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Abstract — Maximum likelihood linear regres-

sion (MLLR) transforms have proven useful for text-

independent speaker recognition systems. These systems

use the parameters of MLLR transforms as features for

SVM modeling and classification. In this paper, we focus

on calculating affine transforms based on a GMM Universal

background model (UBM). Rather than estimating trans-

forms using maximum likelihood criterion, we propose to

use Maximum a posteriori linear regression (MAPLR) for

feature extraction. This work is enriched by a multi-class

technique, which clusters the Gaussian mixtures into re-

gression classes and estimates a different transform for

each class. The transforms of all classes are concatenated

into a supervector for SVM classification. Besides, a fur-

ther accuracy boost is obtained by combining supervectors

derived from both female and male UBMs into a larger

supervector. Experiments on a NIST 2008 SRE corpus

show that the MAPLR system outperforms MLLR and

the multi-class approaches can also bring significant gains.
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I. Introduction

Support vector machine (SVM) has become a popular and

useful tool for speaker recognition. In any SVM based speaker

recognition system, it is important to choose an appropriate

SVM feature expansion, which maps a given utterance to a

feature vector in a high-dimensional space for SVM classifica-

tion.

Maximum likelihood linear regression (MLLR) is a com-

monly used speaker adaptation approach. The primary

goal here is to capture the speaker-independent to speaker-

dependent difference (in the form of an affine transform). The

concatenation of the transformation parameters can be seen

as a kind of mapping from the given utterance to a high-

dimensional space. A system proposed in Ref.[1] first uses

the MLLR transforms employed in speech recognition systems

as the features for SVM based speaker recognition. However,

this approach typically requires the use of large-vocabulary

word recognition systems, and the computational Complex-

ity is extraordinarily high. Another system uses Constrained

MLLR (CMLLR) to adapt the means of a GMM UBM to a

given utterance, and uses the entries of the transform as fea-

tures for SVM classification[2] . MLLR in a GMM framework is

also introduced for the task of speaker recognition in Ref.[3],

which outperforms CMLLR and is useful for the system fu-

sion. Besides, the approach in Ref.[4] groups the adaptation

data based on broad phonetic classes into multiple classes in

order to get multi-class transforms. This method can improve

the performance of the MLLR system significantly.

In MLLR, parameters are estimated with the Maximum

likelihood (ML) criterion, which is well known for its poor

asymptotic properties. It may encounter numerical problems

when the adaptation data is insufficient[5]. A possible solu-

tion to this problem is to introduce some constraints on the

possible values of the transformation parameters. Maximum a

posteriori linear regression (MAPLR)[6] is such an adaptation

approach, which inserts the priori information of the trans-

forms in the estimation process using Maximum a posteriori

(MAP) as the estimation criterion to derive the transformation

parameters η:

η̂ = arg max
η

p(η|X, λ) = arg max
η

p(X|λ, η)p(η) (1)

where p(η) is the priori distribution of the parameters η, X

is the adaptation features and λ represents the speaker-

independent model.

MAPLR can generate transforms showing better adapta-

tion performance than MLLR. In this study, we use MAPLR

for SVM based speaker recognition, and introduce it into a

GMM framework which avoids the need for transcripts. The

transformation parameters are estimated based on a GMM

UBM and concatenated into supervectors for SVM classifica-

tion. Then, a multi-class MAPLR is proposed to improve the

performance. Rather than using phonetic recognition, the pro-

posed multi-class approach clusters the mixtures of UBM into

classes based on a likelihood measure. For each class, a single

transformation matrix is estimated using the mixtures within

it. All the adaptation transforms of all mixture classes are

concatenated into a single feature vector and modeled using

SVMs.

A further improvement for the proposed multi-class
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MAPLR technique is also presented, which calculates trans-

forms relative to multiple UBMs. In our study, we process all

speakers with both male and female UBMs, and get two kinds

of supervectors for each utterance, one of which is based on

the male UBM, and another based on the female UBM. These

two kinds of supervectors are also concatenated into a larger

supervector for SVM modeling and scoring.

II. MAPLR for Speaker Recognition

1. Model transformation function

In MAPLR adaptation, the mean vectors of the Gaussian

mixtures are also adapted using an affine transform as MLLR:

μ̂m = Aμm + b = Wξm (2)

where μm is the mean vector of the UBM, μ̂m is the adapted

mean vector and ξm is the extended mean vector, defined as

ξm = (μm, 1). Thus, the transformation parameters can be

denoted by η = {A, b} = {W}.
We first assume that all the mean vectors share the same

transform. Given some adaptation data of a hypothesized

speaker, X = {x1, x2, · · · , xT }, the objective of the MAPLR

for speaker recognition is to derive an affine transform η using

a MAP estimation criterion as described by Eq.(1).

