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a b s t r a c t

A framework of an anisotropic elastoplastic model is proposed that has potential applications to different
types of clays. The model adopted the form of work dissipation based yield surface of Dafalias. A surface
configuration parameter is introduced to the yield surface in addition to that of the plastic potential
eywords:
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nisotropy

surface. This idea was motivated by the fact that different types of clays may have a reasonably close
slope of critical state line in stress space but different shear strengths. The resulting yield surface is
compared with yield surface data for 17 natural clays. The overall level of agreement is satisfactory.

© 2010 Elsevier Ltd. All rights reserved.
ritical state

. Introduction

In an elastoplastic model, an initial yield surface has to be
efined that changes according to the hardening rules. In order to
ccurately capture the yield points along different stress paths, the
ssumed yield surface should have a suitable shape and size. One
f the convenient ways to develop an elastoplastic model for a par-
icular type of clay, is to obtain the yield surface by curve fitting
he yield points obtained from the stress probing tests. Though the
evel of agreement between the test data for this particular clay and
he simulations by such a model could be satisfactory, it may not
erform well for a different type of clays and would have a limited
ange of applications. On the other hand, if there had been a form
f yield surface flexible enough to fit the yield points of different
ypes of clays, then the resulting model would have great potential
or simulating the mechanical behavior of different types of clays.
n this paper, such an effort in developing a model will be described.

. Yield surface and plastic potential surface

Various forms of yield surfaces have been proposed; however,
ot all of them are physically reasonable. To help evaluate dif-

erent forms of yield surfaces, the following two assumptions are

ade: (1) the yield surface has to be smooth enough so that the

erivatives of the yield surface with respect to stresses at any
oint on the surface are definite; (2) the stress state inside the
ield surface has to be physically admissible. In particular, the
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093-6413/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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minimum mean stress, if tension, has to be sustainable by the
clay.

The bullet-shaped yield surface of the Original Cam-clay model
(Roscoe et al., 1963) is not smooth at the tip. Later, the Modi-
fied Cam-clay model (Roscoe and Burland, 1968) was developed
with an elliptical yield surface, and is widely used for simulating
the mechanical behavior of clays. Several well known clay mod-
els (Kavvadas, 1982; Anandarajah and Dafalias, 1986; Banerjee and
Yousif, 1986; Dafalias, 1986, 1987; Kaliakin and Dafalias, 1990;
Crouch and Wolf, 1992; Whittle and Kavvadas, 1994) are extensions
of the Modified Cam-clay model. Some models (for example, Crouch
and Wolf, 1992) adopted a shape parameter R (≥2.0) in extending
the Modified Cam-clay yield surface to the tension side. However,
a very large R has to be adopted in order to capture the low shear
strength of some clays, even for some reconstituted clays. In such
cases, the maximum tensile mean stress predicted by the model
could be very large and is probably not admissible for reconstituted
clays which usually have little tensile strength. On the other hand,
seldom has there been any model developed to simulate the ten-
sile behavior of clays because it is of little engineering significance.
These models with the parameter R were developed more for the
purpose of capturing the low shear strength than that of describing
the tensile strength.

There are models utilizing composite yield surfaces. In the state
boundary surface model (Schofield, 1980), the Modified Cam-clay
yield surface, Hvorslev rupture surface, and tensile fracture surface

are combined together. The model does not allow any tension to
develop and all the stress states within the yield surface are physi-
cally admissible. It suffers from the drawback that the whole surface
is not smooth. The composite yield surface proposed by Dafalias
and Herrmann (1986) that has two ellipses and one hyperbola is

http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:jj2279@columbia.edu
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mooth. It uses a surface configuration parameter as adjustment at
he tension side. This surface configuration parameter is difficult to
e calibrated through its physical meaning, the tensile strength. The
xpression of the composite surface is very complicated and was
ater simplified as a single ellipse (Kaliakin and Dafalias, 1989).

Dafalias (1986, 1987) proposed an anisotropic elastoplastic
odel based on a work dissipation assumption with a contribu-

ion coupling the volumetric and deviatoric plastic strain rates. It
ives a simple way to account for the effect of anisotropy through
state variable ˛. The previously mentioned two physical reason-

ngs are also satisfied. Therefore, the form of Dafalias’ yield surface
s adopted here.

