Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Acyclic edge coloring of sparse graphs

Yingqian Wang*, Ping Sheng
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

A R T I C L E I N F O

Article history:

Received 16 December 2011
Received in revised form 16 August 2012
Accepted 17 August 2012
Available online 8 September 2012

Keywords:

Acyclic edge coloring
Maximum average degree
Triangle-free planar graphs

Abstract

Let Δ denote the maximum degree of a graph. Fiamčík first, Alon, Sudakov and Zaks later conjectured that every graph is acyclically edge $(\Delta+2)$-colorable. In this paper, we prove this conjecture for graphs with maximum average degree less than 4. As a corollary, triangle-free planar graphs are acyclically edge ($\Delta+2$)-colorable.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. Used but undefined terminology and notation can be found in [5].

A proper edge coloring of a graph $G=(V, E)$ is a mapping from the edge set E of G to an available color set such that any two adjacent edges receive distinct colors. In a proper edge coloring of G, a cycle is bichromatic if only two colors appear on the cycle. An acyclic edge coloring of a graph G is a proper edge coloring that results in no bichromatic cycle. If an acyclic edge coloring of G uses at most k colors, then it is called an acyclic edge k-coloring. A graph G is acyclically edge k-colorable if it admits an acyclic edge k-coloring. The acyclic chromatic index of a graph G, denoted by $\chi_{a}^{\prime}(G)$, is the minimum number k such that G is acyclically edge k-colorable. Note that if G is acyclically edge k-colorable, then E can be decomposed into k subsets so that the union of any two of the k subsets is a forest.

The concept of acyclic edge coloring was first introduced by Fiamčík [8]. A conjecture proposed first by Fiamčík [8] and then again by Alon et al. [1] states that, for every graph $G, \chi_{a}^{\prime}(G) \leq \Delta(G)+2$, where $\Delta(G)$ is the maximum degree of G. Even for planar graphs, this conjecture remains open with large gap. For the main achievements on acyclic edge coloring of graphs in the literature, we would like to refer the reader to the introductions of [2-4,7,9,10].

A graph is planar if it can be embedded into the plane so that its edges meet only at their ends. The acyclic edge colorability for planar graphs has been extensively studied. Let G be a planar graph. Fiedorowicz et al. [9] proved that $\chi_{a}^{\prime}(G) \leq 2 \Delta(G)+29$. Hou et al. [13] proved that $\chi_{a}^{\prime}(G) \leq \max \{2 \Delta(G)-2, \Delta(G)+22\}$. Recently Basavaraju et al. [4] have showed that every planar graph G is acyclically edge $(\Delta(G)+12)$-colorable.

A k-cycle is a cycle of length k. A triangle is a 3-cycle. Let G be a triangle-free planar graph. Fiedorowicz et al. [9] proved that $\chi_{a}^{\prime}(G) \leq \Delta(G)+6$. This bound was improved to $\Delta(G)+5$ in [7]. Hou et al. [10] showed that $\chi_{a}^{\prime}(G) \leq \Delta(G)+3$ if $\Delta(G) \geq 8$ (the condition $\Delta(G) \geq 8$ was dropped in [3]).

For other interesting results on acyclic edge coloring of sparse (not necessarily planar) graphs, we refer the reader to $[2,6,11,12,14,15]$. Here we would like to emphasize one result in [2]: $\chi_{a}^{\prime}(G) \leq \Delta+2=6$ if G satisfies $\Delta(G)=4$ and $2|E(G)| \leq 4|V(G)|-1$.

[^0]In this paper, we improve some results stated above by proving the following result.
Theorem 1. If $\operatorname{mad}(G):=\max \left\{\left.\frac{2|E(H)|}{|V(H)|} \right\rvert\, H \subseteq G\right\}<4$, then $\chi_{a}^{\prime}(G) \leq \Delta(G)+2$.
Combining a well known fact that, for a planar graph G with girth g (the length of the shortest cycles in G), $\operatorname{mad}(G)<\frac{2 g}{g-2}$, we immediately have the following.

Corollary 1. Every triangle-free planar graph is acyclically edge $(\Delta+2)$-colorable.
The rest of this section is mainly devoted to some terminology and notation used later. For a vertex v in a graph G, the degree of v in G, denoted by $d_{G}(v)$ or simply $d(v)$, is the number of edges incident with v in G. Call v a k-vertex, or a k^{+}-vertex, or a k^{-}-vertex if $d(v)=k$, or $d(v) \geq k$, or $d(v) \leq k$, respectively. A k-neighbor of v is a k-vertex that is adjacent to v.

Let $e=x y$ be an edge of G with two ends x and y. We call e a $(d(x), d(y))$-edge. $G-e$ or $G-x y$ is the graph obtained from G by deleting the edge $e=x y$.

A partial acyclic edge coloring of G is an acyclic edge coloring of a proper subgraph of G. Let ϕ be a partial acyclic edge coloring of G using colors from the color set $[k]=\{1,2, \ldots, k\}$. An (α, β)-maximal bichromatic path under ϕ is a nonextendable path consisting of edges that are colored with colors α and β alternatingly. An (α, β, u, v)-maximal bichromatic path is an (α, β)-maximal bichromatic path that starts at vertex u and ends at vertex v and the first edge on the path is colored α. Note that under a partial acyclic edge coloring ϕ, if there exists an (α, β, u, v)-maximal bichromatic path, then no edge colored β is incident with u, namely, the color β is missing at u. Meanwhile exactly one of α and β is missing at v. The following fact is obvious by the definition of a partial acyclic edge coloring.

Fact 1. Under a partial acyclic edge coloring ϕ of a graph G, given a pair of colors α and β, there is at most one (α, β)-maximal bichromatic path containing a particular vertex v.

An edge colored α is called an α-edge. For an edge $u v \in E(G)$, an (α, β, u, v)-maximal bichromatic path not passing through $u v$ ($u v$ may be colored or uncolored) is called an $(\alpha, \beta, u v$)-critical path if it starts and ends via an α-edge.

For any vertex $u \in V(G)$, we define $\phi(u)=\left\{\phi(u z) \mid z \in N_{G}(u)\right\}$. For an edge $u v \in E(G)$, we define $S_{u v}=\phi(v) \backslash\{\phi(u v)\}$. Note that $S_{u v}$ need not to be the same as $S_{v u}$.

A color θ is valid for an uncolored edge $e=x y$ under a partial acyclic edge coloring of G if none of the adjacent edges of e is colored θ and assigning the color θ to $e=x y$ results in no bichromatic cycle; invalid otherwise.

2. Lemmas

Suppose Theorem 1 is false. Let G be a counterexample to Theorem 1 with the fewest edges. It is obvious that G is connected and has no vertex of degree 1. This section is devoted to investigating some structural properties of G. Since the first two lemmas below are known results, we directly cite them without proof.

Lemma 1 ([12]). G has no ($3^{-}, 3^{-}$)-edge.
Lemma 2 ([11]). Let x be a d-vertex and y a 2-vertex adjacent to x, where $d \geq 4$. Then x is adjacent to at most ($d-3) 3^{-}$-vertices.
By Lemma 1, every neighbor of a 3-vertex in G is a 4^{+}-vertex. Call a vertex in G special if it is a 3-vertex with at least one 4-neighbor.

Lemma 3. A special vertex has only one 4-neighbor.
Proof. Suppose to the contrary that x is a special vertex in G that has at least two 4-neighbors, say w and y. Let z be the neighbor of x other than w and y, also y_{1}, y_{2}, y_{3} and w_{1}, w_{2}, w_{3} the three neighbors of y and w other than x, respectively. Let $G^{\prime}=G-x y$. By the choice of G, G^{\prime} admits an acyclic edge coloring ϕ using colors from [$\left.\Delta+2\right]$. Let $F(x y)=\phi(x) \cup \phi(y)$. Without loss of generality, we may assume that $\phi\left(y y_{i}\right)=i, i=1,2,3$. There are three cases under consideration.

1. $|\phi(x) \cap \phi(y)|=0$.

Since $|\phi(x) \cup \phi(y)| \leq 2+(\Delta-1)=\Delta+1<\Delta+2$, there exists a color in [$\Delta+2] \backslash(\phi(x) \cup \phi(y))$ that is valid for $x y$ under ϕ.
2. $|\phi(x) \cap \phi(y)|=2$.

Clearly $|F(x y)|=|\phi(y)|=|\{1,2,3\}|=3$. For convenience, we rename the neighbors of x other than y by $x_{i}, i=1,2$. Without loss of generality, we may assume that $\phi\left(x x_{i}\right)=i, i=1,2$. If there is a color in $[\Delta+2] \backslash F(x y)$ that is valid for $x y$, then we are done. Otherwise, for every $\theta \in[\Delta+2] \backslash F(x y)$, there is a $(1, \theta, x y)$ - or a $(2, \theta, x y)$-critical path under ϕ. There are two subcases under consideration.
2.1. $\left(S_{x x_{1}} \cup S_{x x_{2}}\right) \cap F(x y)=\emptyset$.

Clearly, $S_{x x_{1}}, S_{x x_{2}} \subseteq[\Delta+2] \backslash F(x y)=\{4,5, \ldots, \Delta+2\}$.
We are going to prove that $S_{y y_{i}}=\{4,5, \ldots, \Delta+2\}, i=1,2$, 3. If there is not only a ($1,4, x y$)-critical path but also a (2,4, xy)-critical path under ϕ, then we exchange the colors on $x x_{1}$ and $x x_{2}$, obtaining a new acyclic edge coloring of G^{\prime},
under which 4 is valid for $x y$. So there is either a ($1,4, x y$)-critical path or a ($2,4, x y$)-critical path under ϕ. Similarly, for every $\theta \in\{5,6, \ldots, \Delta+2\}$, there is either a $(1, \theta, x y)$-critical path or a $(2, \theta, x y)$-critical path under ϕ. Without loss of generality, we may assume that for every $4 \leq i \leq k$, there is a ($1, i, x y$)-critical path, and for every $k+1 \leq j \leq \Delta+2$, there is a $(2, j, x y)$-critical path under ϕ. Now we exchange the colors on $x x_{1}$ and $x x_{2}$, obtaining a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $x x_{1}$ and $x x_{2}$. If there is a color in $\{4,5, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ^{\prime}, then we are done. Otherwise for every $4 \leq i \leq k$, there is a ($2, i, x y$)-critical path, and for every $k+1 \leq j \leq \Delta+2$, there is a $(1, j, x y)$-critical path under ϕ^{\prime}. It follows that $S_{y y_{1}}=\{4,5, \ldots, \Delta+2\}$ and $S_{y y_{2}}=\{4,5, \ldots, \Delta+2\}$. By recoloring $x x_{1}$ with 3, as above, we know that $\{4,5, \ldots, k\} \subset S_{y y_{3}}$. Similarly, by recoloring $x x_{2}$ with 3 , we know that $\{k+1, k+2, \ldots, \Delta+2\} \subset S_{y y_{3}}$. To conclude, $S_{y y_{3}}=\{4,5, \ldots, \Delta+2\}$.

