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Original Article

A biased proportional navigation guidance
law with large impact angle constraint and
the time-to-go estimation

You-An Zhang1, Guo-Xin Ma1,2 and Hua-Li Wu1

Abstract

For large impact angle control problem (here, the ‘‘large impact angle’’ means the impact angle in the closed interval from

�180� to 180�), estimating the time-to-go accurately is the key of impact time and impact angle control guidance

(ITIACG). The objectives of this paper are to construct a new impact angle control guidance (IACG) law suitable for

large impact angle control and present a time-to-go estimation procedure for the new IACG law suitable for designing

ITIACG law. The constructed IACG law is a biased proportional navigation guidance law with large impact angle con-

straint, the rule of the cosine of the lead angle in the biased term is to guarantee that the lead angle remains in the open

interval from �90� to 90�, which is required in the development of time-to-go estimation procedure. To estimate the

time-to-go, by introducing a self-convergent angle named as alfa, the closed equations of motion are transformed to a

different form, which can be solved conveniently under the assumption of small lead angle. For the case of large lead

angle, the time interval of time-to-go is partitioned into n segments, the maximum increment of lead angle is supposed to

be a small angle in each segment, the transformed closed equations of motion can be expressed as function of alfa angle

and solved analytically. A geometric approach is proposed to determine conservatively a suitable alfa angle to guarantee

that the maximum increment of lead angle is a small angle in each segment. The time-to-go estimation procedure for the

new IACG law are illustrated. Simulations are performed to verify the effectiveness of the proposed IACG law and the

accuracy of the time-to-go estimation procedure.
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Introduction

The impact angle and impact time are important con-
straints for missile’s homing problem. The impact
angle control is widely used to increase the lethality
of warheads. Kim et al.1 proposed a biased propor-
tional navigation guidance (BPNG) law for impact
with angular constraint. Ryoo et al.2 suggested a gen-
eralized form of optimal impact angle control law
with an arbitrary missile system order and practical
time-to-go estimation methods for implementation of
the proposed guidance law. They also suggested a
time-to-go weighted optimal guidance law (OGL)
with impact angle constraints and a time-to-go esti-
mation method.3 Park et al.4 proposed an optimal
impact angle control guidance law considering the
seeker’s field-of-view limits for missiles with strap-
down seekers. The proposed optimal guidance law is
composed of three types of acceleration commands.

The first command is to approach the maximum look
angle of the seeker during the initial guidance phase.
The second is to keep the look angle constant during
the mid-guidance phase. The third is the optimal
impact angle control guidance command during the
final guidance phase. Lee et al.5 developed a new
impact angle control guidance (IACG) law for a
stationary or slowly moving target using the high-
performance sliding mode control methodology. Lee
et al.6 investigated the generalized formulation of
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weighted OGL with impact angle constraint. Under
the assumptions of a stationary target and a lag-free
missile with a constant speed and a small flight path
angle, Lee et al.7 demonstrated the optimality of
linear time-varying guidance laws for controlling
impact angles as well as terminal misses. The time-
to-go calculation methods were included for imple-
mentation of the guidance law. Kim et al.8 introduced
a new IACG law for a homing missile system
equipped with a passive seeker against a stationary
or slowly moving target. Practical time-to-go calcula-
tion method and the maximum bounds of guidance
gains were given. Lee et al.9 proposed the time-to-go
polynomial guidance (TPG) laws with impact angle
control and terminal acceleration constraints for a
stationary or slowly moving target. A time-to-go esti-
mation method were also given.

Guidance laws with impact time constraints can be
applied to salvo attack for anti-ship missiles or
cooperative missions for unmanned aerial vehicles.
By contrast, the studies on impact time control guid-
ance (ITCG) law are relatively rare. Assuming that
the heading angle and the lead angle are small, Jeon
et al.10 proposed an ITCG law and a time-cooperative
guidance law11 for anti-ship missiles. Based on the
studies of Jeon et al.,10 Sang et al.12 developed a guid-
ance law switching logic to maintain the seeker lock-
on condition. By calculating the estimated time of
arrival of the existing OGL with impact angle con-
straint, Arita et al.13 applied the OGL to the engage-
ment of designated impact time control. Zhao et al.14

proposed the centralized and distributed coordinated
algorithms based on ITCG law, which can realize
cooperative attack. Zou et al.15 proposed a distributed
time-cooperative guidance law using the decentralized
consensus algorithms. Zhang et al.16 proposed a time-
cooperative guidance law implemented by a leader–
follower strategy.