2. Definition of the auxiliary function

Commonly, the maximization of Eq.(1) cannot be car-

ried out directly. The maximization problem is tradition-

ally addressed by solving an auxiliary and simpler problem

having the same solution, using the EM algorithm. Let

λ = {ωm, μm, Σm}, m = 1, 2, · · · , M denote the UBM, accord-

ing to Ref.[6], the auxiliary function in a GMM framework can

be defined as following:

Q(η|η̄) = E{log p(X, L|λ, η) + log p(η)|X, λ, η̄}
=

∑
L

p(L|X, λ, η̄) log p(X|L, λ, η)p(L|λ, η)

+ log p(η) (3)

where L = {lt} represents the mixture sequence, and η̄ is the

current value of the transformation parameters. By iteratively

maximizing Eq.(3) over η until a fixed point is reached, it can

be shown that the obtained η also maximizes Eq.(1) locally.

The auxiliary function can be rewritten as:

Q(η|η̄) =
∑

L

p(L|X, λ, η̄)
T∑

t=1

[log p(lt|λ, η)

+ log p(xt|lt, λ, η)] + log p(η) (4)

Let lt = m, we have log p(lt|λ, η) = log ωm, which is inde-

pendent of η, and in Eq.(4), p(L|X, λ, η̄) is also independent

of η. Thus, Eq.(4) can be rewritten as:

Q(η|η̄) =
T∑

t=1

M∑
m=1

γt(m) log p(xt|η, μm, Σm)+log p(η)+Ψ (5)

where γt(m) = p(lt = m|X, λ, η̄) is the posteriori probability

of being on mixture m of the UBM, given the feature vector

xt. Ψ represents all the terms independent of η.

3. Estimation of the prior density p(W )

We choose a special case of elliptical distribution for the

prior density p(W ), namely a matrix variate normal prior den-

sity, which can be seen as a matrix version of a multivariate

normal distribution:

P (W ) =|R|−(p+1)/2|Φ|−p/2

· exp

{
− 1

2
tr(W − M)′R−1(W − M)Φ−1

}
(6)

where p is the feature dimension, W and M are two p× (p+1)

matrices, R is a p× p matrix, Φ is (p+1)× (p+1) and Φ ≥ 0.

After the choice of the form of the distribution of W , a

crucial issue is to get an estimation of the hyperparameters of

the prior distribution. The basic principle is to first generate

a set of N transformation matrices, each of which can be seen

as a sample drawn from the prior distribution p(W ). Given

this set of matrices, it is possible to derive an estimate of the

hyperparameters using an ML estimation scenario.

We first select a set of training data containing N speech

utterances with many different speakers and calculate the

transform for each utterance using MLLR directly from the

UBM. Thus, we can get a set of N transformation matrices,

{W1, W2, · · · , WN}. Then we use an ML approach to derive

the hyperparameters M, R,Φ. Under the assumption that Φ

is the identity matrix, the hyperparameter estimates are:

M̂ =
1

N

N∑
i=1

Wi (7)

R̂ =
1

N

N∑
i=1

(Wi − M̂)Φ−1(Wi − M̂)′ (8)

4. Maximization of the auxiliary function

Given the hyperparameters of p(W ), we differentiate the

Eq.(5) with regard to each element of W and equate the results

to zero. The following systems of p × (p + 1) linear equations

are obtained:

p∑
k=1

p+1∑
l=1

wkl

[ M∑
m=1

( T∑
t=1

γt(m)

)
σikμ̃lμ̃j

+
1

2
rkiφjl +

1

2
rikφlj

]

=zij (9)

where wij , σij , rij and φij are the (i, j)th components of ma-

trices W , Σm, R and Φ, and μ̃i is the ith component of μm.

Let xi(t) denote the ith component of the feature vector x(t),

and mij denote the (i, j)th component of the hyperparameter

matrix M , zij is defined as:

zij =

p∑
k=1

p+1∑
l=1

[ M∑
m=1

( T∑
t=1

γi(m)xk(t)

)
σikμ̃j

+
1

2
rkimklφjl +

1

2
rikmklφlj

]
(10)

It is worth noting that equations of MAPLR are very sim-

ilar to the MLLR solution except for the additional terms re-

lated to the prior density. The matrix W can be obtained by
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solving p systems of p+1 linear equations described by Eqs.(9)

and (10).

