2 and an additive noise with the strength 3 is added to the
signals x3.

The above numerical simulations show that chaotic or hyper-chaotic FSHPS with fully unknown parameters can be well achieved
by the proposed adaptive FSHPS scheme. In addition, we find from these simulations that such FSHPS is robust against the effect
of noise, namely the expected FSHPS means that the synchronization error is eventually smaller than a threshold value (does not
tend to zero), then the present scheme is physically feasible in the noisy situation.

4. Adaptive FSHPS scheme of chaotic systems with different order

The aim of this section is to address the FSHPS of two coupled chaotic systems with different order. For this, Eq. (1) is still
viewed as a drive system, controlled response system is given by

(23)ẏ = g(y) + G(y)Θ + U,
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Fig. 4. FSHPS of hyper-chaotic Chen and hyper-chaotic Lü systems under the effect of noise.

where y ∈ Rm is the state vector, g :Rm → Rm, G :Rm → Rm×k and Θ ∈ Rk is parameter vector and U ∈ Rm is a controller. Note
worthily, the order of controlled response system in this section is different from the one in Section 2. We take two kinds of cases
(I) n > m and (II) n < m into consideration.

Remark 2. Since the order of two chaotic system considered in this and the next section is different, the term “full state hybrid
projective synchronization” is not accurate. In the present Letter, we consider the synchronization which contains the full states of
response system, so we call it “modified full state hybrid projective synchronization (MFSHPS)”.

Case I. n > m, that is, the order of the drive system is greater than that of the response system, so the synchronization (MFSHPS)
is only attained in reduced order. (If scaling matrix H = I, I denotes the identical matrix, this kind synchronization phenomenon
is called reduced order synchronization which has been investigated by the author of [2,21–23,27,28].) We call it reduced order
MFSHPS in this Letter. For achieving reduced order MFSHPS, we divide the drive system into two parts.

(24)ẋp(t) = fp(x) + Fp(x)Λ,

(25)ẋr (t) = fr(x) + Fr(x)Λ,

where xp ∈ Rm, xr ∈ Rl , fp :Rn → Rm, fr :Rn → Rl , Fp :Rn → Rm×d , Fr :Rn → Rl×d and m + l = n. Let the vector error state
be e(t) = y(t) − Hxp(t), where H is a m-order diagonal matrix, i.e. H = diag(h1, h2, . . . , hm).

Now, the reduced order MFSHPS problem of (1) and (23) becomes the FSHPS of (24) and (23) with the same order m. Hence,
according to the results in Section 2, if we let

(26)U = −R(e, x) − G(e,x)Θ̃ + HFp(x)Λ̃ + Ae

where R(e, x) = g(e + Hx) − Hfp(x) and

(27)˙̃
Θ = GT (e, x)e,

˙̃
Λ = −FT

p (x)He

then, we can achieve the reduced order MFSHPS between the partial states of drive system and the full states of response system.

Case II. n < m, that is, the order of the drive system is lower than that of the response system, so the MFSHPS is only attained
in increased order. We call this type of synchronization increased order MFSHPS. For achieving increased order MFSHPS, we
must “creat order”. One doable way is to construct auxiliary state vector which is the function of state x. For instance, provided
l = m − n, we define xn+1 = φ1(x), xn+2 = φ2(x), . . . , xn+l = xm = φl(x), then we can get a new m dimension state vector
X = (x1, x2, . . . , xn, xn+1, . . . , xm). New drive system can write

(28)Ẋ = fe(x) + Fe(x)Λ,
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where x ∈ Rn, X ∈ Rm, fe :Rn → Rm, F :Rn → Rm×d and Λ ∈ Rd is parameter vector. Response system is still Eq. (23). Now, the
increased order MFSHPS problem of (1) and (23) becomes the FSHPS of (28) and (23) with the same order m. Hence, according
to the results in Section 2, we let

(29)U = −R(e, x) − G(e,x)Θ̃ + HFe(x)Λ̃ + Ae

where R(e, x) = g(e + Hx) − Hfe(x) and

(30)˙̃
Θ = GT (e, x)e,

˙̃
Λ = −FT

e (x)He

then, we can achieve the increased order MFSHPS between the all states (x1, x2, . . . , xn) and auxiliary states (xn+1, xn+1, . . . , xm)

of drive system and the full states of response system.

5. Application of the adaptive FSHPS scheme with different order

In this section we will choose generalized Lorenz system, Lorenz system, Lü hyper-chaotic systems to illustrate the effectiveness
of the adaptive FSHPS scheme with different order.

5.1. Reduced order MFSHPS of generalized Lorenz system and Lorenz system

In this subsection generalized Lorenz chaotic system and Lorenz chaotic system are chosen to illustrate the effectiveness of
reduced order MFSHPS. Generalized Lorenz system [34] are

(31)

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = a(x2 − x1) + dx4,

ẋ2(t) = bx1 − x1x3 − x2,

ẋ3(t) = x1x2 − cx3,

ẋ4(t) = −x1 − ax4,

and the Lorenz system are:

(32)

⎧⎨
⎩

ẏ1(t) = a1(y2 − y1),

ẏ2(t) = by1 − y1y3 − y2,

ẏ3(t) = y1y2 − cy3.

