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Abstract
The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways:
the discrete KP equation and, by using a compatible continuous variable, the
discrete potential KP equation. For both systems, we consider the Darboux
and binary Darboux transformations, expressed in terms of the continuous
variable, and obtain exact solutions in Wronskian and Grammian form. We
discuss reductions of both systems to the discrete KdV and discrete potential
KdV equation, respectively, and exploit this connection to find the Darboux
and binary Darboux transformations and exact solutions of these equations.

PACS numbers: 02.30.Ik, 05.45.Yv
Mathematics Subject Classification: 39A10, 35Q58

1. Introduction

The Hirota–Miwa equation [1, 2] is the three-dimensional discrete integrable system

(a1 − a2)τ12τ3 + (a2 − a3)τ23τ1 + (a3 − a1)τ31τ2 = 0, (1.1)

where lattice parameters ak are constants, k = 1, 2, 3, and for τ = τ (n1, n2, n3) each
subscript i denotes a forward shift in the corresponding discrete variable ni. There are many
papers on the Hirota–Miwa equation describing a number of important results. These include
finding its exact solutions by direct methods and Bäcklund/Darboux transformations [3–7];
its extension to nonautonomous [8–11] and noncommutative forms [12, 13], and reductions
to lower dimensional discrete integrable systems [14–16]. In this paper, we also discuss in
detail the reduction to the discrete Korteweg de Vries (dKdV) equation [17] and the discrete
potential KdV (dpKdV) equation [18]. We exploit these connections to get the Lax pairs, and
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the Darboux and binary Darboux transformations of these systems in a natural way. The dpKdV
equation is also known as the H1 equation in the Adler–Bobenko–Suris (ABS) classification
[19]. Its integrability is understood in the sense of the multidimensional consistency property
[20, 21], and gives a Lax pair directly. However, this Lax pair is not suitable for the application
of classical Darboux transformations [22, 23]. So, one motivation for this work is to obtain a
Lax pair through reduction of the linear system of the Hirota–Miwa equation. This paper is
the first of a planned series which will explore the equations in the ABS list, their Lax pairs
and Darboux transformations as reductions of the Hirota–Miwa equation.

The Hirota–Miwa equation (1.1) can also be written in terms of ‘nonlinear’ variables
rather than τ -function in two distinct ways[12, 13], when using variables ui j := τi jτ/τiτ j and
the linear system

aiφi − a jφ j = (ai − a j)u
i jφ, 1 � i < j � 3, (1.2)

where for φ = φ(n1, n2, n3) each subscript i denotes a forward shift in the corresponding
discrete variable ni. This linear system (1.2) is compatible if and only if

(a1 − a2)u
12 + (a2 − a3)u

23 + (a3 − a1)u
13 = 0, (1.3a)

(ui j)k u
ik = (uik) j u

i j. (1.3b)

Each of the variables ui j relates to the solution u = (log τ )xx of the KP equation in the
continuum limit, so we call (1.3a) the discrete KP (dKP) equation. Note that when one uses
the formula ui j = τi jτ/τiτ j, (1.3a) gives (1.1) and (1.3b) is satisfied identically. A second way
is to suppose ui j = (v j − vi + (ai − a j))/(ai − a j), where v = (log τ )x. This ansatz solves
(1.3a) exactly and (1.3b) becomes the discrete potential KP (dpKP) equation (see also [24]).

The outline of this paper is as follows. In section 2, we recall important definitions and
properties of the Hirota–Miwa equation. In particular, we write the Hirota–Miwa equation in
‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous
variable, the dpKP equation. For both equations, we give two different associated linear
systems and their corresponding auxiliary linear systems in differential–difference form. So
their Darboux and binary Darboux transformations are given in differential, rather than the
more usual difference form [5, 6]. The differential form uses the first continuous flow x of
the KP hierarchy which is compatible with the discrete flows in the Hirota–Miwa equation.
These transformations are used to derive exact solutions in Wronskian and Grammian form,
respectively. In section 3, we discuss the 2-reduction of the Hirota–Miwa equation, and in
particular of the dKP to the dKdV equation and of the dpKP to the dpKdV equation (H1 in
the ABS classification [19]). Then, by taking appropriate reductions of the results in section 2,
we derive the Lax pairs for the dKdV and dpKdV equations, and their Darboux and binary
Darboux transformations and exact solutions.