5. Multi-class MAPLR adaptation

The Gaussian mixtures can be considered to be model-

ing some underlying broad phonetic sounds that character-

ize a person’s voice. We assume that the mixtures represent-

ing acoustic classes located in similar acoustic space could be

grouped into the same class. Each class has a single transfor-

mation matrix associated with it, and all the mixtures within

that class share the same matrix. Thus, using multi-class

technique for MAPLR adaptation allows for more freedom in

adapting the GMM, since all the means are not constrained to

move the same way.

In this work, the novel affinity propagation algorithm[7]

is firstly used to cluster the mixtures of UBM into regression

classes based on the Bhattacharyya distance. After the clus-

tering procedure, a single transformation matrix is estimated

for each class using the given utterance. We give the two-class

MAPLR adaptation as an example. Let Θ1 and Θ2 denote the

mixture index sets for class one and class two, the UBM can

be redefined as:

g(x) =
∑

m∈Θ1

ωmN(x; μm, Σm) +
∑

m∈Θ2

ωmN(x; μm, Σm) (11)

where N(x; μm, Σm) is a Gaussian mixture of UBM with mean

μm and covariance Σm. Adapting the means of the UBM via

two-class MAPLR to a given utterance produces a transforma-

tion matrix W1 = {A1, b1} using Eqs.(9) and (10) for mixtures

assigned to class one, and W2 = {A2, b2} for mixtures assigned

to class two. They can be used to adapt the means of the mix-

tures in the corresponding classes:

μ̂m = A1μm + b1, ∀m ∈ Θ1 (12)

μ̂m = A2μm + b2, ∀m ∈ Θ2 (13)

The transforms W1 and W2 characterize two kinds of speaker-

independent to speaker-dependent differences, and they can

complement with each other. We concatenate the parameters

of the two transforms into a supervector to pursue higher ac-

curacy performance for speaker recognition.

6. Further improvement

In multi-class MAPLR, multiple transforms are used to

project the reference speaker onto the new speaker. The trans-

forms are dependent on the UBM relative to which they are

computed. In general, different UBMs are not just linear

transforms of each other. The availability of different gen-

der dependent UBMs raises the possibility of expanding the

feature space by computing the transforms relative to an ar-

ray of UBMs and concatenating the resulting feature vectors

into a larger supervector. Thus, we can expect the correspond-

ing sets of MAPLR transformation features to afford different,

not entirely redundant “views” of observation space, and the

resulting combined feature vector to yield higher accuracy.

In our study, MAPLR transforms are calculated using both

male and female UBMs. We can get two kinds of transforms

for each utterance, one of which is based on the male UBM,

and another based on the female UBM. These two kinds of

transforms for each utterance are concatenated into a super-

vector for SVM classification. Experiments show that a further

accuracy boost is obtained when we combine the supervectors

derived from the two UBMs into a larger supervector.

7. Feature extraction and SVM modeling

The MAPLR parameters from one or more transforms are

concatenated into a single supervector consisting of K × N ×
p× (p+1) elements and modeled using SVMs, where K is the

number of mixture classes of UBM, N is the number of UBMs,

and p is the cepstral feature dimension.

Rank normalization[8] is used to normalize the supervec-

tors to equate their dynamic ranges. Rank normalization

warps the distribution to be approximately uniform, which

may result in better robustness for SVM classifier. Besides,

Nuisance attribute projection (NAP)[9] is applied on super-

vectors to project out the subspace of maximum intra-speaker

variability, thus compensating inter-session variability. Our

experiments are implemented using the SVMTorch with a lin-

ear inner-product kernel function. The output SVM scores

are normalized with Znorm which further compensates for nui-

sance effects.

III. Experiments

We performed experiments on the NIST 2008 SRE corpus.

For this corpus, we focused on the single-side 1 conversation

train, single-side 1 conversation test, and multi-language tele-

phone task, which is one part of the core test condition. This

setup resulted in 2678 true trials and 33218 false trials. We

used Equal error rate (EER) and the minimum decision cost

value (minDCF) as metrics for evaluation[10].

For cepstral feature extraction, a 20-ms Hamming window

with 10 ms shifts is used. Each utterance is converted into a

sequence of 36-dimensional feature vectors, each consisting of

12 MFCC coefficients and their first and second derivatives.

An energy-based speech detector is applied to discard vectors

from low-energy frames. To mitigate channel effects, RASTA

and feature warping are applied to the features.

The GMM UBM consists of 1024 mixtures, which is

trained using EM with the data from the corpora: NIST 01,

02, 04, and 05. The background data is the same with UBM.

A training set is selected for estimating the prior density of the

transforms as well as NAP training, the data of which are from

the corpora: NIST 04, 05, 06, and the Switchboard Cellar Part

I. Another training set is used for Znorm score normalization,

recorded by 628 female speakers and 481 male speakers from

NIST 05 and 06 corpora.