Our purpose is to archive the FSHPS of Lorenz system and the former three states of generalized Lorenz system. Therefore, we
need only present the states (x1, x2, x3) of generalized Lorenz system in the form of

(33)

(
ẋ1
ẋ2
ẋ3

)
=

( 0
−x1x3 − x2

x1x2

)
+

(
x2 − x1 0 0 x4

0 x1 0 0
0 0 −x3 0

)⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ .

Similarly, the controlled response system is

(34)

(
ẏ1
ẏ2
ẏ3

)
=

( 0
−y1y3 − y2

y1y2

)
+

(
y2 − y1 0 0

0 y1 0
0 0 −y3

)(
a1
b1
c1

)
+

(
u1
u2
u3

)
,

where (u1, u2, u3)
T is the controller to be determined. According to (26) and (27), the matrix A is chosen as A = diag(−1,−1,−1),

then we get the controller

(35)

⎧⎨
⎩

u1 = −(e2 − e1 + h2x2 − h1x1)â1 + h1(x2 − x1)â + h1x4d̂ − e1,

u2 = −(e1 + h1x1)b̂1 + h2x1b̂ − h2(x1x3 + x2) + (e2 + h2x2) + (e1 + h1x1)(e3 + h3x3) − e2,

u3 = (e3 + h3x3)ĉ1 + h3x1x2 − h3x3ĉ − (e1 + h1x1)(e2 + h2x2) − e3

and the estimates â, b̂, ĉ, d̂ , â1, b̂1, ĉ1 obey the updating laws:

(36)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂a = −h1(x2 − x1)e1,

˙̂
b = −h2x1e2,
˙̂c = h3x3e3,

˙̂
d = −h1x4e1
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Fig. 5. Reduced order MFSHPS of generalized Lorenz and Lorenz systems with fully unknown parameters.

and

(37)

⎧⎪⎨
⎪⎩

˙̂a1 = (e1 − e2 + h1x1 − h2x2)e1,

˙̂
b1 = (e1 + h1x1)e2,
˙̂c1 = −(e3 + h3x3)e3.

In this numerical simulations, we select the “unknown” parameters of the 4D generalized system as a = 1, b = 26, c = 0.7,
d = 1.5 and the “unknown” parameters of the Lorenz system as a1 = 10, b1 = 28, c1 = 8/3 to ensure the chaotic behavior. The
initial states of the drive system and response system are x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, y1(0) = 1, y2(0) = 1,
y3(0) = 1, the parameters have initial conditions a(0) = 0, b(0) = 0, c(0) = 0, a1(0) = 0, b1(0) = 0, c1(0) = 0 and h1 = 1, h2 = 2,
h3 = −1. The simulation results are shown in Figs. 5 and 6. Fig. 5 shows the reduced order MFSHPS between 4D hyper-chaotic
system and 3D chaotic system. Fig. 6 shows the slight effect of a noise with the strength 1 which is simultaneously added to the
signals x1, x2 and x3.

5.2. Increased order MFSHPS of Lorenz system and hyper-chaotic Lü system

In this subsection, let Lorenz chaotic system (9) drive hyper-chaotic Lü system (17). Since the order of drive system is 3 but the
order of response system is 4, so we need construct an auxiliary state variable x4 = φ(x). In what follows, we choose two case to
study.

(1) If we let x4 = φ(x) = x1 + x2 + x3, then ẋ4 = a(x2 − x1)+ bx1 − cx3 − x2 − x1x3 + x1x2. Let ei = yi −hixi (i = 1,2,3,4),
where e4 = y4 − h4(x1 + x2 + x3), then according to (29) and (30), we get the controller

(38)

⎧⎪⎪⎨
⎪⎪⎩

u1 = −(e2 − e1 + h2x2 − h1x1)â1 + h1(x2 − x1)â − e4 − h4x4 − e1,

u2 = −(e2 + h2x2)b̂1 + h2x1b̂ − h2(x1x3 + x2) + (e1 + h1x1)(e3 + h3x3) − e2,

u3 = (e3 + h3x3)ĉ1 + h3x1x2 − h3x3ĉ − (e1 + h1x1)(e2 + h2x2) − e3,

u4 = −(e4 + h4x4)d̂1 + h4(x2 − x1)â + h4x1b̂ − h4x3ĉ + h4(−x2 − x1x3 + x1x2) − (e1 + h1x1)(e3 + h3x3)

and the estimates â, b̂, ĉ, â1, b̂1, ĉ1, d̂1 obey the updating laws:

(39)

⎧⎪⎨
⎪⎩

˙̂a = −h1(x2 − x1)e1 − h4(x2 − x1)e4,

˙̂
b = −h2x1e2 − h4x1e4,
˙̂c = h3x3e3 + h4x3e4
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Fig. 6. Reduced order MFSHPS of generalized Lorenz and Lorenz systems under the effect of noise.

and

(40)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂a1 = (e2 − e1 + h2x2 − h1x1)e1,

˙̂
b1 = (e2 + h2x2)e2,
˙̂c1 = −(e3 + h3x3)e3,

ˆ̂
d1 = (e4 + h4x4)e4.