The studies on ITCG laws with impact angle con-
straint (ITIACG) are much more rare.17–21 Assuming
small heading angle, Jeon et al.17 derived an OGL to
control impact time and impact angle simultaneously,
where the jerk was used as the guidance command.
Assuming small lead angle, Zhang et al.18 designed an
ITIACG law by adding a biased item to a BPNG law,
where the lateral acceleration was used as the guid-
ance command directly. To improve the control pre-
cision of the guidance law in the study of Jeon et al.17

when the terminal impact angle was large, Chen
et al.19 compensated the linearized error induced
from the small angle assumption by nonlinear feed-
back. Taking the heading angle as independent vari-
able, a mid-course ITIACG law was derived by using
optimal control theory,20 but the obtained results con-
tains singular solutions, as pointed by the author.
Assuming that the target position was known before-
hand, Harl et al.21 presented a sliding mode based
ITIACG law by introducing a line-of-sight (LOS)
rate shaping process, where the ITIACG parameters

must be tuned by hand or by off-line iterative routine.
It comprises a feedback loop and an additional con-
trol command, the first to achieve the desired impact
angle with zero miss distance, and the second to con-
trol the impact time.

To implement ITCG, ITIACG, or OGL, the time-
to-go must be estimated accurately. A recursive time-
to-go calculation is proposed in Tahk et al.22 This
method first calculates the minimum time-to-go and
then recursively compensates the time-to-go error
resulting from the path curvature. For the time-to-
go estimation methods presented in the studies of
Ryoo et al.,2,3 Lee et al.,7 Kim et al.,8 Lee et al.,9

Arita and Ueno,13 Lee et al.,17 Zhang et al.,18 and
Chen et al.,19 the time-to-go estimation errors increase
as the desired impact angle increase. A time-to-go esti-
mation algorithm is proposed using guidance com-
mand histories by Shin et al.23 In this method, it is
assumed that the missile trajectory can be given as a
polynomial function of down range. Then, time-to-go
is calculated using the Taylor series expansion.

For large impact angle control problem (here, the
‘‘large impact angle’’ means the impact angle in the
scope of (�180�, 180�)), constructing the guidance law
and estimating the time-to-go accurately is the key of
ITIACG law, which remains to be solved. This paper
will address this problem.

Problem formulation

Consider a two-dimensional homing scenario shown
in Figure 1, where the missile M has a constant speed
V and the target T is stationary. R, q, �, and ’ denote
the range-to-go, the LOS angle, the heading angle,
and the lead angle in the inertial reference frame,
respectively. The designated impact angle is repre-
sented as �d. From Figure 1, the following equations
can be obtained

_R¼�Vcos’, R _q¼V sin’, _�¼ an=V, q¼ �þ’

ð1Þ

where an is the missile’s lateral acceleration, i.e., the
guidance command. The initial conditions are

Figure 1. Homing guidance geometry.
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represented as Rðt0Þ ¼ R0, ’ðt0Þ ¼ ’0, qðt0Þ ¼ q0,
�ðt0Þ ¼ �0, where t0 is the initial time.

The true time-to-go, i.e., tgo, is defined as

tgo ¼ tf � t ð2Þ

where tf represents the final time of homing, and t is
the current time. tgo is not known in advance, its esti-
mation is denoted as t̂go.

The objectives of this paper are to construct a new
IACG law, which is suitable for large impact angle
control, and present a time-to-go estimation proced-
ure for the new IACG law, which is suitable for
designing ITIACG law with large impact angle con-
trol constraint.