2. Hirota–Miwa equation

2.1. Wronskian and Grammian solutions of the Hirota–Miwa equation

The Hirota–Miwa equation (1.1) is the compatibility condition for the linear system [5, 12]

aiφi − a jφ j = (ai − a j)
τi jτ

τiτ j
φ, (2.1)

for 1 � i < j � 3. It is invariant with respect to the reversal of all lattice directions ni → −ni.
On the other hand, the linear system (2.1) does not have such invariance and the reflections
ni → −ni acting on (2.1) give a new linear system

aiψi − a jψ j = (ai − a j)
τi jτ

τiτ j

ψ, (2.2)
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for all 1 � i < j � 3. The subscript i denotes a backward shift with respect to ni, for
example, ψ1 := ψ(n1 − 1, n2, n3). In [5, 12], the difference form of the Darboux and binary
Darboux transformations were derived for the Hirota–Miwa equation (1.1) and these were used
to construct exact solutions in the form of Casoratian and discrete Grammian determinants.
Here, we will express the Darboux and binary Darboux transformations in differential form
instead, using the lowest order continuous flow x of the KP hierarchy, and then the solutions
obtained will be expressed as Wronskian and (continuous) Grammian determinants. The
differential–difference linear equations for φ and ψ are

φx = aiφi +
((τx

τ

)
i
− τx

τ
− ai

)
φ, (2.3)

and

ψx = −aiψi +
((τx

τ

)
i
− τx

τ
+ ai

)
ψ, (2.4)

where the subscript x denotes the derivative, with τ satisfying the semi-discrete KP equation

(ai − a j)(τi jτ − τiτ j) + τi,xτ j − τiτ j,x = 0. (2.5)

It is straightforward to check that (2.3) and (2.4) are compatible with (2.1) and (2.2). Note that
the reflection symmetry which relates (2.1) and (2.2) may be extended by adding x → −x to
relate (2.3) and (2.4).

The basic Darboux transformation for the Hirota–Miwa equation is stated in the following
proposition.

Proposition 2.1. Let θ be a non-zero solution of the linear system (2.1) and (2.3) for some τ .
Then the transformations

φ → φ̃ = ai(φi − θiθ
−1φ) = φx − θxθ

−1φ, τ → τ̃ = θτ, (2.6)

leave (2.1) and (2.3) invariant, where i = 1, 2, 3.

The proof is a straightforward computation. Note that there are four expressions for φ̃ in
the Darboux transformation (2.6). These are equivalent because of the linear equations (2.1)
and (2.3).

Next we write down the formulae for iterated Darboux transformations, which give
solutions in Wronskian and Casoratian determinant form. The Wronskian determinant is the
determinant of the N × N matrix with columns �

( j) = �
( j)
(x, y, t), for j = 0, 1, . . . , N − 1,

where �
(0) = (θ1(x, y, t), θ2(x, y, t), . . . , θN (x, y, t))T and �

( j) =∂ j�(0)/∂x j. It is written as

W (θ1, θ2, . . . , θN ) = |�(0),�(1), . . . ,�(N−1)|,
or in a more compact notation [25]

W (θ1, θ2, . . . , θN ) = |̂N − 1|.
The Casoratian determinant can be seen as a discrete analogue of the Wronskian determinant.
It is the determinant of the N × N matrix with columns �

( j) = �
( j)
(n1, n2, n3), for

j = 0, 1, . . . , N − 1, where �
(0) = (θ1(n1, n2, n3), θ2(n1, n2, n3), . . . , θN (n1, n2, n3))

T , and
�( j) is defined by the forward shifts, i.e. �( j) = T j

n1 (�
(0)) = �(0)(n1 + j, n2, n3). It is

written as

C(θ1, θ2, . . . , θN ) = |�(0),�(1), . . . ,�(N−1)| = |0, 1, . . . , N − 1| = |̂N − 1|. (2.7)

We can also use �( j), which is defined by the backward shifts, to replace the �( j), where
�( j) = T j

n1
(�(0)) = �(0)(n1 − j, n2, n3).