If an associative flow rule is assumed, then the parameter M (the
lope of the critical state line in the mean stress-deviator stress
pace) is also a surface configuration parameter for the yield sur-
ace. If M is large, the predicted shear strength would be high, which
s in contradiction to the fact that different types of clays may have

reasonably close M but different shear strengths. On the other
and, if the assumption of the associative flow rule is dropped and

is treated as a surface configuration parameter for the plastic
otential surface only, while another parameter N is introduced as
surface configuration parameter for the yield surface, the situa-

ion is quite different. While the slope of the critical state line, M, is
ept, the parameter N can be calibrated to better capture the shear
trength. Physically, M represents a frictional constant at the crit-
cal state where the magnitude of the deviator stress q needed to
eep the clay flowing continuously is the product of M with the
ffective pressure p. The parameter M only states a region (in fact
line) for the critical states in the p–q space and the final criti-

al state point is not determined in general cases. The ultimate q,
hich could be higher or lower than the one predicted by the asso-

iative model, can be predicted by the nonassociative model with a
uitable value of N. The parameter N, in fact, represents a measure
f the shear strength over the anisotropic line. This point will be
urther explained.

In the current model, the same form of expression is adopted for
oth the plastic potential surface and the yield surface, and the two
urfaces share the same anisotropic line, but the plastic potential
urface has the surface configuration parameter M while the yield
urface has the surface configuration parameter N. In general, M
nd N are not equal, and the flow rule is nonassociative. If M = N, it
egenerates to an associative model. Usually clays behave differ-
ntly on the compression side and extension side, thus Mc(Me) and
c(Ne) are adopted as model parameters.

It may be pointed out that Dafalias et al. (2002, 2006) also
sed the same function for the yield and plastic potential sur-
aces, but their main purpose was to simulate the strain softening
ehavior during undrained compression shearing for normally
nisotropically consolidated clays by using N smaller than M. In
heir formulation, a constant N was used to keep the model simple.

hile N acts as a geometric restriction for the peak shear strength
n the compression side, its meaning on the extension side is not
lear. In this proposed model, Nc and Ne are used in order to sim-
late the shear strengths on the compression and extension sides,
espectively, for different types of clays. The nonassociative flow
ule can still be adopted even for clays without showing strain
oftening behavior.

. Description of formulations
The purpose here is to outline the framework of developing an
lastoplastic model with the previously mentioned yield surface. In
hat follows, all stresses are effective and compressive stresses are
ositive. The three stress invariants I, J˛ and S˛ (or I, J˛ and �) are
efined in terms of the stress tensor �ij and the anisotropic tensor
mmunications 37 (2010) 394–398 395

˛ij as

I = �kk, J2
˛ = 1

2
s˛

ij s
˛
ij , S3

˛ = 1
3

s˛
ij s

˛
jks˛

ki,

sin(3�) = 3
√

3
2

(
S˛

J˛

)3

, − �

6
≤ � ≤ �

6
(1)

where s˛
ij

= sij − (1/3)I˛ij is the deviatoric stress tensor with respect
to the anisotropic direction, different from the deviatoric stress
tensor sij = �ij − (1/3)Iıij which is with respect to the mean stress
direction; ıij is the Kronecker delta. In the triaxial space, the mean
stress p and deviator stress q are defined as

p = 1
3

I, q =
√

3J, J2 = 1
2

sijsij (2)

The initial anisotropic tensor ˛0
ij

in the p–q space is assumed to be

determined by the formation stress �0
ij

:

˛0
ij =

s0
ij

p0
, p0 = 1

3
�0

kk, s0
ij = �0

ij − p0ıij (3)

Clays consolidated with a constant stress ratio, such as isotropi-
cally consolidated clays, are special cases. Or ˛0

ij
can be identified

by some suitable procedure. The current anisotropic tensor ˛ij is
determined by the initial anisotropic tensor ˛0

ij
and hardening rule

for ˛ij. The anisotropic quantity in the p–q space is ˛ =
√

(3/2)˛ij˛ij .
Correspondingly, the anisotropic tensor in the I–J space is ˇij =
˛ij/

(
3
√

3
)

and the anisotropic quantity is ˇ = ˛/
(

3
√

3
)

. The yield
surface F adopted is

F(�ij, ˇij, I0) = J2
˛ − (T2 − ˇ2)I(I0 − I) = 0 (4)

where I0 represents the isotropic hardening variable, and is the
value of I at the intersection of the anisotropic line and the yield
surface; T = N/

(
3
√

3
)

is the surface configuration parameter for
the yield surface in the I–J space; and N is defined as

N(�) = 2k

(1 + k) − (1 − k) sin(3�)
Nc, k = Ne

Nc
(5)

The corresponding plastic potential surface is

G(�ij, ˇij, I˛) = J2
˛ − (S2 − ˇ2)I(I˛ − I) = 0 (6)

where S = M/
(

3
√

3
)

is the surface configuration parameter for the
plastic potential surface in the I–J space, and M is defined as

M(�) = 2l

(1 + l) − (1 − l) sin(3�)
Mc, l = Me

Mc
(7)

The stress variable I˛ has the value of I at the intersection of the
anisotropic line and the plastic potential surface. As the yield sur-
face and the plastic potential surface are related by the current
stress �ij on the yield surface, I˛ can be calculated as

I˛ = J2
˛

(S2 − ˇ2)I
+ I (8)

It can be verified that both F and G have the same form of the yield
surface proposed by Dafalias (1986, 1987).