Now by exchanging the colors on $y y_{1}$ and $y y_{3}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 4 to k is valid for $x y$.
2.2. $\left(S_{x x_{1}} \cup S_{x x_{2}}\right) \cap F(x y) \neq \emptyset$.

Without loss of generality, let $S_{x x_{1}} \cap F(x y) \neq \emptyset$. It follows that at least one color in $\{4,5, \ldots, \Delta+2\}$ is missing in $S_{x x_{1}}$. Without loss of generality, let $4 \notin \phi\left(x_{1}\right)$. We may assume that there is a ($2,4, x y$)-critical path under ϕ since otherwise 4 is valid for $x y$. Hence $4 \in \phi\left(x_{2}\right)$ as well as $\phi\left(y_{2}\right)$. By Fact 1 , there is no ($2,4, x x_{1}$)-critical path under ϕ. By recoloring $x x_{1}$ with 4 , we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs ϕ only on $x x_{1}$. If there is a color $\theta \in\{5,6, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ^{\prime}, then we are done. Otherwise for every $\operatorname{color} \theta \in\{5,6, \ldots, \Delta+2\}$, there is a $(2, \theta, x y)$-critical path under ϕ as well as under ϕ^{\prime}. Hence $S_{x x_{2}}=\{4,5, \ldots, \Delta+2\}=S_{y y_{2}}$. If there is also a $(1,5, x y)$-critical path under ϕ, then we recolor $x x_{1}, x x_{2}$ with 4,1 , respectively, obtaining a new acyclic edge coloring of G^{\prime}, under which 5 is valid for $x y$. Hence there is no $(1,5, x y)$-critical path under ϕ. Similarly, there is no $(1, \theta, x y)$-critical path for $\theta \in\{6,7, \ldots, \Delta+2\}$ under ϕ. To conclude, for every $\theta \in\{4,5, \ldots, \Delta+2\}$, there is no ($1, \theta, x y$)-critical path under ϕ. By recoloring $x x_{2}$ with 3 , we obtain a new acyclic edge coloring $\phi^{\prime \prime}$ of G^{\prime} that differs from ϕ only on $x x_{2}$. Argument as above yields that, for every $\theta \in\{4,5, \ldots, \Delta+2\}$, there is a ($3, \theta, x y$)-critical path under $\phi^{\prime \prime}$. This implies that $S_{y y_{3}}=\{4,5, \ldots, \Delta+2\}$. Now by exchanging the colors on $y y_{2}$ and $y y_{3}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which every color in $\{4,5, \ldots, \Delta+2\}$ is valid for $x y$.
3. $|\phi(x) \cap \phi(y)|=1$.

Without loss of generality, we may assume that $\phi(x) \cap \phi(y)=\{1\}$, and 4 the remaining color in $\phi(x)$. Clearly $F(x y)=\phi(x) \cup \phi(y)=\{1,2,3,4\}$. If there is a color in $[\Delta+2] \backslash F(x y)=\{5,6, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise,
for every $\theta \in\{5,6, \ldots, \Delta+2\}$, there is a ($1, \theta, x y$)-critical path under ϕ.
3.1. $\phi(x z)=1$ and $\phi(x w)=4$.

By $(*),\{5,6, \ldots, \Delta+2\} \subseteq S_{x z}$. We first claim that $\{1,2,3\} \subseteq \phi(w)$. If $1 \notin \phi(w)$, then by recoloring $x w$ with $1, x z$ with $\alpha \in\{2,3\} \backslash \phi(z)$ from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, and hence return to case 2 . So $1 \in \phi(w)$. If $2 \notin \phi(w)$, then we recolor $x w$ with 2 from ϕ, obtaining a new proper edge coloring ϕ_{1} of G^{\prime}. If ϕ_{1} is acyclic, then we return to case 2 . Otherwise, there is a (1,2)-bichromatic cycle under ϕ_{1}. Thus $2 \in \phi(z)$. It follows that $\phi(z)=\{1,2,5,6, \ldots, \Delta+2\}$. Clearly $1,4 \in \phi(w)$. Now if $3 \notin \phi(w)$, then by recoloring $x w$ with 3 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to case 2 . To conclude, if $2 \notin \phi(w)$, then $3 \in \phi(w)$. Now, at least one of 5 and 6 is not in $\phi(w)$, say $5 \notin \phi(w)$. By (*) and Fact 1, there exists no ($1,5, x w$)-critical path under ϕ. Now by recoloring $x w$ with 5 , we obtain a new acyclic edge coloring of G^{\prime} from ϕ, under which 4 is valid for $x y$. This proves $2 \in \phi(w)$. Similarly $3 \in \phi(w)$. Our claim is proved.

Now $\phi(w)=\{1,2,3,4\}$. Note that there is no $(1,5, x w)$-critical path. By recoloring $x w$ with 5 , we obtain a new acyclic edge coloring $\phi^{\prime \prime}$ of G^{\prime} that differs from ϕ only on $x w$. If 4 is valid for $x y$ under $\phi^{\prime \prime}$, then we are done. Otherwise there is a $(1,4, x y)$-critical path under ϕ as well as under $\phi^{\prime \prime}$. So $S_{x z}=S_{y y_{1}}=\{4,5, \ldots, \Delta+2\}$. Combining with ($*$), we can conclude that
for every $\theta \in\{4,5, \ldots, \Delta+2\}$, there is a $(1, \theta, x y)$-critical path under ϕ.
Let us first show that there exist $(4,2, x z)$ - and $(4,3, x z)$-critical paths under ϕ. Suppose not, say no (4, 2, $x z$)-critical path under ϕ. By recoloring $x z$ with 2 , we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $x z$, as above, for every $\theta \in\{4,5, \ldots, \Delta+2\}$, there is a $(2, \theta, x y)$-critical path under ϕ^{\prime}. It follows that for every $\theta \in\{4,5, \ldots, \Delta+2\}$, there is a $(2, \theta, y, z)$-maximal bichromatic path under ϕ; hence $S_{y y_{2}}=S_{x z}=\{4,5, \ldots, \Delta+2\}$. Now by exchanging the colors on $y y_{1}$ and $y y_{2}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which every color in $\{5,6, \ldots, \Delta+2\}$ is valid for $x y$.

Let us next show that for every color $\eta \in\{2,3\}$ and every color $\xi \in\{5,6, \ldots, \Delta+2\}$, there exists an (η, ξ, w, z)-maximal bichromatic path under ϕ. Suppose not, say no (2,5, w, z)-maximal bichromatic path under ϕ. By recoloring $x z, x w$ with 2,5 respectively, we obtain a new acyclic edge coloring $\phi^{\prime \prime}$ of G^{\prime} that differs from ϕ only on $x z$ and $x w$. By Fact 1 , there is no ($2,4, y, z$)-maximal bichromatic path under ϕ since there is already ($4,2, x z$)-critical paths under ϕ. It follows that 4 is valid for $x y$ under $\phi^{\prime \prime}$.

Now, without loss of generality, we may assume that $\phi\left(w w_{i}\right)=i, i=1,2$, 3 . So $\{4,5, \ldots, \Delta+2\} \subseteq S_{w w_{i}}, i=2,3$. Since $d\left(w_{i}\right) \leq \Delta,\left|S_{w w_{i}}\right| \leq \Delta-1, i=2$, 3. It follows that $S_{w w_{i}}=\{4,5, \ldots, \Delta+2\}, i=2$, 3 . Now, we first exchange the colors on $w w_{2}$ and $w w_{3}$, then recolor $x z, x w$ with 2,5 , respectively, obtaining a new acyclic edge coloring φ of G^{\prime} from ϕ. By Fact 1, there is no $(2,4, y, z)$-maximal bichromatic path under φ as well as under ϕ since there is already ($4,2, x z$)-critical paths under ϕ. It follows that 4 is valid for $x y$ under φ.
3.2. $\phi(x w)=1$ and $\phi(x z)=4$.

By $(*),\{5,6, \ldots, \Delta+2\} \subseteq S_{x w}$. This implies that $(\Delta+2)-5+1 \leq\left|S_{x w}\right|=3$, i.e., $\Delta \leq 5$. Clearly $\Delta \geq 4$.
If $\Delta=4$, then $d(z) \leq 4$. Without loss of generality, we may assume that $d(z)=4$. This returns to case 3.1.
Suppose $\Delta=5$. Observe that $S_{x w}=\{5,6,7\}$. If $5 \notin S_{x z}$, then by $(*)$ and Fact 1 , there is no $(1,5, x z)$-critical path under ϕ since $z \neq y$. Now by recoloring $x z$ with 5 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 4 is valid for $x y$. So $5 \in S_{x z}$. Similarly, $6,7 \in S_{x z}$. Since $\Delta=5$, at least one of 2 and 3, say 2 , is not in $S_{x z}$. Now, by recoloring $x z$ with 2 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 4 is valid for $x y$.

Lemma 4. A 5-vertex x in G has at most three 3-neighbors.
Proof. Suppose to the contrary that x is a 5 -vertex in G that has at least four 3 -neighbors, say y, x_{1}, x_{2}, x_{3}. Let z be the remaining neighbor of x, and y_{1}, y_{2} the two neighbors of y other than x. Let $G^{\prime}=G-x y$. By the choice of G, G^{\prime} has an acyclic edge coloring ϕ using colors from $[\Delta+2]$. We may assume that $\phi\left(x x_{i}\right)=i, i=1,2,3$ and $\phi(x z)=4$. Let $F(x y)=\phi(x) \cup \phi(y)$.

If $\phi(x) \cap \phi(y)=\emptyset$, then we can find a color in $[\Delta+2] \backslash(\phi(x) \cup \phi(y))$ that is valid for $x y$ under ϕ, since $|\phi(x) \cup \phi(y)| \leq$ $\Delta-1+2=\Delta+1<\Delta+2$. Suppose $|\phi(x) \cap \phi(y)| \geq 1$. There are two cases under consideration.

1. $|\phi(x) \cap \phi(y)|=1$.