Below, we use the subscript [i] to designate that the shifts of the Casoratian determinant
are with respect to the variable ni. For example, the Casoratian determinant in (2.7) could be
denoted as C[1] (θ1, θ2, . . . , θN ).
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Proposition 2.2. Let θ1, θ2, . . . , θN be non-zero, independent solutions of the linear system
(2.1) and (2.3) for some τ . Then N applications of the above Darboux transformations give
the transformations

φ → φ[N] = aN
i C[i] (θ1, θ2, . . . , θN, φ)

C[i] (θ1, θ2, . . . , θN )
= W (θ1, θ2, . . . , θN, φ)

W (θ1, θ2, . . . , θN )
, (2.8)

and

τ → τ [N] = a
N(N−1)

2
i C[i] (θ1, θ2, . . . , θN )τ = W (θ1, θ2, . . . , θN )τ, (2.9)

which leave (2.1) and (2.3) invariant. Here C[i] denotes the Casoratian determinant in forward
shifts with respect to the discrete variable ni, for i = 1, 2, 3.

For example, by using the results (2.9), the N-soliton solutions of the Hirota–Miwa
equation can be expressed in both Casoratian and Wronskian form in terms of the
eigenfunctions,

θk(n1, n2, n3) = epkx
3∏

i=1

(
1 + pk

ai

)ni

+ eqkx
3∏

i=1

(
1 + qk

ai

)ni

. (2.10)

Here θk, k = 1, 2, . . . , N, is obtained from (2.1) and (2.3), by choosing the trivial solution
τ = 1.

Now we can apply the reflections ni → −ni and x → −x to the above results to deduce
corresponding results for the second linear system (2.2) and (2.4).

Proposition 2.3. Let ρ be a non-zero solution of the linear system (2.2) and (2.4) for some τ .
Then the transformations

ψ → ψ̃ = ai(ψi − ρiρ
−1ψ) = ψx − ρxρ

−1ψ, τ → τ̃ = ρτ, (2.11)

leave (2.2) and (2.4) invariant, for all i = 1, 2, 3.

In the statement of this proposition the linearity of (2.2) and (2.4) allows us to omit a
minus sign.

Proposition 2.4. Let ρ1, ρ2, . . . , ρN be non-zero, independent solutions of the linear system
(2.2) and (2.4) for some τ . Then N applications of the above Darboux transformations give
the transformations

ψ → ψ[N] = aN
i C

[i]
(ρ1, ρ2, . . . , ρN, ψ)

C
[i]
(ρ1, ρ2, . . . , ρN )

= W (ρ1, ρ2, . . . , ρN, ψ)

W (ρ1, ρ2, . . . , ρN )
, (2.12)

and

τ → τ [N] = a
N(N−1)

2
i C

[i]
(ρ1, ρ2, . . . , ρN )τ = W (ρ1, ρ2, . . . , ρN )τ, (2.13)

which leave (2.2) and (2.4) invariant. HereC[i] denotes the Casoratian determinant in backward
shifts with respect to the discrete variable ni, for i = 1, 2, 3.

The N-soliton solutions of the Hirota–Miwa equation are given by (2.13). From the linear
system (2.2) and (2.4), if we choose the seed solution as τ = 1, then the Casoratian and
Wronskian determinants are defined by eigenfunctions,

ρk(n1, n2, n3) = e−pkx
3∏

i=1

(
1 + pk

ai

)−ni

+ e−qkx
3∏

i=1

(
1 + qk

ai

)−ni

, (2.14)

for k = 1, 2, . . . , N.
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To construct a binary Darboux transformation, we introduce the potential ω = ω(φ,ψ),
defined by the relations

	iω(φ,ψ) = φψi, (2.15)

ωx(φ,ψ) = φψ, (2.16)

where 	i = ai(Tni − 1) and Tni is the forward shift operator in variable ni, for i = 1, 2, 3. If
φ and ψ satisfy the linear systems (2.1), (2.3) and (2.2), (2.4), respectively, then (2.15) and
(2.16) are compatible. So the potential ω is well-defined.

The following proposition gives the binary Darboux transformation of the Hirota–Miwa
equation.

Proposition 2.5. Suppose θ and φ are non-zero solutions of the linear system (2.1) and (2.3),
ρ and ψ are non-zero solutions of the linear system (2.2) and (2.4), then the transformations

φ → φ̂ = φ − θω(θ, ρ)−1ω(φ, ρ), (2.17)

ψ → ψ̂ = ψ − ρω(θ, ρ)−1ω(θ,ψ), (2.18)

leave (2.1), (2.3) and (2.2), (2.4) invariant, respectively, with τ changing to

τ̂ = ω(θ, ρ)τ. (2.19)

The N-fold iteration of the binary Darboux transformation is as follows.