In the current formulation, the internal plastic variables are I0
and ˛ij, evolutions of which are specified by relevant isotropic hard-
ening rule and anisotropic hardening rule, respectively, which are
open to be proposed. Geometrically, the isotropic hardening rule is
used to control the size of the yield surface while the anisotropic
hardening rule is to control the rotation and distortion of the yield

surface.

In the next step, standard procedures of developing an elasto-
plastic model are followed. First, the loading index has to be defined
with the plastic modulus obtained from the consistency condition
for the yield surface. Then the plastic strain rate can be calculated
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Fig. 1. Anisotropic elastoplastic model.

y the loading index and the normal of the plastic potential sur-
ace. By decomposing the total strain rate into elastic and plastic
arts, and combing the expressions for the elastic and plastic strain
ates, one obtains the classical form of the elastoplastic stress strain
elationship.

The yield surface and the plastic potential surface share the same
nisotropic line and have similar sizes, shown in Fig. 1. As a result,
he direction of the plastic strain rate is not too much different
rom the normal direction of the yield surface. In the SANICLAY

odel (Dafalias et al., 2006), different anisotropic state variables
re used for the yield surface and plastic potential surface, and the
ngle between the direction of the plastic strain rate and the normal
irection of the yield surface is not small in their illustration of
he model. It is also interesting to note that, for the isotropic case,
he model with N smaller than M is similar to the nonassociative

odel studied by Banerjee and Stipho (1978) where the Original
am-clay yield surface was adopted as the yield surface and the
odified Cam-clay yield surface as the plastic potential surface. In

heir study, it was found that the nonassociative model gave better
imulations than the Modified Cam-clay model for a reconstituted
aolin clay.

. Role of N

The role of N may be illustrated by a simple model based on
he above framework. It uses the same isotropic hardening rule
s the Modified Cam-clay model, but no evolution of anisotropy is
ssumed for simplicity. Assume that a clay has the material param-
ters of critical state soil mechanics as follows: � = 0.20, � = 0.05,
c = 1.00, Me = 0.80, and v = 0.30. Undrained triaxial compression

nd extension tests were simulated on the clay with different over-
onsolidation ratios, 1.0, 1.5 and 4.0. In all cases, it is assumed that
he initial anisotropy ˛0 is 0.23 and the anisotropy does not evolve
uring the shearing tests. The ratio of the initial radial stress to the

nitial axial stress is 0.80. The numerical results are shown in Fig. 2,

ith values of N being slightly smaller than M, the same as M, and

lightly larger than M. For the compression tests, Nc = 0.95, 1.00 and
.05, and for the extension tests, Ne = 0.75, 0.80 and 0.85. The yield
urface with parameters (˛, Nc, Ne) = (0.23, 1.00, 0.80) is also plotted
s reference.
Fig. 2. Role of N.

It can be seen that the shear strength, higher or lower than the
one predicted by the corresponding associative model, are captured
by a suitable value of N, larger or smaller than M, under nor-
mally consolidated and overconsolidated conditions. In the present
case, a small variation of N was selected to make the overall plot-
ting clear. However, it can be expected that a larger difference of
undrained shear strength would be obtained if N is much different
from M. Compared to the models adopting the shape parameter
R, the current model is more flexible and can theoretically pre-
dict the shear strength larger than that predicted by the associative
model. In addition, it avoids the possible unrealistically large value
of the predicted tensile strength for reconstituted clays with low
shear strength, as has already been mentioned. Compared to the
SANICLAY model (Dafalias et al., 2006) that has a constant N, the
proposed model may be more flexible in simulating the behavior
of different types of clays, especially for those with shear strength
on the extension side quite different from that on the compres-
sion side. From the illustration of the current model, it may appear
as a slight modification of the model proposed by Dafalias (1986,
1987), but it is capable of capturing the shear strengths of clays
more accurately.

