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Discontinuous bifurcation and coexistence of
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Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor

coexists successively with chaotic band-11, period-6, chaotic band-12 and band-6 attractors. They are induced by dif-

ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary

collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.
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1. Introduction

Recently, there has been a considerable inter-
est in the dynamics of piecewise continuous maps
with gaps.[1−5] The reason lies in the fact that they
can describe many practical systems that often dis-
play certain kinds of catastrophes, crises, or ex-
treme events. These systems may include models of
nerve cells or cardiopathy,[6−8] relaxation and impact
oscillators,[4,5,9−13] relay control systems,[14] DC-DC
converters,[14−18] and many others. The discontinu-
ities in a map divide the phase space into individual
zones of different dynamical features. The interactions
among them may trigger dynamical phenomena with
new characteristics. The bifurcations induced by the
discontinuity which show new characteristics are gen-
erally addressed as border-collision bifurcations.[19,20]

The situation becomes more complicated when the
discontinuity and the non-invertibility emerge si-
multaneously in a system. The interplay between
these two properties can produce very different be-
haviours compared with those observed in systems
that are smooth everywhere. Two of us (He and
Qu) and co-workers have studied some relaxation
oscillators[11−13,21−27] and presented a detailed de-
scription of an electronic relaxation oscillator in
Ref.[11]. The interesting phenomena observed in these
systems include type V intermittencies,[11,21] crises in-

duced by collision of attractors with discontinuities or
mapping holes,[23−25] multiple Devil’s staircases,[26,27]

coexistence of attractors,[12,22] and many others.[28,29]

In this paper, we report our observation on a se-
ries of characteristic coexistence of a period-5 orbit
with different types of attractors (periodic or chaotic
attractors). Section 2 shows the model and system
employed in the work. The results and discussion
are presented in Section 3, and the conclusions drawn
from this work are given in Section 4.

2. Model and system

The model employed in this work is a both discon-
tinuous and non-invertible piecewise linear map. It is
a simplified model for a relaxation oscillator, in which
a hole-induced crisis[11,23−25] was observed. The map-
ping function reads

xn+1 = fi(xn) = ki · xn + bi mod 1 (1)

where i=1,2,3,4, and

k1 =
yb − yA

xb − xA
, b1 = yA, x ∈ [xA, xb];

k2 =
yC − yb

xg − xb
, b2 = yb − k2xb, x ∈ [xb, xg];

k3 = constant, b3 = constant, x ∈ [xg, xF];

k4 = constant, b4 = constant, x ∈ [xF, xG]
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with yb = b1 − µ, where µ is selected as the control
parameter. The values of the other parameters are
selected as yA = 0.0203921, yC = 0.460000, yG = yA,
xA = 0, xb = 0.107663, xg = 0.350000, xF =
0.497121, xG = 1, k3 = 3.07055, b3 = −0.530165,
k4 = 0.405507, and b4 = −0.201586.

3. Results and Discussion

First of all, the bifurcation diagram for parameter
µ ∈ [0.025, 0.065] is investigated and plotted in Fig.1.
It demonstrates that a stable period-5 (P-5) attractor
coexists, in turn, with other types of attractors, i.e.

µc1 ≤ µ < µc2 : coexisting with band-11 chaos;

µc3 ≤ µ < µc4 : coexisting with P-6;

µc4 ≤ µ < µc5 : coexisting with band-12 chaos;

µc5 ≤ µ < µc6 : coexisting with band-6 chaos;

µc6 ≤ µ : no coexistence

with µc1 = 0.02879, µc2 = 0.03040, µc3 = 0.03952,
µc4 = 0.04506, µc5 = 0.05011, µc6 = 0.05114.

Fig.1. Bifurcation diagram.

In order to describe the occupation status of the
basin of the P-5 attractor, we define the phase space
volume fraction

vP5 =
NP5

N0
(2)

by tracking N0 independent iteration sequences with
their initial trajectories randomly selected in the phase
space. Here, NP5 is the number of sequences in which
the trajectories are attracted to the P-5 orbit. The de-
pendences of the volume fraction of the P-5 attractor
and the Lyapunov exponent on the control parameter

µ are plotted in Fig.2. They exhibit very good corre-
spondence with the bifurcation diagram. The mecha-
nisms that induce and destroy these coexistences are
explained in the following subsections.

Fig.2. Volume fraction and Lyapunov exponent, where

the solid line denotes the volume fraction of the basin of

the P-5 attractor, and the dashed line represents the Lya-

punov exponent.