Proposition 2.6. Let θ1, . . . , θN and ρ1, . . . , ρN satisfy the linear systems (2.1), (2.3) and
(2.2), (2.4), respectively. Define N-vectors � = (θ1, . . . , θN )T and P = (ρ1, . . . , ρN )T . Then
N applications of the binary Darboux transformation give the transformations

φ → φ[N] =
∣∣∣∣�(�, P) �

�(φ, P) φ

∣∣∣∣|�(�, P)|−1, ψ → ψ[N] =
∣∣∣∣�(�, P) P
�(�, ψ) ψ

∣∣∣∣|�(�, P)|−1,

(2.20)

which leave (2.1), (2.3) and (2.2), (2.4) invariant, respectively, with τ changing to

τ [N] = |�(�, P)|τ. (2.21)

Here �(�, P) = (ω(θi, ρ j))i, j=1,...,N is an N × N matrix, �(φ, P) = (ω(φ, ρ j)) j=1,...,N and
�(ψ,�) = (ω(θi, ψ))i=1,...,N are N-row vectors.

The proofs of those above propositions are straightforward computation, so we do not
give the details. The reader is also referred to the papers [5, 6, 12].

2.2. The discrete potential KP equation

By introducing a potential v(n1, n2, n3; x) := τx/τ , the semi-discrete equation (2.5) gives the
relation

ui j = τi jτ

τiτ j
= v j − vi + (ai − a j)

ai − a j
, 1 � i < j � 3, (2.22)

for v each subscript i denotes a forward shift in the corresponding discrete variable ni. So
(1.3a) is satisfied identically, and (1.3b) becomes

v2 − v1 + a1 − a2

(v2 − v1 + a1 − a2)3

= v3 − v1 + a1 − a3

(v3 − v1 + a1 − a3)2

= v3 − v2 + a2 − a3

(v3 − v2 + a2 − a3)1

. (2.23a)

5
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The equation (2.23a) can be written in two other equivalent forms as either

(v2 − v1 + a1 − a2) (v23 − v12 + a1 − a3) = (v3 − v1 + a1 − a3) (v23 − v13 + a1 − a2) ,

(2.23b)
or

(a3 + v12)(a1 − a2 + v2 − v1) + (a2 + v13)(a3 − a1 + v1 − v3)

+ (a1 + v23)(a2 − a3 + v3 − v2) = 0. (2.23c)

Equation (2.23) is called the dpKP equation. It was first found in [24] as the nonlinear
superposition of solutions to the potential KP equation related by the Bäcklund transformations
[24]. The trivial solution of the dpKP equation (2.23) could be v = c, where c is an arbitrary
constant.

The linear systems associated with the dpKP equation, obtained by using relations (2.1)
and (2.2), together with (2.22), are

aiφi − a jφ j = (v j − vi + ai − a j)φ, (2.24)

and

aiψi − a jψ j = (v j − vi + ai − a j)ψ, (2.25)

where 1 � i < j � 3. Its corresponding differential–difference linear systems are (2.3) and
(2.4) with τx/τ = v.

Together with the differential–difference linear system (2.3), the Darboux transformation
of the linear system (2.24) gives a new solution of the dpKP equation

ṽ = (log(θτ ))x = v + (log θ )x,

where θ is a non-zero solution of (2.24) and (2.3). More generally, N-fold iteration gives the
Wronskian solution

v[N] = v + (logW (θ1, θ2, . . . , θN ))x,

where θk, k = 1, 2, . . . , N are the non-zero independent solutions of (2.24) and (2.3).
The binary Darboux transformation gives a new solution of the dpKP equation

v̂ = v + (log ω(θ, ρ))x,

where ω(θ, ρ) is defined by (2.15) and (2.16), and θ , ρ are non-zero solutions of (2.24), (2.3)
and (2.25), (2.4), respectively. Its N-fold iteration gives the Grammian solution

v[N] = v + (log |�(�, P)|)x,

where the N × N matrix �(�, P) = (ω(θi, ρ j))i, j=1,...,N , ω(θi, ρ j) is defined by (2.15) and
(2.16), and θi, ρ j are non-zero solutions of (2.24), (2.3) and (2.25), (2.4), respectively.