The guidance law

The new BPNG law with large impact angle con-
straint is constructed as follows

aBPNG ¼ NV _q� KV2½� �Nqþ ðN� 1Þ�d� cos’=R

ð3Þ

where the coefficients are set as N53, K51.
Note that, when ’ is small, equation (3) is accord-

ant to the result in Zhang et al.18 Define

� ¼ � �Nqþ ðN� 1Þ�d, �� ¼ �=�0 ð4Þ

where �0 ¼ �ðt0Þ ¼ �0 �Nq0 þ ðN� 1Þ�d.
Substituting an ¼ aBPNG into equation (1) yields

dR=dt ¼ �V cos ’ ð5aÞ

d’=dt ¼ �ðN� 1ÞV sin ’=Rþ KV� cos ’=R ð5bÞ

d�=dt ¼ �KV� cos ’=R ð5cÞ

As is known from equation (5b), ’ðtÞ will always
remain in the interval of (�90�, 90�) for
’0 2 ð�90

�, 90�Þ, which is required in the development
of time-to-go estimation procedure. The extreme
value of ’ðtÞ (denoted as ’m) will satisfy
�ðN� 1ÞV sin ’m=Rþ KV� cos ’m=R ¼ 0, so, ’m ¼
arctanðK�=ðN� 1ÞÞ. Equation (5c) indicates that
�!0 monotonously from its initial value �0 (so ��
reduces to 0 from its initial value of 1). Equation
(5b) reveals that u !0 when � !0. From
� ¼ � �Nqþ ðN� 1Þ�d ¼ �N’� ðN� 1Þð� � �dÞ, it
is seen that � !�d finally. Thus, the guidance law
(3) can achieve arbitrarily designated large impact
angle while guaranteeing that ’ðtÞ remains in the
interval of ð�90�, 90�Þ during homing.

Remark 1: If �0 ¼ 0, then � � 0. The guidance law
(3) reduces to the traditional PNG law. In the follow-
ing discussion, it is assumed that �0 6¼ 0.

The time-to-go estimation

The approximated analytical solution
for equations (5a) to (5c)

Eliminating the time variable from equations (5b)
and (5c) yields

d’=d� ¼ B1 tan ’=�� 1 ð6Þ

where B1 ¼ ðN� 1Þ=K.
If u is small, then tan u&u, and equation (6)

reduces to a homogeneous differential equation,
which can be solved easily. However, it is difficult to
solve equation (6) when u is large. Inspired by the case
when u is small, the time interval of time-to-go at
t ¼ t0, i.e., [t0,tf], is partitioned into n segments, i.e.,
[t0,t1], [t1,t2], . . . , [tn�2,tn�1], [tn�1,tf], so that the max-
imum increment of u in each segment is a small angle.
Thus, equation (6) can be solved in each segment.
Take the first segment ½t0, t1� as an example, where
t1 ¼ t0 þ�t1, large ’ðtÞ is rewritten as

’ðtÞ ¼ ’0 þ�’ðtÞ ð7Þ

where �’ðtÞ represents the increment of ’ðtÞ from its
initial value ’0. Suppose that �’ðtÞ is a small angle for
t 2 ½t0, t0 þ�t1�, then �’0 ¼ �’ðt0Þ ¼ 0. Using the
first-order Taylor series expansion yields

tan ’ðtÞ ¼ tan ’0 þ�’ðtÞ= cos2 ’0 ð8Þ

Differentiating equation (7) with respect to � and
using equations (6) and (8) yields

d�’=d� ¼ B1½tan’0 þ�’= cos2 ’0�=�� 1 ð9Þ

To be concise, define

u ¼ ½tan ’0 þ�’= cos2 ’0�=� ð10Þ

Note that u0 ¼ uðt0Þ ¼ tan ’0=�0, equation (9) is
rewritten as

d ð�uÞ=d� ¼ ðB1u� 1Þ= cos2 ’0 ð11Þ

The left side of equation (11) can be expanded as

d ð�uÞ=d� ¼ uþ �du=d� ð12Þ

From equations (11) and (12), equation (13) can be
obtained

du=ðB2u� B3Þ ¼ d�=� ð13Þ

where B2 ¼ B1= cos
2 ’0 � 1, B3 ¼ 1= cos2 ’0, which

are guaranteed nonsingular by the cosine of the lead
angle in the biased term in the guidance law (3).