In this and the next numerical simulations, the “unknown” parameters are same as Eqs. (9) and (17), respectively and the
matrix A is chosen as A = diag(−1,−1,−1,−1). The initial states of the drive system and response system are x1(0) = 1,
x2(0) = 1, x3(0) = 1, y1(0) = 1, y2(0) = 1, y3(0) = 1, y4(0) = 1, the parameters have initial conditions a(0) = 0, b(0) = 0,
c(0) = 0, a1(0) = 0, b1(0) = 0, c1(0) = 0, d1(0) = 0 and h1 = 1, h2 = 2, h3 = −1, h4 = −1/2. The simulation results are shown
in Figs. 7 and 8. Fig. 7 shows the increased order MFSHPS between 3D Lorenz chaotic system with the auxiliary state variable
x4 = x1 + x2 + x3 and 4D hyper-chaotic Lü system. Fig. 8 shows the slight effect of a noise with the strength 3 which is added to
the signals x2.

(2) If we let x4 = φ(x) = x2
1 , then ẋ4 = 2ax1(x2 − x1). Let ei = yi − hixi (i = 1,2,3,4), where e4 = y4 − h4x

2
1 , then according

to (29) and (30), we get the controller

(41)

⎧⎪⎪⎨
⎪⎪⎩

u1 = −(e2 − e1 + h2x2 − h1x1)â1 + h1(x2 − x1)â − e4 − h4x4 − e1,

u2 = −(e2 + h2x2)b̂1 + h2x1b̂ − h2(x1x3 + x2) + (e1 + h1x1)(e3 + h3x3) − e2,

u3 = (e3 + h3x3)ĉ1 + h3x1x2 − h3x3ĉ − (e1 + h1x1)(e2 + h2x2) − e3,

u4 = −(e4 + h4x4)d̂1 + 2h4x1(x2 − x1)â − h4x3ĉ − (e1 + h1x1)(e3 + h3x3) − e4

and the estimates â, b̂, ĉ, â1, b̂1, ĉ1, d̂1 obey the updating laws:

(42)

⎧⎨
⎩

ȧ = −h1(x2 − x1)e1 − 2h4x1(x2 − x1)e4,

ḃ = −h2x1e2,

ċ = h3x3e3

and

(43)

⎧⎪⎪⎨
⎪⎪⎩

ȧ1 = (e2 − e1 + h2x2 − h1x1)e1,

ḃ1 = (e2 + h2x2)e2,

ċ1 = −(e3 + h3x3)e3,

d̂1 = (e4 + h4x4)e4.
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Fig. 7. Increased order MFSHPS of Lorenz and hyper-chaotic Lü systems with fully unknown parameters (auxiliary state variable x4 = φ(x) = x1 + x2 + x3).

Fig. 8. Increased order MFSHPS of Lorenz and hyper-chaotic Lü systems under the effect of noise with the auxiliary state variable x4 = x1 + x2 + x3.

In this numerical simulations, all the parameters and initial values are same as above. The simulation results are shown in Figs. 9
and 10. Fig. 9 shows the increased order MFSHPS between 3D Lorenz chaotic system with the auxiliary state variable x4 = x2

1 and
4D hyper-chaotic Lü system. Fig. 10 shows the slight effect of a noise with the strength 1 which is simultaneously added to the
signals x1, x2 and x3.

The numerical simulations in Section 5 show that the MFSHPS between chaotic and hyper-chaotic systems with fully unknown
parameters can be well achieved by the proposed adaptive FSHPS scheme with different order. In addition, we also find that such
synchronization is robust against the effect of noise from these simulations.
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Fig. 9. MFSHPS of Lorenz and hyper-chaotic Lü systems with fully unknown parameters (auxiliary state variable x4 = φ(x) = x2
1 ).

Fig. 10. Increased order MFSHPS of Lorenz and hyper-chaotic Lü systems under the effect of noise with the auxiliary state variable x4 = x2
1 .

6. Conclusions

In this Letter, adaptive FSHPS scheme has been proposed for chaotic (hyper-chaotic) systems with fully unknown parameters.
A unified controller and a parameters update law are designed to achieve the FSHPS of two coupled chaotic systems which may be
strictly different even with different order, based on the Lyapunov stability theorem. Five groups of numerical simulations are also
given to show effectiveness of the proposed scheme.

Because the complete synchronization, anti-synchronization, partial synchronization, projective synchronization are all included
in FSHPS, our results contain and extend most existing works. Finally, it is worth noting that although the reduced order syn-
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chronization has received some attention, to the best of our knowledge, there are few results on generalized synchronization of
different order chaotic dynamical systems, so the proposed reduced order MFSHPS and increased order MFSHPS are worth to
further investigate. Continued research would be desirable.
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