3. Reductions to the dKdV and dpKdV equations

3.1. The dKP equation to the dKdV equation

The discrete KdV (dKdV) equation is a 2-reduction of the dKP equation (1.3a). In the reduction,
it is necessary that one takes a2 + a3 = 0, since the solutions satisfy the reduction condition
τ23 = τ , cf [3, 10]. The reduction condition for the eigenfunction of the linear system (2.1) and
(2.3) is φ23 = (1 − λ2)φ, where the form of the coefficient is chosen for its correspondence
with the discrete one-dimensional Schrödinger equation [26, 27]. To realise this reduction, we
make the ansatz

τ (n1, n2, n3) = τ (n1, n2 − n3) (3.1)

φ(n1, n2, n3) = (1 − λ2)n3φ(n1, n2 − n3). (3.2)

6
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Now taking the reduction conditions, the dKP equation (1.3a) can be written as either

(a2 − a1)
τ12τ

τ1τ2
+ (a2 + a1)

τ12τ

τ1τ2

= 2a2
τ

τ2

τ

τ2
, (3.3a)

or

(a2 − a1)
τ1τ2

τ12τ
+ (a2 + a1)

τ1τ2

τ12τ
= 2a2

τ1

τ12

τ1

τ12
. (3.3b)

We then express the above two equations in terms of nonlinear variable

u(n1, n2) := τ1τ3

τ13τ
= τ1τ2

τ12τ
. (3.4)

By eliminating the tau-function parts on the right-hand sides in both (3.3a) and (3.3b), we
obtain

1

u1
− 1

u2
= a1 − a2

a1 + a2
(u12 − u) , (3.5)

which is the discrete KdV equation, first found by Hirota [17].
From the linear system (2.1) and using the 2-reduction, we get the linear system of the

dKdV equation

a1φ1 − a2φ2 = (a1 − a2)u2φ, (3.6a)

a1φ1 + a2(1 − λ2)φ2 = (a1 + a2)
1

u
φ. (3.6b)

Note here that, by eliminating the φ1 in these two equations, we have

a2φ2 + a2(1 − λ2)φ2 =
(

(a2 − a1)u2 + (a2 + a1)
1

u

)
φ,

which is a discrete one-dimensional Schrödinger equation [26, 27].
The dKdV equation (3.5) is also invariant with respect to the reflections ni → −ni, for

i = 1, 2. So applying the reflections to the system (3.6) gives a new linear system of the dKdV
equation

a1ψ1 − a2ψ2 = (a1 − a2)u2ψ, (3.7a)

a1ψ1 + a2(1 − λ2)ψ2 = (a1 + a2)
1

u
ψ. (3.7b)

This system could also be obtained from the linear system (2.2), by using the 2-reduction
τ23 = τ , and ψ23 = (1 − λ2)ψ with a2 + a3 = 0.

For the linear differential–difference equations (2.3) and (2.4), the 2-reduction does not
affect the n1- or n2- parts, but the n3-parts become

φx = −a2(1 − λ2)φ2 +
((τx

τ

)
2
− τx

τ
+ a2

)
φ, (3.8)

ψx = a2(1 − λ2)ψ2 +
((τx

τ

)
2
− τx

τ
− a2

)
ψ. (3.9)

The fundamental Darboux transformation for the dKdV equation is

Proposition 3.1. Suppose θ is a non-zero solution of the linear system (3.6) and (3.8) for some
u and τ , together with u = τ1τ2/τ12τ , then the transformations

φ → φ̃ = ai(φi − θiθ
−1φ) = φx − θxθ

−1φ, i = 1, 2, (3.10a)

and

τ → τ̃ = θτ, u → ũ = u
θ1θ2

θ12θ
, (3.10b)

leave (3.6) and (3.8) invariant.

7
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Proof. One way to complete the proof is a straightforward computation. A second way is
using the idea that the Darboux transformation of the dKP equation in the proposition 2.1 also
works for the dKdV equation after taking the 2-reduction. From the linear system (3.6), φ and
θ are its solutions, so we have

ai(φi − θiθ
−1φ) = −a2(1 − λ2)(φ 2 − θ 2 θ−1φ), (3.11)

for i = 1, 2. On the other hand, the 2-reduction gives

a3(φ3 − θ3θ
−1φ) = −a2(1 − λ2)(φ 2 − θ 2 θ−1φ). (3.12)

For the potential u, we have

ũ = τ̃1τ̃ 2

τ̃12τ̃
= u

θ1θ 2

θ12 θ
.