Table 1. Comparison of results for MLLR

and MAPLR. The upper row in each table

cell is the EER (%). The lower row is

the minDCF value. Rank normalization,

NAP and Znorm are not used

System Female Male

MLLR
14.80 12.50

0.0625 0.0490

MAPLR
13.69 9.85

0.0602 0.0440

In Table 1, we compare the results of MAPLR system to

MLLR system. We can see that MAPLR system produces bet-
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ter performance than MLLR on both male and female data.

It leads to gains of 21% on EER and 10% on minDCF on

male speakers, and 7% on EER and 4% on minDCF on female

speakers.

Table 2 presents the comparison of EER and minDCF val-

ues between the global single class MAPLR and the multi-

class MAPLR systems on the male speakers. We can see that

the multi-class technique can improve the performance of the

MAPLR system significantly. The performance of the sys-

tem increases with the number of Gaussian mixture classes.

When the number of the Gaussian mixture classes is 8, and

the multi-class MAPLR system achieves a 17% improvement

on EER and an 8% improvement on minDCF over the single

class system. It should be noted that there is no further im-

provement for the sixteen-class MAPLR system. The lack of

improvement for the sixteen-class is most likely due to the fact

that as the number of classes increases the amount of adap-

tation data assigned to each class decreases. This leads to

instance where there is not enough adaptation data to obtain

a good transform for a given class.

Table 2. Comparison of the global single

class MAPLR system with the multi-class

MAPLR systems (male speakers, all

trials). Rank normalization, NAP and

Znorm are not used

System EER (%) minDCF

1C MAPLR 9.85 0.0440

2C MAPLR 8.58 0.0413

4C MAPLR 8.48 0.0416

8C MAPLR 8.14 0.0406

16C MAPLR 8.23 0.0410

Table 3. Results of the eight-class MAPLR

system (male speakers, all trials)

Matric SVM +Ranknorm +NAP +Znorm

EER (%) 8.14 8.01 7.78 7.36

minDCF 0.0406 0.0396 0.0381 0.0368

Table 3 lists the results of the eight-class MAPLR system

on male speakers’ data in the test corpus. Besides the results

of SVM classifier, we also present the results after rank normal-

ization process, after the rank normalization plus NAP process

as well as after rank normalization and NAP plus Znorm pro-

cess. It can be seen that all the three technique are effective

in the eight-class MAPLR system.

Table 4. Results of the eight-class

MAPLR system using different UBMs

System Female Male

Using 11.08 9.37

female UBM 0.0508 0.0440

Using 11.15 7.36

male UBM 0.0489 0.0413

Using 9.67 7.10

both UBMs 0.0461 0.0365

Table 4 lists the performance using different UBMs. EER

and minDCF values are observed on both male and female

speakers’ data. Compared to using single UBM, a better per-

formance can be achieved when using multiple UBMs. This

can leads to 14.5% improvement on EER and 9.2% improve-

ment on minDCF for female data, and 3.5% improvement on

EER and a little improvement on minDCF for male data.

Table 5 shows the results of the eight-class MAPLR sys-

tem, the GMM-SVM system and the combination of the two

systems. GMM-SVM is one of the best systems submitted for

NIST 2008 SRE. We can see that the performance of MAPLR

system is comparable to that obtained by GMM-SVM system,

especially on the female data. Besides, it can bring significant

gains on EER for both male and female speakers when com-

bining the two systems, and it can also achieve performance

improvement on minDCF. Compared to GMM-SVM, the com-

bining system can lead to 6.2% EER and 3.0% minDCF reduc-

tion for female speakers, and 16.2% EER and 6.8% minDCF

reduction for male speakers.

Table 5. Results of the eight-class

MAPLR system, GMM-SVM system and

the combination of the two systems

on the whole test corpus (all

speakers, all trials)

System Female Male

8C MAPLR
9.47 7.10

0.0461 0.0365

GMM-SVM
9.85 6.40

0.0487 0.0346

Fusion
8.88 5.95

0.0447 0.0340

IV. Conclusion

In this paper, MAPLR is introduced for speaker recogni-

tion. Two kinds of multi-class techniques are proposed for fur-

ther improving the MAPLR approach. Finally, the parameters

of all the transforms for each utterance are concatenated into

a supervector, which is used as the feature for SVM classifica-

tion. Experiments show that MAPLR based speaker recogni-

tion shows better performance than MLLR, and the proposed

multi-class MAPLR approach is quite effective for system fu-

sion.
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