Zhang et al. 1727
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To solve equation (13), two cases are investigated.
Case 1: When B2 ¼ 0, equation (13) is reduced as

du ¼ �B3d�=� ð14Þ

Integration of equation (14) on the interval of
½t0, t� � ½t0, t0 þ�t1� yieldsZ u

u0

du ¼ �B3

Z �

�0

1

�
d� ð15Þ

Thus

u ¼ u0 � B3 ln �� ð16Þ

Substituting equation (10) into equation (16), and
using the notation �� ¼ �=�0 defined in equation (4),
yields

�’ð ��Þ ¼ B4ð ��� 1Þ � B5 �� ln �� ð17Þ

where B4 ¼ sin’0 cos ’0, B5 ¼ �0.
Case 2: When B2 6¼ 0, equation (13) can be rewrit-

ten as

d ðB2u� B3Þ=ðB2u� B3Þ ¼ B2d�=� ð18Þ

Integration of equation (18) on the interval of
½t0, t� � ½t0, t0 þ�t1� yields

Z B2u�B3

B2u0�B3

1

B2u� B3
d ðB2u� B3Þ ¼ B2

Z �

�0

1

�
d� ð19Þ

Thus

u ¼ ½u0 � B3=B2� ��
B2 þ B3=B2 ð20Þ

Substituting equation (10) into equation (20) yields

�’ð ��Þ ¼ B4ð ��
B2þ1 � 1Þ � B5 ��ð ��B2 � 1Þ=B2 ð21Þ

Hence, the solution of equation (9) can be
expressed as

�’ð ��Þ¼
B4ð ���1Þ�B5 ��ln �� if B2¼0

B4ð ��
B2þ1�1Þ�B5 ��ð ��B2�1Þ=B2 if B2 6¼0

(

ð22Þ

Remark 2: If B2! 0, then ��B2þ1! �� and
ð ��B2 � 1Þ=B2! ln ��, which means that, �’ ¼ �’ð ��Þ
is a continuous function about B2.

Eliminating time variable from equations (5a)
and (5c) yields

dR

R
¼

d�

K�
¼

d ��

K ��
ð23Þ

Integration of equation (23) on the interval of
½t0, t� � ½t0, t0 þ�t1� yields

Rð ��Þ ¼ R0 ��1=K ð24Þ

Equation (5c) can be rewritten as

dt ¼ �
R

KV �� cos’
d �� ð25Þ

Using Taylor series first-order expansion at ’0,
1= cos ’ can be expressed as

1= cos ’ � ½1þ tan ’0�’�= cos ’0 ð26Þ

Equation (27) can be derived from equations (22),
(24) to (26)

where B6 ¼ R0=½KV cos ’0�, B7 ¼ sin2 ’0, B8 ¼ �0
tan’0.

Integration of equation (27) on the interval of
½t0, t0 þ�t1� yields

where ��1 ¼ ��ðt1Þ ¼ ��ðt0 þ�t1Þ.
Thus

dt ¼
�B6 ��1=K�1½1þ B7ð ��� 1Þ � B8 �� ln ���d �� if B2 ¼ 0

�B6 ��1=K�1½1þ B7ð ��
B2þ1 � 1Þ � B8 ��ð ��B2 � 1Þ=B2�d �� if B2 6¼ 0

(
ð27Þ

Z t0þ�t1

t0

dt ¼
�B6

R ��1
1 ��1=K�1½1þ B7ð ��� 1Þ � B8 �� ln ���d �� if B2 ¼ 0

�B6

R ��1
1 ��1=K�1½1þ B7ð ��

B2þ1 � 1Þ � B8 ��ð ��B2 � 1Þ=B2�d �� if B2 6¼ 0

(
ð28Þ

�t1ð ��1Þ ¼

B6½Kð1� B7Þð1� ��1=K1 Þ þ KB7ð1� ��1=Kþ11 Þ=ðKþ 1Þ þ KB8 ��1=Kþ11 ln ��1=ðKþ 1Þ

þK2B8ð1� ��1=Kþ11 Þ=ðKþ 1Þ2�
if B2 ¼ 0

B6fKð1� B7Þð1� ��1=K1 Þ þ KðB7 � B8=B2Þð1� ��1=KþB2þ1
1 Þ=ðB2Kþ Kþ 1Þ

þKB8ð1� ��1=Kþ11 Þ=½B2ðKþ 1Þ�g
if B2 6¼ 0

8>>>>><
>>>>>:

ð29Þ
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Known from equations (22), (24) and (29), �’ð ��Þ and
Rð ��Þ are functions of �� which reduces to 0 from 1
monotonously, �t1ð ��1Þ is a function of ��1. Thus, if
��1 satisfies �’ð ��Þ

�� ��4O, �� 2 ½ ��1, 1� is determined prop-
erly, where, O is a given small angle, e.g., O ¼ 10�,
then, the values of �tð ��1Þ, �’ð ��1Þ and Rð ��1Þ can all
be determined. So, a geometry approach to determine
��1 is given next.