So together with the transformation in (2.6), it means that after taking 2-reduction, the
transformations (3.10) leave the linear system (3.6) and (3.8) invariant. �

Similarly, by using the reflections ni → −ni and x → −x, or the 2-reduction of
the Darboux transformation of the dKP equation in proposition 2.3, we get the Darboux
transformation of the linear system (3.7) and (3.9).

Proposition 3.2. Suppose ρ is a non-zero solution of the linear system (3.7) and (3.9) for some
u and τ , together with u = τ1τ2/τ12τ , then the transformations

ψ → ψ̃ = ai(ψi − ρiρ
−1ψ) = ψx − ρxρ

−1ψ, i = 1, 2, (3.13a)

and

τ → τ̃ = ρτ, u → ũ = u
ρ1ρ2

ρ12ρ
, (3.13b)

leave (3.7) and (3.9) invariant.

Similarly, in the light of the reductions, the binary Darboux transformations of the dKdV
equation can also be obtained directly from the one in proposition 2.5. Thus the results of the
N-applications of the Darboux and binary Darboux transformations for the dKdV equation
can be gotten from the ones in propositions 2.2, 2.4 and 2.6. For this reason, we will not go to
talk about them in detail here.

3.2. The dpKP equation to the dpKdV equation

Here again we use the 2-reduction, v23 = v and a2 +a3 = 0. Now by introducing the potential
v(n1, n2; x) := τx/τ into (2.22), we get

(a1 − a2)u2 = v2 − v1 + a1 − a2, (3.14a)

(a1 + a2)
1

u
= v 2 − v1 + a1 + a2. (3.14b)

By eliminating the potential u from (3.14), we obtain

(v2 − v1 + a1 − a2)(v − v12 + a1 + a2) = a2
1 − a2

2. (3.15)

This is the dpKdV equation [18], and we see that its solution can be written as v = (log τ )x.
The dpKdV equation could also be obtained by the permutability property of the Bäcklund
transformations of the continuous potential KdV equation, cf [18]. Taking the potential
transformation v → v + a1n1 + a2n2 + γ , where γ is an arbitrary constant, (3.15) becomes

(v2 − v1)(v − v12) = a2
1 − a2

2, (3.16)

which is called the H1 equation [19].
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By taking the 2-reduction, the linear system of the dpKP equation (2.24) and (2.25) give
the Lax pairs of the dpKdV equation (3.15),

a1φ1 − a2φ2 = (v2 − v1 + a1 − a2)φ, (3.17a)

a1φ1 + a2(1 − λ2)φ 2 = (v 2 − v1 + a1 + a2)φ, (3.17b)

and with reflections ni → −ni, this also gives

a1ψ1 − a2ψ 2 = (v 2 − v1 + a1 − a2)ψ, (3.18a)

a1ψ1 + a2(1 − λ2)ψ2 = (v2 − v1 + a1 + a2)ψ. (3.18b)

Their corresponding differential–difference linear systems are (2.3) and (2.4) with
τx/τ = v, for i = 1, 2, respectively. Note here that the Lax pair (3.17) is not the same as but
can be transformed into the one derived from the multidimensional consistency property, cf
[28–30], by using appropriate parameters transformations, such as r = a2λ.

As we showed for the dpKP equation, the Darboux transformation gives the new solution
of the dpKdV equation in differential form,

ṽ = v + (log θ )x,

where θ is the non-zero solution of (3.17) and (2.3). Its N-fold iteration gives the solution in
Wronskian form

v[N] = v + (logW (θ1, θ2, . . . , θN ))x, (3.19)

where θk, for k = 1, 2, . . . , N, are the non-zero solutions of (3.17) and (2.3).
The soliton solutions of the dpKdV equation (3.15) can be obtained from (3.19). From

the linear system (3.17) and (2.3), by choosing the seed solution v = 0, the eigenfunctions of
the τ -function in Wronskian determinant are