3.1.Mapping hole due to discontinuity

As one can see in Fig.3, there is a gap at xg which
defines a forbidden zone,[12] and an overlap range be-
tween yA and yb. The former defines the disconti-
nuity, and the latter the non-invertibility. The min-
imum (xb, yb) of the mapping function and its first-
to fourth-fold backward images at images at f−1(xb),
f−2(xb), f−3(xb) and f−4(xb), respectively, deter-
mine the five minima in the corresponding 5-fold map-
ping f5(x) (we only marked two of these positions,
i.e., xb and f−1(xb), by the dashed lines in the fig-
ure). The minima are important for analysing the
appearance and the disappearance of the attractors
coexisting with the P-5.

Fig.3. Schematic plot of the mapping hole, where the

thick lines represent the mapping function, the thick grey

lines show the 5-fold map, the dashed lines connect xb and

its first-fold backward images, the dotted lines connect the

trivial backward-images of xg, and the dash-dotted lines

confine the two holes.
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xg and its backward images via branches BC, FG
and DE, i.e. f−1(xg), f−2(xg), f−3(xg) and f−4(xg),
are connected via the dotted lines. They divide the
phase space into five zones, and in each of them, one
piece of the 5-fold map is defined. We call the discon-
tinuities (gaps) appearing at these points the trivial
ones. There are still two other 3-fold backward images
of xg since f−2(xg) falls in the overlap range. They
are f−3(xg)1 ≡ f−1

1 f−2
2 (xg) and f−3(xg)2 ≡ f−3

2 (xg),
marked respectively by ‘(1)’ and ‘(2)’ around xb in
the figure. Their 4-fold counterparts are f−4(xg)1 and
f−4(xg)2, positioned around f−1(xb) and also marked
by ‘(1)’ and ‘(2)’, respectively. The 5-fold mapping at
positions f−3(xg)1 and f−3(xg)2 produces a pair of
gaps of the same size. The small piece of the map be-
tween them is then cut off by them and falls downward
to form the first hole around xb. Similarly, the pair of
gaps positioned at f−4(xg)1 and f−4(xg)2 gives rise
to the second hole at the bottom of the 5-fold map
around the minimum at f−1(xb). Thus, we have al-
together two holes due to the interaction between the
discontinuity and the non-invertibility, which often in-
duces new phenomena in the mapping systems of this
kind.[21−29] The crisis reported in Ref.[23] appears at
µ = 0.0565359 (see the bifurcation diagram), which
is the result of the collision between a band-6 chaotic
attractor and a hole in the 6-fold map. In the cur-
rent work, however, the mapping holes serve as the
mechanism for the coexistence of attractors.

Before going further, we need to analyse the sta-
bility condition for the P-5 orbit (the intersections be-
tween the 5-fold map and the diagonal in Fig.3), which
is defined by the fixed-points equation

f2
2 f1f3f4(x∗) = x∗. (3)

The stability condition reads

∣∣k1k
2
2k3k4

∣∣ < 1, (4)

which holds in the entire parameter range of Fig.1.
Unfortunately, the P-5 orbit is no longer allowed when
it collides with the boundary of the forbidden zone.
The critical parameter µc6 is calculated from the cri-
terion

x∗ = x+
g , (5)

where the superscript ‘+’ implies that the P-5 trajec-
tory x∗ collides with xg from the right side.

3.2.Coexistence of P-5 and chaotic

band-11 attractors

The appearance or the disappearance of the holes
depends on µ. The backward images of xg in Fig.3 is
single valued as µ < µc1 , where yb > f−2(xg); thus,
the holes disappear. We have only the trivial disconti-
nuities intersecting the diagonal at f−3(xg), f−2(xg),
f−1(xg), xg and f−4(xg), respectively. They serve
as repellers of iterates, just like unstable fixed points,
and may be viewed as the boundary of the basin of the
P-5 attractor. We can analytically prove that the cor-
responding minima at xb, f−4(xb), f−3(xb), f−2(xb)
and f−1(xb) are higher than the intersections between
the diagonal and these trivial discontinuities. There-
fore, the trajectories passing through the small pieces
of the phase space near these minima will be definitely
attracted to a neighbouring stable fixed point, i.e. the
P-5 orbit. Consequentially, the basin of the P-5 at-
tractor occupies the entire phase space. The opposite
tendency appears when µ > µc1 , where yb ≤ f−2(xg)
in Fig.4. Two holes then appear

Fig.4. The 5-fold map for µ = 0.02950, where the P-5 at-

tractor is marked by the circles, and the coexisting chaotic

band-11 attractor is shown by the grey line. The former is

obtained by the iteration with initial trajectory x0 = 0.04,

but the latter with x0 = 0.76.The first 106 iterations are

dropped to avoid transients in each case.