Let α be the unique color in $\phi(x) \cap \phi(y)$. If we can find a color in [$\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)$, there exists an ($\alpha, \theta, x y$)-critical path under ϕ. Clearly, $\alpha \in\{1,2,3,4\}$. We discuss by distinguishing two subcases as follows.
(a) $\alpha \in\{1,2,3\}$.

Without loss of generality, we may assume that $\phi\left(y y_{1}\right)=\alpha=1$ and $\phi\left(y y_{2}\right)=5$. Now,
\bullet for each color $\theta \in[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$, there exists $a(1, \theta, x y)$-critical path under ϕ.
By $\bullet, S_{y y_{1}}, S_{x x_{1}} \supseteq\{6,7, \ldots, \Delta+2\}$. Hence $2=\left|S_{x x_{1}}\right| \geq(\Delta+2)-6+1=\Delta-3$, i.e., $\Delta \leq 5$. Since $d(x)=5, \Delta=5$. Thus $S_{x x_{1}}=\{6,7\}$ and $\{6,7\} \subseteq S_{y y_{1}}$.

Now by recoloring $x x_{1}$ with 5 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which neither 6 nor 7 is valid for $x y$, since otherwise G would be acyclically edge ($\Delta+2$)-colorable. This implies that there exists a $\left(5,6, y, x_{1}\right)$ - as well as a (5, 7, y, x_{1})-maximal bichromatic path under ϕ. Hence $6,7 \in S_{y y_{2}}$.

If there is a color $i \in\{2,3,4\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{2}$ with color i from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 5 would be valid for $x y$. So $\{2,3,4\} \subseteq S_{y y_{1}} \cup S_{y y_{2}}$.

If $1 \notin S_{y y_{2}}$, then by recoloring $y y_{2}$ with a color in $\{2,3,4\} \backslash S_{y y_{2}}$, we would obtain a new acyclic edge coloring of G^{\prime}, under which 5 is valid for $x y$. So $1 \in S_{y y_{2}}$.

In summary, $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \geq 2+2+4=8$. On the other hand, $\Delta=5$ implies $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq 4+4=8$. So $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|=8$. So $5 \notin \phi\left(y_{1}\right)$.

Now by recoloring $x x_{1}$ with 5 , and $y y_{1}$ with a color in $\{2,3,4\} \backslash \phi\left(y_{1}\right)$, we would obtain a new acyclic edge coloring of G^{\prime} from ϕ, under which 1 is valid for $x y$.
(b) $\alpha=4$.

We may assume that $\phi\left(y y_{1}\right)=4$ and $\phi\left(y y_{2}\right)=5$. Clearly, for each color $\theta \in[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$, there exists a $(4, \theta, x y)$-critical path under ϕ. Hence $\{6,7, \ldots, \Delta+2\} \subseteq S_{x z} \cap S_{y y_{1}}$.

If $5 \notin S_{y y_{1}}$, then by recoloring $y y_{1}$ with a color in $\{1,2,3\} \backslash S_{y y_{1}}$, we obtain a new acyclic edge coloring from ϕ, and return to (a). So $5 \in S_{y y_{1}}$.

If $4 \notin S_{y y_{2}}$, then by recoloring $y y_{1}, y y_{2}$ with a color $i \in\{1,2,3\} \backslash S_{y y_{1}}, 4$, respectively, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}. For each color $\theta \in\{6,7, \ldots, \Delta+2\}$, since there is already a ($4, \theta, x y$)-critical path under ϕ, there is a ($4, \theta, x, y_{1}$)-maximal bichromatic path under ϕ^{\prime}. It follows that, for each color $\theta \in\{6,7, \ldots, \Delta+2\}$, there is no ($4, \theta, x y$)critical path passing through y_{2} under ϕ^{\prime} by Fact 1 . Note that $5 \notin S_{y y_{2}}$ and $\left|S_{x x_{i}}\right|=2$. Now a color in $\{5,6,7, \ldots, \Delta+2\} \backslash S_{x x_{i}}$ would be valid for $x y$ under ϕ^{\prime}. This proves $4 \in S_{y y_{2}}$.

If there is a color $\beta \in\{1,2,3\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{1}$ with β, we obtain a new acyclic edge coloring of G^{\prime}, and we return to (a). So $\{1,2,3\} \subset\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$.

If there is a color γ in $\{6,7, \ldots, \Delta+2\}$ that is not in $S_{y y_{2}}$, then by recoloring $y y_{2}$ with γ, we would obtain a new acyclic edge coloring of G^{\prime} (since there is already a ($4, \gamma, x y$)-critical path under ϕ, by Fact 1 , there is no $\left(4, \gamma, x, y_{2}\right)$-maximal bichromatic path under ϕ), under which 5 is valid for $x y$. Hence $\{6,7, \ldots, \Delta+2\} \subseteq S_{y y_{2}}$.

To conclude, we have shown that $\{4,5,6, \ldots, \Delta+2\} \subseteq \phi\left(y_{2}\right),\{4,6, \ldots, \Delta+2\} \subseteq \phi\left(y_{1}\right)$, and $\{1,2,3\} \subset\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$. These imply $5 \notin S_{y y_{1}}$.

Now, by recoloring $y y_{1}$ with $5, y y_{2}$ with a color in $\{1,2,3\} \backslash S_{y y_{2}}$, we obtain a new acyclic edge coloring of G^{\prime} from ϕ, and return to (a).
2. $|\phi(x) \cap \phi(y)|=2$.

In this case, $\phi(x) \cup \phi(y)=\{1,2,3,4\}$; hence $[\Delta+2] \backslash F(x y)=\{5,6, \ldots, \Delta+2\}$. Since $\Delta \geq 5,\{5,6,7\} \subseteq$ $\{5,6, \ldots, \Delta+2\}$. There are two subcases under consideration.
(i) $4 \notin \phi(y)$.

By the symmetry of 1,2 and 3 , we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=2$. If we can find a color in $[\Delta+2] \backslash F(x y)=$ $\{5,6, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise, for every $\theta \in\{5,6, \ldots, \Delta+2\}$, there is a $(1, \theta, x y)$ or a $(2, \theta, x y)$-critical path under ϕ. It follows that $\{5,6, \ldots, \Delta+2\} \subseteq S_{x x_{1}} \cup S_{x x_{2}}$. Since $d\left(x_{1}\right)=d\left(x_{2}\right)=3,\left|S_{x x_{1}}\right|=\left|S_{x x_{2}}\right|=2$.

We may assume that $S_{x x_{1}}=\{5,6\}$ and $7 \in S_{x x_{2}}$. Now, by recoloring $x x_{1}$ with 7 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which a color in $\{5,6\} \backslash S_{x x_{2}}$ would be valid for $x y$.
(ii) $4 \in \phi(y)$.

By the symmetry of 1,2 and 3 , we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=4$. If we can find a color in $[\Delta+2] \backslash F(x y)=$ $\{5,6, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise, for every $\theta \in\{5,6, \ldots, \Delta+2\}$, there is a $(1, \theta, x y)$ or a ($4, \theta, x y$)-critical path under ϕ.

If there is a color $\beta \in\{5,6, \ldots, \Delta+2\} \backslash S_{y y_{1}}$, then there is a $(4, \beta, x y)$-critical path under ϕ. It follows that there is no (4, $\beta, y y_{1}$)-critical path under ϕ by Fact 1 . Now, by recoloring $y y_{1}$ with β, we obtain a new acyclic edge coloring of G^{\prime}, and return to case 1 . So $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$. Similarly, $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{2}}$.

If $\left|\{2,3\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)\right| \geq 1$, then by recoloring $y y_{2}$ with a color in $\{2,3\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, we obtain a new acyclic edge coloring of G^{\prime}, and return to (i). So $\{2,3\} \subset\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$.

Combining conclusions above with $|\{5,6, \ldots, \Delta+2\}|=\Delta-2$ and $\left|S_{y y_{1}}\right|,\left|S_{y y_{2}}\right| \leq \Delta-1$, we get $1 \notin S_{y y_{2}}$. Now by recoloring $y y_{2}$ with a color in $\{2,3\} \backslash S_{y y_{2}}$, we obtain a new acyclic edge coloring of G^{\prime}, and return to (i). Lemma 4 is proved.

Lemma 5. If a 5-vertex x in G has a special neighbor y, then it has at most two 3-neighbors.
Proof. Suppose to the contrary that a 5 -vertex x in G has at least three 3 -neighbors, say y, x_{1} and x_{2} with y special. Let z_{1}, z_{2} be the remaining two neighbors of x, and y_{1}, y_{2} the two neighbors of y other than x. Let $G^{\prime}=G-x y$. By the choice of G, G^{\prime} has an acyclic edge coloring ϕ using colors from [$\Delta+2]$. We may assume that $\phi\left(x x_{i}\right)=i, i=1,2, \phi\left(x z_{1}\right)=3$ and $\phi\left(x z_{2}\right)=4$. Let $F(x y)=\phi(x) \cup \phi(y)$.

If $\phi(x) \cap \phi(y)=\emptyset$, then we can find a color in $[\Delta+2] \backslash(\phi(x) \cup \phi(y))$ that is valid for $x y$ under ϕ since $|\phi(x) \cup \phi(y)| \leq$ $\Delta-1+2=\Delta+1<\Delta+2$. Suppose $|\phi(x) \cap \phi(y)| \geq 1$. There are two cases under consideration. 1. $|\phi(x) \cap \phi(y)|=1$.

Let α be the unique color in $\phi(x) \cap \phi(y)$. If we can find a color in [$\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)$, there exists an ($\alpha, \theta, x y$)-critical path under ϕ. Note that $\alpha \in\{1,2,3,4\}$. We discuss by distinguishing two subcases as follows.
(a) $\alpha \in\{1,2\}$.

We may assume that $\phi\left(y y_{1}\right)=\alpha=1$ and $\phi\left(y y_{2}\right)=5$. Thus, for each color $\theta \in[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$, there exists a ($1, \theta, x y$)-critical path under ϕ. It follows that $S_{y y_{1}}, S_{x x_{1}} \supseteq\{6,7, \ldots, \Delta+2\}$. Since $d\left(x_{1}\right)=3, \Delta=5$. Hence $S_{x x_{1}}=\{6,7\}$ and $\{6,7\} \subseteq S_{y y_{1}}$. Now by recoloring $x x_{1}$ with 5 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which neither 6 nor 7 is valid for $x y$, since otherwise G would be acyclically edge ($\Delta+2$)-colorable. This implies that there exists a ($5,6, y, x_{1}$)- as well as a ($5,7, y, x_{1}$)-maximal bichromatic path under ϕ. Hence $6,7 \in S_{y y_{2}}$. If there is a color $i \in\{2,3,4\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{2}$ with color i from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 5 would be valid for $x y$ as $5 \notin S_{y y_{2}}$. So $\{2,3,4\} \subseteq\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$. It follows that $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \geq 2+2+3=7$. Notice that $\Delta=5$ and y being special implies $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq 4+3=7$. So $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|=7$. Therefore, $1 \notin S_{y y_{2}}$. Now by recoloring $y y_{2}$ with a color in $\{2,3,4\} \backslash S_{y y_{2}}$, we would obtain a new acyclic edge coloring of G^{\prime}, under which 5 is valid for $x y$.
(b) $\alpha \in\{3,4\}$.