A geometry approach to determine ��1

First, examining whether or not �’ ¼ �’ð ��Þ owns
some extreme points except the endpoints. The first-
order derivative of �’ with respect to �� is

�’0ð ��Þ¼
B4�B5ðln ��þ1Þ ifB2¼0

ðB4�B5=B2ÞðB2þ1Þ ��
B2þB5=B2 ifB2 6¼0

(

ð30Þ

Let �’0ð ��Þ ¼ 0, the possible extreme point ��m can
be found as

��m¼
eB4=B5�1 ifB2¼0

f�B5=½ðB4B2�B5ÞðB2þ1Þ�g
1=B2 ifB2 6¼0

(

ð31Þ

The function �’ ¼ �’ð ��Þ owns one extreme point for
�� 2 ð0, 1Þ if the following condition is met

otherwise, there is no extreme point.
Therefore, �’ð ��Þ owns at most one extreme point

except the endpoints.
Second, the curve shape of �’ð ��Þ is examined. The

second-order derivative of �’ with respect to �� is

�’00ð ��Þ ¼
�B5 ���1 if B2 ¼ 0

ðB4B2 � B5ÞðB2 þ 1Þ ��B2�1 if B2 6¼ 0

(

ð33Þ

Equation (33) can be expressed as �’00ð ��Þ ¼
ðB4B2 � B5ÞðB2 þ 1Þ ��B2�1. The sign of �’00ð ��Þ is
unchanged for �� 2 ð0, 1Þ. This means that �’0ð ��Þ
increases or decreases monotonously from its initial
values, i.e., the function of �’ð ��Þ is convex. Because
�’ð ��Þ owns one extreme point at most, the curve
shapes of �’ð ��Þ can be classified as two cases, as
shown in Figure 2 (here taking �’00ð ��Þ5 0 as
example).

For the case of Figure 2(a):

(1) When j�’ð ��Þj ��¼ ��m j4O (condition 1). Considering
that j�’0j reduces from its initial value j�’0ð ��Þj ��¼1j
to 0 monotonously as �� goes from 1 to ��m, ��1 is
conservatively chosen as ��1 ¼ 1� O=j�’0ð ��Þj ��¼1j,
which ensures O=½1� ��1� ¼ j�’

0ð ��Þj ��¼1j, as shown
in Figure 3(a), where k1, k2 denote the slopes of the
corresponding lines.

(2) When j�’ð ��Þj ��¼ ��m j4O, and j�’ð ��Þj ��¼0j4O (con-
dition 2). Considering that j�’0j increases from 0
to j�’0ð ��Þj ��¼0j monotonously as �� goes from ��m to
0, ��1 is conservatively chosen as ��1 ¼ ½j�’ð ��Þj ��¼0j
�O� ��m=j�’ð ��Þj ��¼ ��m ��’ð ��Þj ��¼0j, which ensures
½j�’ð ��Þj ��¼0j � O�= ��1 ¼ j�’ð ��Þj ��¼0j, as shown in
Figure 3(b).

(3) When j�’ð ��Þj ��¼ ��m j4O, and j�’ð ��Þj ��¼0j4O (con-
dition 3). Take ��1 ¼ 0 directly to ensure
j�’ð ��Þj4O, �� 2 ½ ��1, 1�, as shown in Figure 3(c).