in the 5-fold map; however, the P-5 orbit remains
stable. The nontrivial discontinuities corresponding
to the two holes intersect the diagonal at f−3(xg)1,
f−3(xg)2, f−4(xg)1 and f−4(xg)2, and behave like un-
stable fixed points. The trajectories passing through
the small pieces of phase space near the minima will
no longer be attracted to the original P-5 attractor,
but escape through the holes. Therefore, part of phase
space is cut out of the original basin of the P-5 attrac-
tor and left for another attractor. In this case, a band-
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11 chaotic attractor appears in the cut off portion, as
shown by the grey lines in Fig.4. The coexistence of
the P-5 and the band-11 attractors is then observed.
The basin of this new attractor is expressed analyti-
cally as

B ≡ lim
n→∞

n∑

i=1

f−i
[
f−3(xg)2 − f−3(xg)1

]
. (6)

Obviously, the boundary between the basins of
the two attractors is intertwined. The basin of this
chaotic attractor expands when µ increases, and so
does the attractor itself. The volume fraction of the
basin of the P-5 orbit thus decreases, and this is shown
in Fig.2 by vP5. When µ is close to the second crit-
ical point µc2 , the decrease of the volume fraction of
the basin of the P-5 orbit and the increase of the Lya-
punov exponent of the system slow down as shown by
the inset in Fig.2. The magnitude of the slope of the
former decreases by about 50%, but that of the latter
is only about 32%, if we can approximate their varia-
tions by linear relations. This means that the expand-
ing of the basin of the chaotic attractor is slower than
that of the attractor itself. Therefore, at the critical
point µc2 , the trajectories from the chaotic attractor
run into the basin of the P-5 attractor and are thus
attracted by the latter. The volume of the basin of
the chaotic attractor shrinks to zero. The coexistence
dies out, and thus the basin of the P-5 attractor ex-
clusively occupies the entire phase space again. The
criteria for this collision can be easily found in Fig.4,
i.e. the 10-fold image of the minimum positioned at
xb is lower than the intersection between the diagonal
and the left boundary of the second hole. Therefore,
the critical parameter µc2 is determined by solving the
following equation:

f3f
3
2 f4f3f

4
2 (xb) ≤ f−4(xg)1. (7)

3.3.Coexistence of P-5 and P-6

The coexisting of the P-5 and the P-6 attractors
occurs when µ tends to the third critical point µc3 . To
clearly show the mechanism, we plot the 6-fold map
for µ = µc3 in Fig.5, where the bottom tips, i.e. the
six minima of the 6-fold mapping function collide with
the diagonal. The critical condition can be simply cal-

culated from

f4f3f
4
2 (xb) = xb. (8)

Fig.5. The 6-fold map for µ = µc3 , where the P-5 tra-

jectories are marked by the grey line, the initial trajec-

tory is x0 = xg, and the first 106 are dropped to avoid

transients. The coexisting P-6 attractor is shown by the

contact points between the six minima and the mapping.

As one can see, there are six V-type valleys in the
figure. When µ > µc3 , each of the six valleys inter-
sects the diagonal at a stable fixed point, x∗M, on the
left side of the minimum and an unstable one, x∗u, on
the right side. This bifurcation is similar to a tangent
bifurcation but cannot be classified into it because the
mapping function is not smooth at these minima, and
their tangents are not defined. The equations of the
fixed points and the derivatives of the local mapping
at these points can be easily derived due to the piece-
wise linear property of the map. We only list the ones
for the right most valley, i.e.

x∗M =
∑7

n=0 pM
n µn

∑7
n=0 qM

n µn
, f ′[x∗M] = k1k

3
2k3k4 < 0;

x∗u =
∑7

n=0 pu
nµn

∑7
n=0 qu

nµn
, f ′[x∗u] = k4

2k3k4 > 0. (9)

The coefficients in these equations are listed in
Table.1. Clearly, the left fixed point is stable but
the right one is unstable. The variations of these
fixed points versus the control parameter are shown
in Fig.6. One finds that the two fixed points ap-
proach each other as µ decreases from µc4 . They col-
lide with each other to form a tip when µ reaches
µc3 , and then the stable one loses stability simulta-
neously. The two fixed points have different deriva-
tives at µ = µc3 . This bifurcation is a kind of border-
collision bifurcation,[19,20] and can also be catalogued
as discontinuous fold bifurcation.[30,31]
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Table 1. The coefficients for Eq.(9).

n pM qM pu qu

0 7.38778×10−3 6.79588×10−3 6.11490×10−3 3.48748×10−2

1 –1.93212×10−1 –1.15769×10−1 1.32591 4.60718×10−1

2 –1.92365 –2.96562 –36.8405 –44.1910

3 –18.7600 –47.3912 –567.901 –532.971

4 –138.042 –342.578 –3202.36 –2698.45

5 –532.553 –1215.86 –9204.79 –7262.84

6 –998.653 –2125.10 –13665.4 –10343.4

7 –740.590 –1489.76 –8362.02 –6147.47

Fig.6. Discontinuous bifurcations for the local map, where

parameters ‘u’ and ‘M’ denote the fixed points xu and xM,

and ‘L’ and ‘R’ represent the fixed points xL and xR, re-

spectively.