We may assume that $\phi\left(y y_{1}\right)=4$ and $\phi\left(y y_{2}\right)=5$. Note that for each color $\theta \in[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$, there exists a $(4, \theta, x y)$-critical path under ϕ. Hence $S_{x z_{2}}, S_{y y_{1}} \supseteq\{6,7, \ldots, \Delta+2\}$. We are going to show that $[\Delta+2] \subseteq\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$. This will be done by the following four claims.

- $5 \in S_{y y_{1}}$.

Suppose $5 \notin S_{y y_{1}}$. Then we first have $1,2 \in S_{y y_{1}}$, since otherwise, $\{1,2\} \backslash S_{y y_{1}} \neq \emptyset$, by recoloring $y y_{1}$ with a color in $\{1,2\} \backslash S_{y y_{1}}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a). Now $\left|S_{y y y_{1}}\right| \geq|\{1,2,6,7, \ldots, \Delta+2\}|=$ $\Delta+2-5+2=\Delta-1$ implies $d\left(y_{1}\right)=\Delta \geq 5$. Since y is special, $d\left(y_{2}\right)=4$. If $\{1,2\} \backslash S_{y y_{2}} \neq \emptyset$, then by recoloring $y y_{1}$ with $5, y y_{2}$ with a color in $\{1,2\} \backslash S_{y y_{2}}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a). Hence $\{1,2\} \subset S_{y y_{2}}$. If $4 \notin S_{y y_{2}}$, then by exchanging the colors on $y y_{1}$ and $y y_{2}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 6 is valid for $x y$ (by Fact 1). Hence $4 \in S_{y y_{2}}$. Since y_{2} is a 4-neighbor of $y, S_{y y_{2}}=\{1,2,4\}$. Thus $3 \notin\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$. Now by recoloring $y y_{2}$ with 3 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 5 is valid for $x y$. This proves $5 \in S_{y y_{1}}$.

- $4 \in S_{y y_{2}}$.

Suppose $4 \notin S_{y y_{2}}$. Since now $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$, at least one of 1 and 2 , say 1 , is not in $S_{y y_{1}}$. By recoloring $y y_{1}$ with $1, y y_{2}$ with 4 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}. For each color $\theta \in\{6,7, \ldots, \Delta+2\}$, since there is already a ($4, \theta, x y$)-critical path under ϕ, there is a ($4, \theta, x, y_{1}$)-maximal bichromatic path under ϕ^{\prime}. By Fact 1 , there is no $(4, \theta, x y)$-critical path passing through y_{2} under ϕ^{\prime} for each color $\theta \in\{6,7, \ldots, \Delta+2\}$. By $5 \notin S_{y y_{2}}$ and $d\left(x_{1}\right)=3$, There exists a color in $\{5,6,7, \ldots, \Delta+2\} \backslash S_{x x_{1}}$ that is valid for $x y$ under ϕ^{\prime}. This proves $4 \in S_{y y_{2}}$.

- $1,2 \in\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$.

If there is a color $\beta \in\{1,2\} \backslash S_{y y_{1}} \cup S_{y y_{2}}$, then by recoloring $y y_{1}$ with β, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a).

- $3 \in\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$.

If $3 \notin\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{1}$ with 3 , we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $y y_{1}$, under which there would be a $(3, \theta, x y)$-critical path for each $\theta \in\{6,7, \ldots, \Delta+2\}$. It follows that there is no ($3, \theta, x, y_{2}$)-maximal bichromatic path under ϕ for each $\theta \in\{6,7, \ldots, \Delta+2\}$ by Fact 1 . Now by recoloring $y y_{2}$ with $3, y y_{1}$ with a color $i \in\{1,2\} \backslash S_{y y_{1}}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which a color in $\{5,6, \ldots, \Delta+2\} \backslash S_{x x_{i}}$ would be valid for $x y$.
Recall that y has a 4-neighbor. $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq(\Delta-1)+3=\Delta+2$. According to $[\Delta+2] \subseteq\left(S_{y y_{1}} \cup S_{y y_{2}}\right),[\Delta+2]=$ $S_{y y_{1}} \cup S_{y y_{2}}$. It follows that $\left|S_{y y_{1}} \cap S_{y y_{2}}\right|=\left|S_{y y_{1}} \cup S_{y y_{2}}\right|-\left(\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|\right)=0$, i.e., $S_{y y_{1}} \cap S_{y y_{2}}=\emptyset$. So $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$ and $S_{y y_{2}} \subseteq\{1,2,3,4\}$. According to which of y_{1} and y_{2} is the 4 -neighbor of y, there are two subcases under consideration.
(b1) $d\left(y_{1}\right)=4$, and $d\left(y_{2}\right) \geq 5$.
Since $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$ and $\left|S_{y y_{1}}\right|=3,|\{5,6, \ldots, \Delta+2\}|=\Delta+2-4=\Delta-2 \leq 3$, i.e., $\Delta \leq 5$. Since $d(x)=5, \Delta \geq 5$. So $\Delta=5$. Hence $S_{y y_{1}}=\{5,6,7\}$ and $S_{y y_{2}}=\{1,2,3,4\}$. Now by recoloring $y y_{2}$ with 6 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}. (Since there is already a $(4,6, x y)$-critical path under ϕ, by Fact 1 , there is no $\left(4,6, y y_{2}\right)$ critical path under ϕ.) Since G is not acyclically edge ($\Delta+2$)-colorable, there exists a (4,5,xy)-critical path under ϕ as well as under ϕ^{\prime}.

We are going to prove $3 \in\left(S_{x x_{1}} \cap S_{x x_{2}}\right)$. Suppose $3 \notin S_{x x_{1}}$. We first claim $2 \in S_{x x_{1}}$. If $2 \notin S_{x x_{1}}$, then by recoloring $x x_{1}$ with a color in $\{5,6,7\} \backslash S_{x x_{1}}$, we obtain a new edge coloring ϕ^{\prime} of G^{\prime} from $\phi . \phi^{\prime}$ is also acyclic since there is already a (4, $\theta, x y$)critical path under ϕ^{\prime} as well as under ϕ, by Fact 1 , there is no ($4, \theta, x x_{1}$)-critical path under ϕ^{\prime} for each $\theta \in\{5,6,7\}$. Now, 1 would be valid for $x y$ under ϕ^{\prime} since $1 \notin S_{x x_{1}}$ and $1 \notin S_{y y_{1}}$. This proves $2 \in S_{x x_{1}}$. Now, if $\{5,6,7\} \backslash\left(S_{x x_{1}} \cup S_{x x_{2}}\right) \neq \emptyset$, then we could recolor $x x_{1}$ with a color in $\{5,6,7\} \backslash\left(S_{x x_{1}} \cup S_{x x_{2}}\right)$, and then 1 is valid for $x y$; otherwise, $S_{x x_{1}} \cup S_{x x_{2}}=\{2,5,6,7\}$, we could recolor $x x_{1}$ with a color in $S_{x x_{2}}$, and then 1 is valid for $x y$. This proves $3 \in S_{x x_{1}}$. Similarly, $3 \in S_{x x_{2}}$. So $3 \in\left(S_{x x_{1}} \cap S_{x x_{2}}\right)$.

Now recolor $x x_{1}$ with a color $\vartheta \in\{5,6,7\} \backslash\left(S_{x x_{1}} \cup S_{x x_{2}}\right)$ from ϕ. If we obtain a new acyclic edge coloring φ of G^{\prime}, then 1 is valid for $x y$ under φ; hence we are done. Otherwise there is a $(3, \vartheta)$-bichromatic cycle under φ, hence there is a ($3, \vartheta, x x_{1}$)critical path under ϕ as well as under φ. By Fact 1 , there is no ($3, \vartheta, x x_{2}$)-critical path under ϕ (since $x_{1} \neq x_{2}$). Hence by recoloring $x x_{2}$ with ϑ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, under which 2 would be valid for $x y$.
(b2) $d\left(y_{2}\right)=4$ and $5 \leq d\left(y_{1}\right) \leq \Delta$.
By recoloring $y y_{2}$ with 6 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which there is a ($4,5, x y$)-critical path, since otherwise, by coloring $x y$ with 5 , we would obtain an acyclic edge $(\Delta+2)$-coloring of G from ϕ^{\prime}. Thus there is a (4, 5, xy)-critical path under ϕ.

If neither 1 nor 2 is in $S_{y y_{1}}$, then arguing as in (b1) could yield an acyclic edge $(\Delta+2)$-coloring of G. So $\left|\{1,2\} \cap S_{y y_{1}}\right| \geq 1$. Since $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}},\left|\{1,2\} \cap S_{y y_{1}}\right|=1$. We may assume that $1 \in S_{y y_{1}}$ and $S_{y y_{2}}=\{2,3,4\}$ (since $d\left(y_{2}\right)=4$ and $\left.S_{y y_{1}} \cap S_{y y_{2}}=\emptyset\right)$.

In what follows we shall show that we can finally recolor $y y_{1}$ with 2 from some acyclic edge $(\Delta+2)$-coloring of G^{\prime}, obtaining a new acyclic edge ($\Delta+2$)-coloring of G^{\prime}, and return to subcase (a), hence completing the proof of case 1 . This will be completed based on the following four claims.
\bullet For each $\eta \in\{5,6, \ldots, \Delta+2\}$, there is an ($\eta, 2, y_{1}, y_{2}$)-maximal bichromatic path under ϕ.
Suppose, for some $\eta_{0} \in\{5,6, \ldots, \Delta+2\}$, there is no $\left(\eta_{0}, 2, y_{1}, y_{2}\right)$-critical path under ϕ. By recoloring $y y_{1}$ with $2, y y_{2}$ with η_{0} (if $\eta_{0} \neq 5$) from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a).

- There is a (1,2, $\left.y_{1}, y_{2}\right)$-maximal bichromatic path under ϕ.