5. Comparison of yield surfaces for different types of clays

Diaz-Rodriguez et al. (1992) presented data on normalized yield
surfaces for 17 different natural clays with angles of internal fric-
tion � varying from 17.5◦ to 43◦. It could be considered as one of
the most comprehensive databases on the shapes of yield surface of
natural clays. In determining the yield surface data, the shape and
size of yield surfaces could have changed during the stress prob-
ing tests, which is not discussed here. In addition, it is assumed for
simplicity that the test data are accurate in the following discus-
sions. The properties of these natural clays are shown in Table 1,
where the parameters Mc and Me were calculated by assuming that
the critical state region is a Mohr-Coulomb type failure surface with
zero apparent cohesion. The parameters for fitting the yield surface
data are also shown in Table 1.

The yield surface with parameters (˛, Nc, Ne) and the one with
(˛, Mc, Me) are compared with the yield surface data in each case,
as shown in Fig. 3. The yield surface with parameters (˛, N , N ) is
c e

plotted with thick dark line, while the one with (˛, Mc, Me) is with
thin line. In some cases, the two coincide. In a few cases, the yield
surface with (˛, Nc, Nc) is also plotted with dashed line for refer-
ence. Note that the yield surfaces are normalized by the vertical
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Fig. 3. Comparisons of yield surfaces for natural clays.
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Table 1
Properties of natural clays and parameters for the yield surfaces (Diaz-Rodriguez et al., 1992).

Clay site � (◦) Mc Me ˛ Nc Ne

Winnipeg, Manitoba 17.5 0.67 0.55 0.25 0.80 0.80
Atchafalaya, Louisiana 23 0.90 0.69 0.32 1.25 1.25
Perno, Finland 23 0.90 0.69 0.45 0.90 0.90
Otaniemi, Finland 25 0.98 0.74 0.59 0.98 0.90
Riihimaki, Finland 27 1.07 0.79 0.55 1.07 0.79
St. Louis, Quebec 25 0.98 0.74 0.35 1.25 1.10
Ottawa, Ontario 27 1.07 0.79 0.38 1.15 1.15
Osaka, Japan 25 0.98 0.74 0.50 0.98 0.90
Champlain sea clays, Quebec 27–30, say, 28.5 1.13 0.82 0.40 1.45 1.00
Backebol, Sweden 30 1.20 0.86 0.37 1.20 0.86
Drammen, Norway 30 1.20 0.86 0.39 1.10 0.86
Pornic, France 29 1.16 0.83 0.40 1.35 1.25
Favren, Sweden 32 1.29 0.90 0.35 1.40 1.40
St. Jean-Vianney, Quebec 32 1.29 0.90 0.46 1.55 1.40
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Roscoe, K.H., Schofield, A.N., Thurairajah, A., 1963. Yielding of clays in states wetter
Cubzac-les-Ponts, France 32 1.2
Bogota, Columbia 35 1.4
Mexico, Mexico 43 1.7

reconsolidation stress �vm. The level of agreement for the overall
omparison is satisfactory between the yield surface with (˛, Nc,
e) and test data. However, the yield surface with (˛, Mc, Me) is not
ble to fit the test data as well in most cases. In addition, the yield
urface with (˛, Nc, Nc) may not be as good as that with (˛, Nc, Ne)
hen compared to the test data, such as for Riihimaki clay.

. Additional discussions

It may be pointed out that other similar forms of yield surface
ould be used under this proposed model framework. However,
he yield surface of Dafalias (1986, 1987) is one of the best choices.
ven with the current form of yield surface, the model formulations
an have some options. For example, the plastic potential surface
an be chosen with I˛ = I0. In this case, the direction of the plastic
train rate is determined by the derivatives of the plastic poten-
ial surface at the intersection of the surface with a mapping line.
his mapping line connects the stress origin and the current stress
oint. Such a set of formulations could serve approximately the
ame role in simulating the clay behavior as the current one. Other
ariations in the formulations are also possible, such as different
nisotropic variables for the yield and plastic potential surfaces, as
n the SANICLAY model where possible ‘hook’ like undrained stress
ath prediction could be avoided for undrained extension shear-

ng test on a normally anisotropically consolidated clay (Dafalias
t al., 2006). In the current presentation, the model has been kept
s simple, flexible, and traditional as possible, and may be viewed
s a modification of the anisotropic critical state model by Dafalias
1986, 1987).

. Conclusions

The parameter M, which specifies the critical states in stress

pace, does not necessarily determine the shear strength of clays.
hus, a parameter N was introduced to the yield surface to better
apture the shear strength. The resulting yield surface has shown
reat flexibility in fitting the yield surface data for a large number
f clays. Therefore, the framework of the anisotropic elastoplastic
0.90 0.46 1.65 1.50
0.96 0.52 1.42 1.30
1.11 0.73 1.76 1.45

model with this yield surface has potential applications to different
types of clays.
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