For the case of Figure 2(b):

(4) When j�’ð ��Þj ��¼0j4O, and jk2j4 jk1j, i.e.,
j�’ð ��Þj ��¼0j=14 j�’

0ð ��Þj ��¼1j (condition 4). ��1 is
conservatively chosen as ��1 ¼ 1� O= �’ð ��Þj ��¼0

���� ,
which ensures ½j�’ð ��Þj ��¼0j � O�= ��1 ¼ j�’ð ��Þj ��¼0j,
as shown in Figure 3(d);

(5) When j�’ð ��Þj ��¼0j4O, and jk2j4jk1j, i.e.,
j�’ð ��Þj ��¼0j=14j�’0ð ��Þj ��¼1j (condition 5). ��1 is
conservatively chosen as ��1 ¼ 1� O=j�’0ð ��Þj ��¼1j,

(a) (b)

Figure 2. The curve shapes of �’ð ��Þ: (a) the case with one extreme point for �� 2 ð0, 1Þ; (b) the case with no extreme point for

�� 2 ð0, 1Þ.

eB4=B5�1 2 ð0, 1Þ if B2 ¼ 0

�B5=½ðB4B2 � B5ÞðB2 þ 1Þ�4 0, f�B5=½ðB4B2 � B5ÞðB2 þ 1Þ�g1=B2 2 ð0, 1Þ if B2 6¼ 0

(
ð32Þ
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which ensures O=ð1� ��1Þ ¼ j�’
0ð ��Þj ��¼1j, as shown

in Figure 3(e);

(6) When j�’ð ��Þj ��¼0j4O (condition 6). Take ��1 ¼ 0
directly to ensure j�’ð ��Þj4O, �� 2 ½ ��1, 1�, as shown
in Figure 3(f).

To summarize, ��1 is chosen as

where �’0ð ��Þj ��¼1 ¼ B2B4 þ B4 � B5, .

(a) (b)

(c) (d)

1

0

(e) (f)

Figure 3. Geometry method for choosing ��1. (a) condition 1; (b) condition 2; (c) condition 3; (d) condition 4; (e) condition 5; (f)

condition 6.

��1 ¼

1� O= �’0ð ��Þ
��

��¼1

�� �� if 9 ��m; �’ð ��Þ
��

��¼ ��m

��� ��� > O

½ �’ð ��Þ
��

��¼0

��� ���� O� ��m= �’ð ��Þ
��

��¼ ��m
��’ð ��Þ

��
��¼0

��� ��� if 9 ��m; �’ð ��Þ
��

��¼ ��m

��� ���4O; �’ð ��Þ
��

��¼0

��� ��� > O

0 if 9 ��m; �’ð ��Þ
��

��¼ ��m

��� ���4O; �’ð ��Þ
��

��¼0

��� ���4O

1� O= �’ð ��Þ
��

��¼0

��� ��� if ` ��m; �’ð ��Þ
��

��¼0

��� ��� > O; �’ð ��Þ
��

��¼0

��� ��� > �’0ð ��Þ
��

��¼1

�� ��
1� O= �’0ð ��Þ

��
��¼1

�� �� if ` ��m; �’ð ��Þ
��

��¼0

��� ��� > O; �’ð ��Þ
��

��¼0

��� ���4 �’0ð ��Þ
��

��¼1

�� ��
0 if ` ��m; �’ð ��Þ

��
��¼0

��� ���4O

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð34Þ

�’ð ��Þj ��¼ ��m ¼
B4ð ��m � 1Þ � B5 ��m ln ��m if B2 ¼ 0

B4ð ��
B2þ1
m � 1Þ � B5 ��mð ��

B2
m � 1Þ=B2 if B2 6¼ 0

(
, �’ð ��Þj ��¼0 ¼ �’0
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Remark 3: If �� ¼ ��1 ¼ 0, �� ln �� in equation (22),
and ��1=Kþ11 ln ��1=ðKþ 1Þ in equation (29) must be
replaced by 0 due to lim

��!0
ð �� ln ��Þ ¼ lim

��!0
ðln �� ��Þ ¼

ln 1 ¼ 0.