If not, then by recoloring $y y_{1}, y y_{2}$ with 2,1 , respectively, we obtain a new acyclic edge coloring of G^{\prime}, under which there would be a color in $\{5,6, \ldots, \Delta+2\} \backslash S_{x x_{2}}$ that is valid for $x y$ (since $S_{y y_{2}}=\{2,3,4\}$ and $d\left(x_{2}\right)=3$).

- There is a $\left(5,3, y y_{1}\right)$-critical path under ϕ.

If not, by recoloring $y y_{1}$ with 3 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which there would be a $(3, \theta, x y)$-critical path for each $\theta \in\{6,7, \ldots, \Delta+2\}$. By Fact 1 , for each $\theta \in\{6,7, \ldots, \Delta+2\}$, there is no $\left(3, \theta, y y_{2}\right)$ critical path under ϕ^{\prime}. Now by recoloring $y y_{2}$ with 6 from ϕ^{\prime}, we obtain a new acyclic edge coloring φ of G^{\prime}, under which, there would be a ($3,5, x y$)-critical path. By Fact 1 , for each $\theta \in\{5,6, \ldots, \Delta+2\}$, there is no $\left(3, \theta, x x_{2}\right)$-critical path under ϕ as well as under φ. If $1 \notin S_{x x_{2}}$, by recoloring $y y_{1}$ with 3 , $x x_{2}$ with a color $\gamma \in\{5,6, \ldots, \Delta+2\} \backslash S_{x x_{2}}$ from ϕ, we obtain a new acyclic edge coloring of G^{\prime} (since there is already a ($4, \gamma, x y$)-critical path, by Fact 1 , there is no ($4, \gamma, x x_{2}$)-critical path under ϕ), under which 2 is valid for $x y\left(2 \notin S_{y y_{1}}\right.$ and $\left.2 \notin S_{x x_{2}}\right)$. Hence $1 \in S_{x x_{2}}$. If $\{5,6, \ldots, \Delta+2\} \backslash\left(S_{x x_{1}} \cup S_{x x_{2}}\right) \neq \emptyset$, then we recolor $x x_{2}$ with a color in $\{5,6, \ldots, \Delta+2\} \backslash\left(S_{x x_{1}} \cup S_{x x_{2}}\right)$ from ϕ, obtaining a new acyclic edge ($\Delta+2$)-coloring of G^{\prime}, under which, arguing as just above, 2 is valid for $x y$. So $\{5,6, \ldots, \Delta+2\} \subset S_{x x_{1}} \cup S_{x x_{2}}$. Note that $|\{5,6, \ldots, \Delta+2\}| \geq 3$. Since $1 \in S_{x x_{2}}$ and $d\left(x_{1}\right)=d\left(x_{2}\right)=3, S_{x x_{1}} \subset\{5,6, \ldots, \Delta+2\}$. Now by recoloring $x x_{2}$ with a color in $S_{x x_{1}} \backslash S_{x x_{2}}$, say γ, from ϕ, we obtain a new edge coloring φ of G^{\prime}. If φ is acyclic, then 2 is valid for $x y$ under φ. Otherwise, there is a cycle alternately colored by γ and 1 under φ. Namely, there is a ($1, \gamma, x x_{2}$)-critical path under ϕ. In this case, we recolor $x x_{1}$ with 2 from φ, obtaining an acyclic edge coloring φ^{\prime} of G^{\prime}. If 1 is valid for $x y$ under φ^{\prime}, then we are done. Otherwise, there is a ($1,4, x y$)-critical path under ϕ as well as φ^{\prime}. By recoloring $y y_{1}$ with 3 from ϕ, we obtain a new acyclic edge coloring ϕ^{\prime}. A similar argument (or by symmetry of z_{1} and z_{2}) yields that there is a $(1,3, x y)$-critical path under ϕ^{\prime}. It follows that $S_{x z_{1}}=S_{x z_{2}}=\{1,5,6, \ldots, \Delta+2\}$. Now we first exchange the colors on $x z_{1}$ and $x z_{2}$ from ϕ, then recolor $x x_{2}$ with $\gamma, x x_{1}$ with 2, yielding an acyclic edge coloring of G^{\prime}, under which 1 is valid for $x y$.
\bullet For each $\xi \in\{1,6,7, \ldots, \Delta+2\}$ there is a $\left(\xi, 3, y_{1}, y_{2}\right)$-maximal bichromatic path under ϕ.
If there is no $\left(\xi, 3, y_{1}, y_{2}\right)$-maximal bichromatic path under ϕ for some color $\xi \in\{1,6,7, \ldots, \Delta+2\}$, then by recoloring $y y_{1}$ with $3, y y_{2}$ with ξ, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $y y_{1}$ and $y y_{2}$. Since there is
already a $\left(5,3, y y_{1}\right)$-critical path under ϕ, there is a $\left(3,5, y y_{2}\right)$-critical path under ϕ^{\prime}. It follows that there is no $(3,5, x y)$ critical path under ϕ^{\prime} by Fact 1 . Note that $5 \notin S_{y y_{2}}$. Therefore, 5 is valid for $x y$ under ϕ^{\prime}.

Now we can complete the proof of case 1 . Recall that $S_{y y_{2}}=\{2,3,4\}$. We may assume that v_{1}, v_{2} and v_{3} are the three neighbors of y_{2} other than y with $\phi\left(y_{2} v_{1}\right)=2$ and $\phi\left(y_{2} v_{2}\right)=3$. According to the four claims above, $S_{y_{2} v_{1}}=$ $\{1,5,6, \ldots, \Delta+2\}=S_{y_{2} v_{2}}$, and for each color $\alpha \in\{1,5,6, \ldots, \Delta+2\}, \beta \in\{2,3\}$, there is an $\left(\alpha, \beta, y_{1}, y_{2}\right)$-maximal bichromatic path under ϕ. Now by exchanging the colors on $y_{2} v_{1}$ and $y_{2} v_{2}$ from ϕ, we destroy the old (5,2,yy $)$-critical path in ϕ, and by Fact 1, we do not create any new (5, 2, $y y_{1}$)-critical path in the new acyclic edge coloring ψ of G^{\prime}. Hence by recoloring $y y_{1}$ with 2 from ψ, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a).
2. $|\phi(x) \cap \phi(y)|=2$.

Let $\phi(x) \cap \phi(y)=\{\alpha, \beta\}$. If we can find a color in $[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)=\{5,6, \ldots, \Delta+2\}$ there exists an $(\alpha, \theta, x y)$-critical path or a $(\beta, \theta, x y)$-critical path under ϕ. Note that $\{\alpha, \beta\} \subset F(x y)=\{1,2,3,4\}$. We may assume that $\phi\left(y y_{1}\right)=\alpha$ and $\phi\left(y y_{2}\right)=\beta$.

If ξ is a color in $\{5,6, \ldots, \Delta+2\} \backslash S_{y y_{1}}$, then there is a $(\beta, \xi, x y)$-critical path. By Fact 1 , there is no $\left(\beta, \xi, y y_{1}\right)$ critical path under ϕ. Recoloring $y y_{1}$ with ξ from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to case 1 . So $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$. Similarly, $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{2}}$. By symmetry, we discuss by distinguishing three subcases as follows.
(i) $\{\alpha, \beta\}=\{1,2\}$.

We may assume that $\phi\left(y y_{i}\right)=i, i=1$, 2 . In this case, for each color $\theta \in\{5,6, \ldots, \Delta+2\}$, there exists a ($1, \theta, x y$)-critical path or a $(2, \theta, x y)$-critical path under ϕ. Hence $\{5,6, \ldots, \Delta+2\} \subseteq\left(S_{x x_{1}} \cup S_{x x_{2}}\right)$. Since $\Delta \geq 5,\{5,6,7\} \subseteq\{5,6, \ldots, \Delta+2\}$. Note that $d\left(x_{1}\right)=d\left(x_{2}\right)=3$. We may assume that $S_{x x_{1}}=\{5,6\}$ and $7 \in S_{x x_{2}}$. Now by recoloring $x x_{1}$ with 7 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to case 1 .
(ii) $\alpha \in\{1,2\}$ and $\beta \in\{3,4\}$.

We may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=4$. If $2 \in S_{y y_{2}}$, then $\phi\left(y_{2}\right)=\{5,6, \ldots, \Delta+2\} \cup\{2,4\}$. So $d\left(y_{2}\right)=\Delta$. Hence $d\left(y_{1}\right)=4$. So $S_{y y_{1}}=\{5,6,7\}$. By recoloring $y y_{1}$ with $2, y y_{2}$ with 1 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to subcase (i). So $2 \notin S_{\left(y y_{2}\right)}$. If there is no ($1,2, y y_{2}$)-critical path under ϕ, then by recoloring $y y_{2}$ with 2 from ϕ, we obtain a new acyclic edge coloring of G^{\prime}, and return to subcase (i). Otherwise, there is a ($1,2, y y_{2}$)-critical path under ϕ. So, $2 \in S_{y y_{1}}$ and $1 \in S_{y y_{2}}$. It follows that $d\left(y_{i}\right) \geq 5, i=1,2$, contradicting that y is special.
(iii) $\{\alpha, \beta\}=\{3,4\}$.

We may assume that $d\left(y_{1}\right)=4, \phi\left(y y_{1}\right)=3$ and $\phi\left(y y_{2}\right)=4$. Recall that $\{5,6, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$. This implies $\Delta=5$ and $\phi\left(y_{1}\right)=\{3,5,6,7\}$. Now we can recolor $y y_{1}$ with 1 from ϕ, obtaining a new acyclic edge coloring of G^{\prime}, and returning to subcase (ii).

The proof of Lemma 5 is completed.
Lemma 6. A 7-vertex x with a special neighbor y has at most six 3^{-}-neighbors (including y).
Proof. Suppose to the contrary that x has seven 3^{-}-neighbors. Without loss of generality, we may assume that all the seven neighbors of x are 3 -vertices. Let $x_{1}, x_{2}, \ldots, x_{6}$ be the six neighbors of x other than y, and y_{1}, y_{2} the two neighbors of y other than x. Let $G^{\prime}=G-x y$. By the choice of G, G^{\prime} has an acyclic edge coloring ϕ using colors from the color set [$\Delta+2$]. Without loss of generality, we may assume that $\phi\left(x x_{i}\right)=i$ for $i=1,2, \ldots, 6$. Let $F(x y)=\phi(x) \cup \phi(y)$.

If $\phi(x) \cap \phi(y)=\emptyset$, then $|\phi(x) \cup \phi(y)| \leq(\Delta-1)+2=\Delta+1<\Delta+2$; hence there exists at least one color $\alpha \in[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ. So we may assume that $\phi(x) \cap \phi(y) \neq \emptyset$. There are two cases under consideration.
(1) $|\phi(x) \cap \phi(y)|=1$.