3.4.Coexistence of P-5 and chaotic

band-12 attractors

The last nontrivial coexistence appears at µc4

where the P-6 attractor previously coexisting with the
P-5 abruptly transits into a band-12 chaos, but the
P-5 attractor remains stable (see Fig.1). The mecha-
nism can be easily understood by a 12-fold mapping in
which there are twelve equivalent valleys intersecting
the diagonal. We can analytically obtain this map.
Only the key portion of the right most valley is drawn
in Fig.7 for three different control parameters near
the critical value. When µ < µc4 , the straight line
connecting points A and B in Fig.7(a) intersects the
diagonal at x∗M, a stable fixed point. The line coin-
cides with the diagonal when µ = µc4 , and thus we
have an infinite number of fixed points bounded by
end points A and B in Fig.7(b). Those two ends are
also the intersections between the diagonal and lines
DA and BC. They are two fixed points, denoted by
x∗L and x∗R, respectively. The periodic doubling bifur-
cation here produces two fixed points separated by a

non-zero distance. We emphasize that these two fixed
points are intrinsically unstable. They lose stability
immediately after an infinitesimal increase of µ from
the critical value µc4 . Figure 7(c) displays that the
fixed points are unstable when µ ≥ µc4 . Hence, one
cannot observe any period-12 orbit but for a band-12
chaos. This coexistence ends up with the coexistence
of the P-5 and the chaotic band-6 attractors when
µ ≥ µc5 .

Fig.7. 12-fold map to display the rectangular-fork

bifurcation, where (a) µ = 0.0398 < µc4 , xn−axis :

[0.7580, 0.7642], xn+12−axis : [0.7580, 0.7642]; (b)

µ = µc4xn−axis : [0.6820, 0.7920], xn+12−axis :

[0.6820, 0.7920]; (c) µ = 0.0500 > µc4 , xn−axis :

[0.6060, 0.8200], xn+12−axis :[0.6060, 0.8200].

The control parameter dependence of the three
fixed points, x∗M, x∗L and x∗R, corresponding to the
above mentioned bifurcation that induces the direct
transition from a P-6 to a chaotic band-12 attrac-
tor is plotted in Fig.6. It shows a very different
kind of periodic doubling bifurcation from the con-
ventional ones,[32] in which the ‘newly born’ fixed
points are separated from each other by a non-zero
distance as the control parameter goes beyond its criti-
cal value. Nevertheless, the Lyapunov exponent of the
system changes discontinuously at this critical point
(see Fig.2). The new fixed points emerging after this
bifurcation could, in general, be either stable or un-
stable. However, both of them are unstable in the
current work. This bifurcation can, of course, be clas-
sified as a discontinuous bifurcation[30] in the sense
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that the number of the fixed points or the Jacobian of
the map undergoes a discontinuous change when the
control parameter passes through the critical value.
Yet we employ ‘discontinuous’ here to emphasize the
non-zero-distance separation of the newly born fixed-
points pair in the phase space.

Considering the fact that A and B are the bound-
aries of the local map, this bifurcation scenario can
also be viewed as a periodic doubling bifurcation im-
mediately followed by a boundary-collision bifurca-
tion. It is a particular subclass of the boundary-
collision bifurcation. This behaviour is very similar
to the bifurcations observed in DC-DC converters [2,3]

and two-block stick-slip systems,[32] where a conven-
tional periodic doubling occurs when a stable fixed
point loses stability, producing a period-2 orbit; the

system bursts into chaos when this periodic orbit col-
lides with the non-smooth boundary.

4. Conclusions

We have found that a stable period-5 attractor
coexists with a sequence of chaotic and periodic at-
tractors. The interplay between the discontinuity and
the non-invertibility is responsible for these charac-
teristic coexistence phenomena. The mechanisms for
their emerging and vanishing are discussed and anal-
ysed in detail. The critical parameters are calculated
both analytically and numerically, and the agreement
is excellent. A characteristic bifurcation, is observed.
It provides a particular case for the boundary collision
bifurcations.
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