The time-to-go estimation procedure

The procedure of estimating the time-to-go at the ini-
tial time t0 for the BPNG law (3) is illustrated as fol-
lows: for the first segment ½t0, t1�, the calculated
�0 ¼ �0 �Nq0 þ ðN� 1Þ�d and ’0 ¼ q0 � �0 using
the measured qðt0Þ ¼ q0 and �ðt0Þ ¼ �0 at the initial
time t0, along with Rðt0Þ ¼ R0 (measured at the initial
time t0), are regarded as initial conditions for solving
(predicting) ��1 or �ðt1Þ, �’ð ��1Þ or ’ðt1Þ, Rð ��1Þ or
Rðt1Þ, and �t1ð ��1Þ or t1; for the second segment
½t1, t2�, the predicted �ðt1Þ, ’ðt1Þ, and Rðt1Þ at the

predicted time t1 are regarded as initial conditions
for solving (predicting) �ðt2Þ, ’ðt2Þ, Rðt2Þ, and
�t2 ¼ t2 � t1 or t2; for the nth segment ½tn�1, tn�, the
predicted �ðtn�1Þ, ’ðtn�1Þ and Rðtn�1Þ at the predicted
time tn�1 are regarded as initial conditions for solving
(predicting) �ðtnÞ, ’ðtnÞ, RðtnÞ, and �tn ¼ tn � tn�1 or
tn; The time-to-go estimation t̂go at the initial time t0 is
t̂go ¼ �t1 þ�t2 þ � � � þ�tn�1 þ�tn. The current
time-to-go procedure is the same as the time-to-go
procedure at the initial time t0 if the current time t
is regarded as the initial time t0.

From the above time-to-go estimation procedure
and the curve shapes of �’ð ��Þ, it can be found that
other cases for determining ��1 will change to the case
as shown in Figure 3(c) and (f) finally with the homing
going on, which guarantees the convergence of the
procedure.

(a)

(b) (c)

(e)(d)

Figure 4. Simulation results for the proposed BPNG law: (a) the flight trajectories; (b) the BPNG commands; (c) the heading angles;

(d) the lead angles; and (e) the a angles.
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Simulation result and analysis

Simulations are performed to verify the effectiveness
of the proposed BPNG law (3) and the accuracy of the
time-to-go estimation procedure. In the engagement,
the missile has a constant speed of 250m/s and the
target is a stationary ship. The initial positions of the
missile and the target are set to be (�10, 0.5) km and
(0, 0) km respectively, and the initial heading angle of
the missile is 30�. The missile is guided by the pro-
posed BPNG law (3) with a limited normal acceler-
ation of 5g. The parameters are chosen as N¼ 3,
K¼ 3. The simulation step is chosen as 0.01 s. The
terminal impact angle constraints are given as 0�,
	60�, 	120�, and 180�, respectively.

The trajectories are shown in Figure 4. Simulation
results show that the proposed BPNG law can satisfy
the requirements for different impact angles (especially
large impact angles). All the lead angles always remain
in the interval of ð�90�, 90�Þ for ’0 2 ð�90

�, 90�Þ. All
the � angles approach to zero monotonously from dif-
ferent initial values �0. All the heading angles
approach to the desired heading angles finally.

The calculation results of the time-to-go estimation
procedure for the specified constant small angle
O ¼ 10� are shown in Figure 5. In Figure 5(c), n is
the number of segments.

Figure 5(a) shows that the curves of time-to-go
estimation t̂go (the solid lines) and the curves of true

time-to-go tgo (the dotted lines, computed from tf � t)
coincide nearly for the cases of �d ¼ 0� and
�d ¼ 	60

�. Generally speaking, the largest time-to-
go estimation error occurs at the initial time, hence,
to demonstrate the accuracy of the proposed time-to-
go estimation procedure, the time-to-go estimation
errors (absolute value) at the initial time are given
as 0.09 s, 0.23 s, 0.15 s, 1.3 s, 0.13 s, and 4.75 s for
�d ¼ 0�, 	60�, 	120�, and 180�, respectively. Note
that, for the largest impact angle case, �d ¼ 180�, the
largest time-to-go estimation error is 4.75 s (the rela-
tive error is 5.3%), this is the worst case, the flight
time is also the longest.

Figure 5(c) shows the number of segments during
homing. Obviously, since the fight time is the longest
for �d ¼ 180�, the initial value of n is the maximum
(less than 35 segments). For all the impact angle
cases, the number of segments n go to 1 finally,
which means that �’ maintains small in the last
stage of homing, and the time-to-go estimations are
calculated directly without division (½t, tf� as one seg-
ment finally).