Without loss of generality, we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=7$. If we can find a color $\alpha \in[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)$, there exists a $(1, \theta, x y)$-critical path under ϕ. It follows that $[\Delta+2] \backslash F(x y)=\{8,9, \ldots, \Delta+2\} \subseteq S_{x x_{1}}$ as well as $S_{y y_{1}}$. Since $d\left(x_{1}\right)=3, \Delta=7$. It follows that $S_{x x_{1}}=\{8,9\}$ and $\{8,9\} \subseteq S_{y y_{1}}$. Now by recoloring $x x_{1}$ with 7, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which neither 8 nor 9 is valid for $x y$ since otherwise G would be acyclically edge ($\Delta+2$)-colorable. This implies that there are (7, $8, y, x_{1}$)- and (7, 9, y, x_{1})-maximal bichromatic paths under ϕ as well as under ϕ^{\prime}. Hence $8,9 \in S_{y y_{2}}$. If there is a color $i \in\{2,3,4,5,6\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{2}$ with color i, we obtain a new acyclic edge coloring of G^{\prime} from ϕ, under which, 7 would be valid for $x y$. So $\{2,3,4,5,6\} \subseteq S_{y y_{1}} \cup S_{y y_{2}}$. It follows that $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \geq 2+2+5=9$. Note that y is a special vertex, i.e., y has a 4-neighbor that is y_{1} or y_{2}. Hence $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq 3+6=9$ (recall that $\Delta=7$). It follows that $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|=9$. So $1 \notin S_{y y_{2}}$. Now by recoloring $y y_{2}$ with a color in $\{2,3,4,5,6\} \backslash \phi\left(y_{2}\right)$, we obtain a new acyclic edge coloring of G^{\prime}, under which, 7 is valid for $x y$, a contradiction.
(2) $|\phi(x) \cap \phi(y)|=2$.

Without loss of generality, we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=2$. If we can find a color in $\{7,8, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise, for every $\theta \in\{7,8, \ldots, \Delta+2\}$, there is a $(1, \theta, x y)$ - or $(2, \theta, x y)$-critical path under ϕ. It follows that $\{7,8, \ldots, \Delta+2\} \subseteq S_{x x_{1}} \cup S_{x x_{2}}$. Note that $d\left(x_{1}\right)=d\left(x_{2}\right)=3$ implies $\left|S_{x x_{1}}\right|=\left|S_{x x_{2}}\right|=2$. Since $\Delta \geq 7,\{7,8,9\} \subseteq S_{x x_{1}} \cup S_{x x_{2}}$. Without loss of generality, we may assume that $S_{x x_{1}}=\{7,8\}$ and $9 \in S_{x x_{2}}$. So $\left|\{7,8\} \backslash S_{x x_{2}}\right| \geq 1$ (note that $\left|S_{x x_{2}}\right|=2$). Now by recoloring $x x_{1}$ with 9, we obtain a new acyclic edge coloring of G^{\prime} from ϕ, under which, the color in $\{7,8\} \backslash S_{x x_{2}}$ would be valid for $x y$. This completes the proof of Lemma 5.

Lemma 7. A 6-vertex x with a special neighbor y has at most four 3^{-}-neighbors (including y).
Proof. Suppose to the contrary that x has at least five 3^{-}-neighbors, say, $x_{1}, x_{2}, x_{3}, x_{4}, y$. Let z be the remaining neighbor of x. Without loss of generality, we may assume that all the 3^{-}-neighbors of x are 3 -vertices. Let $G^{\prime}=G-x y$. By the choice of G, G^{\prime} has an acyclic edge coloring ϕ using colors from [$\Delta+2$]. Without loss of generality, we may assume that $\phi\left(x x_{i}\right)=i$ for $i=1,2,3,4$ and $\phi(x z)=5$. Let $F(x y)=\phi(x) \cup \phi(y)$.

If $\phi(x) \cap \phi(y)=\emptyset$, then $|\phi(x) \cup \phi(y)| \leq(\Delta-1)+2=\Delta+1<\Delta+2$. Hence there exists at least one color $\alpha \in[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ. So we may assume that $\phi(x) \cap \phi(y) \neq \emptyset$. There are two cases under consideration.
(1) $|\phi(x) \cap \phi(y)|=1$.

Let $\phi(x) \cap \phi(y)=\{\alpha\}$. Clearly, $\alpha \in\{1,2,3,4,5\}$. We discuss by distinguishing two subcases as follows.
(a) $\alpha \in\{1,2,3,4\}$.

Without loss of generality, we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=6$. If we can find a color $\alpha \in[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)$, there exists a $(1, \theta, x y)$-critical path under ϕ. It follows that $[\Delta+2] \backslash F(x y)=\{7,8, \ldots, \Delta+2\} \subseteq S_{x x_{1}}$ as well as $S_{y y_{1}}$. Since $d\left(x_{1}\right)=3, \Delta=6$. Thus $S_{x x_{1}}=\{7,8\}$ and $\{7,8\} \subseteq S_{y y_{1}}$. Now by recoloring $x x_{1}$ with 6 , we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime}, under which neither 7 nor 8 is valid for $x y$, since otherwise G would be acyclically edge $(\Delta+2)$-colorable. This implies that there are ($6,7, y, x_{1}$)- and ($6,8, y, x_{1}$)-maximal bichromatic paths under ϕ as well as under ϕ^{\prime}. Hence $7,8 \in S_{y y_{2}}$. If there is a color $i \in\{2,3,4,5\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{2}$ with color i, we obtain a new acyclic edge coloring of G^{\prime}, under which 6 would be valid for $x y$. So $\{2,3,4,5\} \subseteq S_{y y_{1}} \cup S_{y y_{2}}$. It follows that $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \geq 2+2+4=8$. Note that y is special, i.e., one of y_{1} and y_{2} is a 4 -vertex. Hence $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq 3+5=8$ (recall that $\Delta=6$). It follows that $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|=8$. So $1 \notin S_{y y_{2}}$. Now by recoloring $y y_{2}$ with a color in $\{2,3,4,5\} \backslash \phi\left(y_{2}\right)$, we obtain a new acyclic edge coloring of G^{\prime}, under which, 6 would be valid for $x y$.
(b) $\alpha=5$.

Without loss of generality, we may assume that $\phi\left(y y_{1}\right)=5$ and $\phi\left(y y_{2}\right)=6$.
If we can find a color $\alpha \in[\Delta+2] \backslash F(x y)$ that is valid for $x y$ under ϕ, then we get an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Hence for each color $\theta \in[\Delta+2] \backslash F(x y)$, there exists a $(5, \theta, x y)$-critical path under ϕ. It follows that $[\Delta+2] \backslash F(x y)=\{7,8, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$ as well as $S_{x z}$. Since $d\left(y_{1}\right) \leq \Delta,\left|S_{y y_{1}}\right| \leq \Delta-1$. Note that $|\{7,8, \ldots, \Delta+2\}|=\Delta+2-7+1=\Delta-4$. It follows that $\left|S_{y y_{1}} \backslash\{7,8, \ldots, \Delta+2\}\right| \leq(\Delta-1)-(\Delta-4)=3$. Hence $\left|\{1,2,3,4\} \backslash S_{y y_{1}}\right| \geq 1$. Without loss of generality, we may assume that $1 \notin S_{y y_{1}}$.

If $6 \notin S_{y y_{1}}$, then by recoloring $y y_{1}$ with color 1 , we obtain a new acyclic edge coloring of G^{\prime} from ϕ, and return to (a). So $6 \in S_{y y_{1}}$.

We are going to prove $5 \in S_{y y_{2}}$. If not, by recoloring $y y_{1}, y y_{2}$ with 1,5 , respectively, we obtain a new acyclic edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $y y_{1}$ and $y y_{2}$. Note that $d\left(x_{1}\right)=3,\{6,7,8\} \backslash S_{x x_{1}} \neq \emptyset$. Let $\alpha \in\{6,7,8\} \backslash S_{x x_{1}}$. If $\alpha=6$, then 6 is valid for $x y$ under ϕ^{\prime} (since 6 belongs to neither $S_{x x_{1}}$ nor $S_{y y_{2}}$), a contradiction. So $\alpha \in 7,8$. Without loss of generality, we may assume that $\alpha=7$. Since G is not acyclically edge $(\Delta+2)$-colorable, coloring $x y$ with 7 under ϕ^{\prime} produces a bichromatic cycle C. Clearly C is either a (1,7)- or a (5, 7)-bichromatic cycle. If C is a $(1,7)$-bichromatic cycle, then $7 \in S_{x x_{1}}$, a contradiction. So C is a (5, 7)-bichromatic cycle. It follows that there is a $(5,7, x y)$-critical path under ϕ^{\prime}, namely, there is a $\left(5,7, x, y_{2}\right)$-maximal bichromatic path under ϕ. By Fact 1 , there is no ($5,7, x, y_{1}$)-maximal bichromatic path under ϕ. However, there is already a (5,7,x, y_{1})-maximal bichromatic path under ϕ. This contradiction shows that $5 \in S_{y y_{2}}$.