θk(n1, n2) = ea2λk x(1 + λkβ)n1 (1 + λk)
n2 + e−a2λk x(1 − λkβ)n1 (1 − λk)

n2 , β = a2

a1
,

for k = 1, 2, . . . , N. This result coincides with the one given by Hietarinta and Zhang [29]. In
their paper, they employed f = |̂N − 1| and g = |̂N − 2, N|, which were given as Casoratian
determinants with respect to an auxiliary discrete variable. This auxiliary variable is compatible
with the original independent variables, n1 and n2, but is external to the system. We will denote
this auxiliary variable to be n4 here. Then for an arbitrary constant c, v = g

f + c satisfies the
dpKdV equation (3.15). f and g in Casoratian determinants in compact form are

f = |̂N − 1| = ∣∣φ, Tn4 (φ), T 2
n4

(φ), . . . , T N−1
n4

(φ)
∣∣,

and

g = |̂N − 2, N| = ∣∣φ, Tn4 (φ), T 2
n4

(φ), . . . , T N−2
n4

(φ), T N
n4

(φ)
∣∣,

where φ = φ(n1, n2, n4, x) and T j
n4 (φ) = φ(n1, n2, n4 + j, x), j = 0, 1, . . . , N. Similarly, τ

and τx in Wronskian determinants are

τ = |̂N − 1| = ∣∣φ, ∂xφ, ∂2
x φ, . . . , ∂N−1

x φ
∣∣,

and

τx = |̂N − 2, N| = ∣∣φ, ∂xφ, ∂2
x φ, . . . , ∂N−2

x φ, ∂N
x φ

∣∣.
So for the linear systems (3.17) and (2.3) with τx/τ = v, we could also introduce a virtual
discrete variable n4, say, which is another compatible discrete flow, with parameter a4. If we
choose the seed solution of the dpKdV equation v = 0, then the differential–difference linear
system (2.3), with respect to the discrete variable n4, gives the entries of the above Wronskian
and Carsoratian determinants satisfying the relations

φx = a4(Tn4 − 1)(φ),

9
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and

∂N
x φ = aN

4 (Tn4 − 1)N (φ).

So we have

τ = a
N(N−1)

2
4 f , τx = a

N(N−1)

2 +1
4 (g − N f ).

By taking a4 = 1, the soliton solution of the dpKdV equation is

v = (log τ )x = τx

τ
= g

f
− N.

So if the soliton solution of the dpKdV equation is expressed in Wronskian determinant, by
using a compatible continuous variable, then it needs to employ τ and its derivative τx. If it
is expressed in Casoratian determinant, through a virtual discrete variable n4, then it needs to
employ f and g. But there is no direct relation between f and g.

The binary Darboux transformation gives the exact solution of the dpKdV equation,

v̂ = v + (log ω(θ, ρ))x,

where ω(θ, ρ) is defined by (2.15) and (2.16), and θ , ρ are non-zero solutions of (3.17), (2.3)
and (3.18), (2.4), respectively, with τx/τ = v. Its N-fold iteration gives the exact solution in
Grammian form,

v[N] = v + (log |�(�, P)|)x,

where the N × N matrix �(�, P) = (ω(θi, ρ j))i, j=1,...,N , ω(θi, ρ j) is defined by (2.15) and
(2.16), and θi, ρ j are non-zero solutions of (3.17), (2.3) and (3.18), (2.4), respectively, with
τx/τ = v.

4. Conclusions

In this paper, we have revisited the Darboux and binary transformations of the Hirota–Miwa
equation given in [5, 6] not only in difference form in a more general case, including the lattice
parameters ai, but also in differential form [22, 23]. These allow one to obtain solutions of the
Hirota–Miwa equation in both Casoratian and Wronskian forms, and as discrete and continuous
Grammians as well. It is straightforward to obtain corresponding results for reductions of the
Hirota–Miwa equation. In this paper we do this for the dKdV and dpKdV equations. The
Lax pair obtained by reductions are not the same as the ones given by the multidimensional
consistency property, and allow the application of the classical Darboux transformations
[22, 23]. We find that the Hirota–Miwa equation can be written in ‘nonlinear’ form in two
distinct ways: as the discrete KP equation in terms of the variable ui j = τi jτ/τiτ j and, by using
a compatible continuous variable x, as the discrete potential KP (dpKP) equation in variable
ui j = (v j − vi + (ai − a j))/(ai − a j), where v = (log τ )x. This leads us to see clearly the
relationship between the dKP and dpKP equations, which is similar to the relationship u = vx

in the continuous case. Thus we understand better the form of the Casoratian solutions to the
H1 equation in [29], and it will be helpful in future to deal with other members in the ABS
list, such as the H2 equation.
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