Figure 6 shows the calculation results of the time-
to-go estimation procedure for O ¼ 20� and 30�,
respectively (take �d ¼ 120� as an example). It can
be seen that the largest time-to-go estimation errors
increased to 1.47 s and 2.95 s for O ¼ 20� and 30�

respectively from 1.3 s for O ¼ 10�, but the number
of segments n decreased greatly (nearly halved for

(a) (b)

(c)

Figure 5. Calculation results of the time-to-go estimation procedure for � ¼ 10� : (a) the time-to-go estimation; (b) the zoomed

time-to-go estimation for yd¼	120�; (c) the number of segments during homing.
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O ¼ 20� relative to O ¼ 10�), which is favorable for
alleviating the burden of calculation.

Conclusion

In this paper, a new IACG law, which is suitable for
large impact angle control, is constructed. The pro-
posed IACG law is in nature a BPNG law, the cosine
of the lead angle in the biased term can guarantee the
lead angle remains in the interval of ð�90�, 90�Þ,
which is required in the development of time-to-go
estimation procedure. The time-to-go estimation pro-
cedure for the new IACG law is illustrated. The time
interval of time-to-go is partitioned into n segments to
make the maximum increment of lead angle in each
segment a small angle, and the transformed closed
equations of motion are expressed as function of
alfa angle and solved analytically. A geometric
approach is proposed to determine conservatively a
suitable alfa angle to guarantee that the absolute
value of the maximum increment of lead angle is
lesser than or equal to a specified constant small
angle which makes the approximated analytical solu-
tion aforementioned reasonable. Simulation results
show that the proposed IACG law can satisfy the
requirements for different impact angles (especially
large impact angles), and the performance of the pro-
posed time-to-go estimation procedure is satisfactory.
If the specified constant small angle doubles, the time-
to-go estimation error will increase, while the number
of segments n will halve nearly, which is favorable for
alleviating the burden of calculation. The proposed
BPNG law and the time-to-go estimation proced-
ure can be applied to the design of ITIACG law for
salvo attack, which will be the subject for a follow-up
paper.
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Appendix

Notation

an the missile’s lateral acceleration, i.e., the
guidance command

aBPNG the missile’s lateral acceleration pro-
duced by the new BPNG law

Bi a notation defined as B1 ¼ ðN� 1Þ=K,
B2 ¼ B1= cos

2 ’0 � 1, B3 ¼ 1= cos2 ’0,
B4 ¼ sin ’0 cos ’0, B5 ¼ �0, B6 ¼

R0=½KV cos ’0�, B7 ¼ sin2 ’0, B8 ¼

�0 tan ’0 respectively for i ¼ 1, 2,
3, . . . , 8

k1, k2 the slopes of the corresponding lines in
Fig.3.

K a coefficient in the new BPNG law
n the number of segments during homing
N a coefficient in the new BPNG law
q the LOS angle
R the range-to-go, or missile-target rela-

tive distance
t the current time
tf the final time of homing
tgo the true time-to-go
t̂go the estimated time-to-go
t1 the end point of the first segment ½t0, t1�,

i.e., t1 ¼ t0 þ�t1
�t1 the length of the first segment ½t0, t1�
u a variable defined as

u ¼ ½tan ’0 þ�’= cos2 ’0�=�
V constant missile speed
XOY the inertial reference frame
� an angle defined as

� ¼ � �Nqþ ðN� 1Þ�d
�� normalized �, i.e., �� ¼ �=�0
��1 the value of �� at t1,

i.e., ��1 ¼ ��ðt1Þ ¼ ��ðt0 þ�t1Þ.
��m the value of �� at the extreme point of

�’ðtÞ
� the heading angle
�d the designated impact angle
’ the lead angle
’m the extreme value of ’ðtÞ
�’ðtÞ the increment of ’ðtÞ from its initial

value ’0 in the first segment ½t0, t1�.
�’0 the first-order derivative of �’ with

respect to ��
�’00 the second-order derivative of �’ with

respect to ��
O a given small angle
subscript 0 the initial value of the corresponding

variable, for example, t0: the initial
time; R0, ’0, q0and �0: the initial condi-
tions for R, ’, qand � respectively,
i.e.,Rðt0Þ ¼ R0, ’ðt0Þ ¼ ’0, qðt0Þ ¼ q0,
and �ðt0Þ ¼ �0; �0: initial �, i.e.,
�0 ¼ �ðt0Þ
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