If there is a color $\alpha \in\{1,2,3,4\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, then by recoloring $y y_{1}$ with α, we obtain a new acyclic edge coloring of G^{\prime} from ϕ, and return to (a). So $\{1,2,3,4\} \subset S_{y y_{1}} \cup S_{y y_{2}}$. To conclude, $[\Delta+2] \subseteq S_{y y_{1}} \cup S_{y y_{2}}$. On the other hand, $S_{y y_{1}} \cup S_{y y_{2}} \subseteq[\Delta+2]$. So $S_{y y_{1}} \cup S_{y y_{2}}=[\Delta+2]$. Since y is special, $\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right| \leq \Delta-1+3=\Delta+2$. Hence $\left|S_{y y_{1}} \cap S_{y y_{2}}\right|=\left|S_{y y_{1}}\right|+\left|S_{y y_{2}}\right|-\left|S_{y y_{1}} \cup S_{y y_{2}}\right| \leq(\Delta+2)-(\Delta+2)=0$. Therefore $S_{y y_{1}} \cap S_{y y_{2}}=\emptyset$. Since $\{6,7,8, \ldots, \Delta+2\} \subseteq S_{y y_{1}}, S_{y y_{2}} \subseteq\{1,2,3,4,5\}$. According to which of y_{1} and y_{2} is the 4-neighbor of y, there are two cases under consideration.
(b1) $d\left(y_{1}\right)=4$.
Clearly, $\left|S_{y y_{1}}\right|=3$. Since $\{6,7,8, \ldots, \Delta+2\} \subseteq S_{y y_{1}},|\{6,7,8, \ldots, \Delta+2\}| \leq 3$, i.e., $3 \geq \Delta+2-6+1=\Delta-3$. Hence $\Delta \leq 6$. Since $d(x)=6, \Delta \geq 6$. So $\Delta=6$. It follows that $S_{y y_{1}}=\{6,7,8\}$. Recall that $[\Delta+2] \subseteq S_{y y_{1}} \cup S_{y y_{2}}$, i.e., $\left|S_{y y_{2}}\right| \geq(\Delta+2)-\left|S_{y y_{1}}\right|$. Hence $d\left(y_{2}\right)=\left|S_{y y_{2}}\right|+1 \geq(\Delta+2)-\left|S_{y y_{1}}\right|+1=\Delta$. So $d\left(y_{2}\right)=\Delta=6$, hence $\left|S_{y y_{2}}\right|=5$. Note that $S_{y y_{2}} \subseteq\{1,2,3,4,5\}$. Hence $S_{y y_{2}}=\{1,2,3,4,5\}$. Let u_{1}, u_{2}, u_{3} be the three neighbors of y_{1} other than y. Without loss of generality, we may assume that $\phi\left(y_{1} u_{1}\right)=7$ and $\phi\left(y_{1} u_{2}\right)=8$. Now we claim that for every color $\eta \in\{1,2,3,4\}, \xi \in\{7,8\}$, there is a η, ξ, y_{2}, y_{1})-maximal bichromatic path under ϕ. Suppose not, without loss of generality, we may assume that there is no (1, 7, y_{2}, y_{1})-maximal bichromatic path under ϕ. Then by recoloring $y y_{1}, y y_{2}$ with 1,7 , respectively, we obtain a new acyclic edge coloring of G^{\prime} from ϕ, and return to (a). It follows that $\{1,2,3,4\} \subset S_{y_{1} u_{i}}, i=1,2$. Note that there are (5, 7, xy)-, (5, 8, xy)-critical paths under ϕ. Hence $5 \in S_{y_{1} u_{i}}, i=1$, 2. It follows that $\{1,2,3,4,5\} \subseteq S_{y_{1} u_{i}}, i=1$, 2 . Since $\Delta=6,\left|S_{y_{1} u_{i}}\right| \leq 5, i=1$, 2. Therefore, $S_{y_{1} u_{i}}=\{1,2,3,4,5\}, i=1$, Now, we first exchange the colors on $y_{1} u_{1}$ and $y_{1} u_{2}$, then recolor $y y_{1}, y y_{2}$ with 1,7 , respectively, obtaining a new acyclic edge coloring of G^{\prime}, and returning to (a).
(b2) $d\left(y_{2}\right)=4$.
In this case, $d\left(y_{1}\right)=\Delta$. Clearly $\left|S_{y y_{2}}\right|=3$. By the symmetry of $1,2,3$ and 4 , we may assume that $S_{y y_{2}}=\{3,4,5\}$ and $S_{y y_{1}}=\{1,2,6,7, \ldots, \Delta+2\}$. Let v_{1}, v_{2}, v_{3} be the three neighbors of y_{2} other than y. Without loss of generality, we may
assume that $\phi\left(y_{2} v_{1}\right)=3$ and $\phi\left(y_{2} v_{2}\right)=4$. We first claim that for every color $\eta_{1} \in\{1,2\}, \xi \in\{3,4\}$, there is a $\left(\eta_{1}, \xi, y_{1}, y_{2}\right)$ maximal bichromatic path under ϕ. Suppose not, without loss of generality, we may assume that there is no ($1,3, y_{1}, y_{2}$)maximal bichromatic path under ϕ. Then by recoloring $y y_{1}, y y_{2}$ with 3,1 , respectively, we obtain a new acyclic edge coloring of G^{\prime}, under which, a color in $\{6,7,8\} \backslash S_{x x_{3}}$ is valid for $x y$ (note that $\left|S_{x x_{3}}\right|=2, S_{y y_{2}}=\{3,4,5\}$). This proves the claim. Hence $1,2 \in S_{y_{2} v_{i}}, i=1$, We next claim that for every color $\eta_{2} \in\{6,7, \ldots, \Delta+2\}, \xi \in\{3,4\}$, there is a $\left(\eta_{2}, \xi, y_{1}, y_{2}\right)$-maximal bichromatic path under ϕ. Suppose not, without loss of generality, we may assume that there is no ($6,3, y_{1}, y_{2}$)-maximal bichromatic path under ϕ. Then by recoloring $y y_{1}, y y_{2}$ with 3,6 , respectively, we obtain a new acyclic edge coloring of G^{\prime}, and return to (a). It follows that $\{6,7, \ldots, \Delta+2\} \subseteq S_{y_{2} v_{i}}, i=1,2$. To conclude, $\{1,2,6,7, \ldots, \Delta+2\} \subseteq S_{y_{2} v_{i}}, i=1,2$. Since $|\{1,2,6,7, \ldots, \Delta+2\}|=\Delta+2-6+1+2=\Delta-1$ and $\left|S_{y_{2} v_{i}}\right| \leq \Delta-1, S_{y_{2} v_{i}}=\{1,2,6,7, \ldots, \Delta+2\}, i=1,2$. Now, we first exchange the colors on $y_{2} v_{1}$ and $y_{2} v_{2}$, then recolor $y y_{1}$ with 3 , obtaining a new acyclic edge coloring of G^{\prime} from ϕ, and returning to (a).
(2) $|\phi(x) \cap \phi(y)|=2$.

In this case, $F(x y)=\phi(x) \cup \phi(y)=\{1,2,3,4,5\}$; hence $[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$. Since $\Delta \geq 6,\{6,7,8\} \subseteq$ $\{6,7, \ldots, \Delta+2\}$. There are two subcases under consideration.
(i) $5 \notin \phi(y)$.

By the symmetry of $1,2,3$ and 4 , we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=2$. If we can find a color in $[\Delta+2] \backslash F(x y)=$ $\{6,7, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise, for every $\theta \in\{6,7, \ldots, \Delta+2\}$, there is $(1, \theta, x y)$ or $(2, \theta, x y)$-critical paths under ϕ. It follows that $\{6,7, \ldots, \Delta+2\} \subseteq S_{x x_{1}} \cup S_{x x_{2}}$. Since $d\left(x_{1}\right)=d\left(x_{2}\right)=3,\left|S_{x x_{1}}\right|=\left|S_{x x_{2}}\right|=2$. Without loss of generality, we may assume that $S_{x x_{1}}=\{6,7\}$ and $8 \in S_{x x_{2}}$. Now, by recoloring $x x_{1}$ with 8 , we obtain a new acyclic edge coloring of G^{\prime}, under which, a color in $\{6,7\} \backslash S_{x x_{2}}$ would be valid for $x y$.
(ii) $5 \in \phi(y)$.

By the symmetry of $1,2,3$ and 4 , we may assume that $\phi\left(y y_{1}\right)=1$ and $\phi\left(y y_{2}\right)=5$. If we can find a color in $[\Delta+2] \backslash F(x y)=\{6,7, \ldots, \Delta+2\}$ that is valid for $x y$ under ϕ, then we are done. Otherwise, for every $\theta \in\{6,7, \ldots, \Delta+2\}$, there is a $(1, \theta, x y)$ - or a $(5, \theta, x y)$-critical path under ϕ. If there is a color $\beta \in\{6,7, \ldots, \Delta+2\} \backslash S_{y_{1}}$, then there is a $(5, \beta, x y)$ critical path under ϕ. It follows that there is no ($5, \beta, y y_{1}$)-critical path under ϕ by Fact 1 . Now, by recoloring $y y_{1}$ with β, we obtain a new acyclic edge coloring of G^{\prime}, and return to (1). So $\{6,7, \ldots, \Delta+2\} \subseteq S_{y y_{1}}$. Similarly, $\{6,7, \ldots, \Delta+2\} \subseteq S_{y y_{2}}$. It follows that $\Delta-3=|\{6,7, \ldots, \Delta+2\}| \leq \min \left\{\left|S_{y y_{1}}\right|,\left|S_{y y_{2}}\right|\right\}=3$, i.e., $\Delta \leq 6$; hence $\Delta=6$, and one of $S_{y y_{1}}$ and $S_{y y_{2}}$ is equal to $\{6,7,8\}$, and at least one of 2,3 and 4 is not contained in $S_{y y_{1}} \cup S_{y y_{2}}$ (otherwise $\Delta>6$). Now by recoloring $y y_{2}$ with a color in $\{2,3,4\} \backslash\left(S_{y y_{1}} \cup S_{y y_{2}}\right)$, we obtain a new acyclic edge coloring of G^{\prime}, and return to (i).

Lemma 8. G has no ($2,5^{-}$)-edge.
Proof. Suppose to the contrary that $x y$ is a $\left(2,5^{-}\right)$-edge with $d(x)=2$. Let z be the neighbor of x other than y. Without loss of generality, we may assume that $d(y)=5$ and $y_{i}, i=1,2,3,4$, the four neighbors of y other than x. Let $G^{\prime}=G-x y$. By the minimality of G, G^{\prime} has an acyclic edge coloring ϕ using colors from the color set [$\Delta+2$]. We may assume that $\phi\left(y y_{i}\right)=i, i=1,2,3,4$. If $\phi(x z) \notin\{1,2,3,4\}$, then we can color $x y$ with a color from $[\Delta+2] \backslash\{1,2,3,4, \phi(x z)\}$ as $|[\Delta+2] \backslash\{1,2,3,4, \phi(x z)\}|=(\Delta+2)-5=\Delta-3 \geq d(y)-3=5-3=2$, giving an acyclic edge coloring of G using $\Delta+2$ colors, a contradiction. Thus, $\phi(x z) \in\{1,2,3,4\}$.

Without loss of generality, we may assume that $\phi(x z)=1$ and, for $i=1,2,3,4, d\left(y_{i}\right)=d(z)=\Delta$. If ([$\left.\Delta+2\right] \backslash$ $\{1,2,3,4\}) \backslash S_{y y_{1}} \neq \emptyset$, then we can color $x y$ with a color $\theta \in([\Delta+2] \backslash\{1,2,3,4\}) \backslash S_{y y_{1}}$, giving an acyclic edge coloring of G using colors from $[\Delta+2]$, a contradiction. So $([\Delta+2] \backslash\{1,2,3,4\}) \backslash S_{y y_{1}}=\emptyset$. Namely, $\{5,6, \ldots, \Delta+2\} \subset S_{y y_{1}}$. Since G is not acyclic edge $(\Delta+2)$-colorable, for every $i \in\{5,6, \ldots, \Delta+2\}$, there is a ($1, i, x y$)-critical path passing through $x z$ under ϕ. It follows that $\{5,6, \ldots, \Delta+2\} \subset S_{x z}$. Without loss of generality, we may assume that $S_{x z}=\{4,5,6, \ldots, \Delta+2\}$. If $\{5,6, \ldots, \Delta+2\} \backslash \phi\left(y_{2}\right) \neq \emptyset$, then we can recolor $x z$ with 2 and color $x y$ with a color in $\{5,6, \ldots, \Delta+2\} \backslash \phi\left(y_{2}\right)$, giving an acyclic edge coloring of G using colors from $[\Delta+2]$, a contradiction. So $\{5,6, \ldots, \Delta+2\} \backslash \phi\left(y_{2}\right)=\emptyset$, i.e., $\{5,6, \ldots, \Delta+2\} \subset S_{y y_{2}}$. Similarly, $\{5,6, \ldots, \Delta+2\} \subset S_{y y_{3}}$.

Let us prove that $\{5,6, \ldots, \Delta+2\} \subset S_{y y_{4}}$, too. If not, say $5 \notin S_{y y_{4}}$, then we can recolor $y y_{4}$ with 5 , getting a new proper edge coloring ϕ^{\prime} of G^{\prime} that differs from ϕ only on $y y_{4}$. We are going to show that ϕ^{\prime} is also acyclic, i.e., there is no bichromatic cycle under ϕ^{\prime}. Suppose to the contrary that C is a bichromatic cycle under ϕ^{\prime}. As ϕ is acyclic, C must be colored with 5 and a color $\alpha \in\{1,2,3\}$. If $\alpha=1$, then there is a ($1,5, y y_{4}$)-critical path under ϕ. By Fact 1 , there is no $(1,5, y x)$-critical path under ϕ (note that $x \neq y_{4}$). However, there has already been a ($1,5, y x$)-critical path under ϕ, a contradiction. Suppose $\alpha=2$. Clearly there is a $\left(2,5, y y_{4}\right)$-critical path under ϕ. This implies that there is no $(2,5, y, z)$-maximal chromatic path by Fact 1 . (Note that $z \neq y_{4}$ since otherwise $2 \in \phi\left(y_{4}\right)=\phi(z)$ contradicting $2 \notin \phi(z)$.) Then we can recolor $x z$ with 2 and then color $x y$ with 5 , modifying ϕ into an acyclic edge coloring of G using colors from [$\Delta+2$], a contradiction. Similar argument tells us that $\alpha \neq 3$. Hence ϕ^{\prime} is acyclic indeed. Now, if 4 is valid for edge $x y$ under ϕ^{\prime}, then we are done. Otherwise, there is a ($1,4, x y$)-critical path under ϕ as well as under ϕ^{\prime}. It follows that $4 \in \phi\left(y_{1}\right)$. By recoloring $x z$ with 2 (resp. 3), we know that $4 \in \phi\left(y_{2}\right)$ (resp. $4 \in \phi\left(y_{3}\right)$). To conclude, $S_{y y_{i}}=S_{x z}=\{4,5, \ldots, \Delta+2\}$ for $i=1,2,3$ under ϕ. Now, by exchanging the colors on $y y_{1}$ and $y y_{2}$, we obtain a new proper edge coloring ϕ_{1} of G^{\prime} from ϕ. If ϕ_{1} is acyclic, then 5 is valid for $x y$. Otherwise, there is either a $(4,1)$-bichromatic cycle or a $(4,2)$-bichromatic cycle under ϕ_{1}. It follows that there is either a $\left(4,1, y y_{2}\right)$-critical path P_{12} or a $\left(4,2, y y_{1}\right)$-critical path P_{21} under ϕ. Similar argument can yield that there is either a (4, 1, $y y_{3}$)-critical path P_{13} or a $\left(4,3, y y_{1}\right)$-critical path P_{31} under ϕ. Also note that, by recoloring $x z$ with 2 , arguing as
above, there is either a $\left(4,2, y y_{3}\right)$-critical path P_{23} or a $\left(4,3, y y_{2}\right)$-critical path P_{32} under ϕ. Without loss of generality, we may assume that P_{12} exists under ϕ. By Fact $1, P_{13}$ does not exist, hence P_{31} exists, by the same reason, P_{32} does not exist, P_{23} exists, hence P_{21} does not exists by Fact 1 under ϕ. Now, by recoloring $y y_{1}, y y_{2}, y y_{3}$ with $2,3,1$, respectively, we obtain a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. This proves $\{5,6, \ldots, \Delta+2\} \subset S_{y y_{4}}$.

Now let α_{i} be the unique uncertain color in $\phi\left(y_{i}\right), i \in\{1,2,3,4\}$. By the property of ϕ, these uncertain colors cannot be identical since they all are in $\{1,2,3,4\}$. We shall complete the proof by distinguishing three cases as follows.
(1) Exactly three of the four uncertain colors are identical.

Let the three uncertain identical colors be equal to α, and β the remaining color of the four uncertain colors.
We first consider the case $\alpha_{4}=\beta$. Clearly $\alpha=4$; hence $\beta \in\{1,2,3\}$. If $\beta=1$, then we first recolor $x z$ with 2 , then exchange the colors on $y y_{2}$ and $y y_{3}$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. Suppose $\beta \in\{2,3\}$. Without loss of generality, we may assume that $\beta=2$. In this case, we can exchange the colors on $y y_{1}$ and $y y_{3}$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$.

We next consider the case $\alpha_{4}=\alpha$. Note that, if we recolor $x z$ with 2 or 3 , then we obtain a new acyclic edge coloring of G^{\prime} that differs from ϕ only on $x z$. Thus $1,2,3$ are symmetric. Without loss of generality, we may assume that $\alpha_{1}=\beta$. Clearly $\alpha=1$; hence $\beta \in\{2,3,4\}$. So either $\beta \neq 2$ or $\beta \neq 3$. Without loss of generality, we may assume that $\beta \neq 2$. Now we first recolor $x z$ with 2, then exchange the colors on $y y_{2}$ and $y y_{4}$ if $\beta=3$ or exchange the colors on $y y_{2}$ and $y y_{3}$ if $\beta=4$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$.
(2) At least one pair of the four uncertain colors are the same.

Let α be the same color or one of the two same colors among the four uncertain colors.
We first consider the case $\alpha_{4}=\alpha$. Clearly $\alpha_{4} \in\{1,2,3\}$. Since $1,2,3$ are symmetric, we may assume that $\alpha=1$ and $\alpha_{3}=\alpha=1$. If $\alpha_{1} \notin\{3,4\}$, then we first recolor $x z$ with 3 , and then exchange the colors on $y y_{3}$ and $y y_{4}$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. Suppose $\alpha_{1}=3(4)$. In this case, we first recolor $x z$ with 2 , then exchange the colors on $y y_{2}$ and $y y_{4}$ if $\alpha_{2}=3$ or exchange the colors on $y y_{2}$ and $y y_{3}$ if $\alpha_{2}=4$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$.

We next consider the case α_{4} is distinct from the other three uncertain colors. Clearly $\alpha_{4} \in\{1,2,3\}$. Since 1,2 and 3 are symmetric, we may assume that $\alpha_{4}=1$; hence $\alpha \in\{2,3,4\}$. If $\alpha=4$, then by the symmetry of 1,2 and 3 , we may assume that $\alpha_{1}=\alpha_{2}=4$, hence $\alpha_{3}=2$, and then we only need exchange the colors on $y y_{1}$ and $y y_{3}$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. Suppose $\alpha \in\{2,3\}$. Without loss of generality, we may assume that $\alpha=2$, hence $\alpha_{1}=\alpha_{3}=\alpha=2$. Thus $\alpha_{2} \in\{3,4\}$. If $\alpha_{2}=4$, then we exchange the colors on $y y_{1}$ and $y y_{3}$; otherwise $\alpha_{2}=3$, then we first recolor $x z$ with 3 , and then exchange the colors on $y y_{3}$ and $y y_{4}$, obtaining a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$.
(3) The four uncertain colors are distinct.

Clearly $\alpha_{4} \in\{1,2,3\}$. By the symmetry of 1,2 and 3 , we may assume that $\alpha_{4}=1$. Clearly $\alpha_{1} \in 2,3,4$. If $\alpha_{1}=4$, then $\alpha_{2}=3$ and $\alpha_{3}=2$. Now, by exchanging the colors on $y y_{1}$ and $y y_{2}$, we obtain a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. So $\alpha_{1} \in\{2,3\}$. Without loss of generality, we may assume that $\alpha_{1}=2$. In this case, $\alpha_{2}=3$ and $\alpha_{3}=4$. Now, by recoloring $y y_{1}, y y_{2}, y y_{3}, y y_{4}$ with $3,4,1,2$, respectively, we obtain a new acyclic edge coloring of G^{\prime}, under which, 5 is valid for $x y$. This completes the proof.

Lemma 9. Let $d \geq 6$ be an integer and x a d-vertex in G. If x has a 2-neighbor y and $a 3^{-}$-neighbor y^{\prime}. Then x has at most $(d-6)$ 2-neighbors other than y and y^{\prime}.

Proof. Let $v_{1}, v_{2}, \ldots, v_{d-1}$ be the neighbors of x other than y, and z the neighbor of y other than x. As before, $G^{\prime}=G-x y$ and ϕ an acyclic edge coloring of G^{\prime} using colors from [$\left.\Delta+2\right]$. Without loss of generality, we may assume that $\phi\left(x v_{i}\right)=i$ for $i=1,2, \ldots, d-1$. Suppose to the contrary that x has at least $(d-5) 2$-neighbors other than y and y^{\prime}. For convenience, let $v_{1}, v_{2}, \ldots, v_{d-5}$ be 2 -neighbors of x other than y and y^{\prime}, and $y^{\prime}=v_{d-4}$. Without loss of generality, we may assume that $d\left(v_{d-4}\right)=3$. Let v_{i}^{\prime} be the neighbor of v_{i} other than x for $i=1,2, \ldots, d-5$, and $v_{d-4}^{\prime}, v_{d-4}^{\prime \prime}$ the two neighbors of v_{d-4} other than x. Let $I=\{1,2, \ldots, d-4\}, J=\{d-3, d-2, d-1\}$ and $K=\{d, d+1, \ldots, \Delta+2\}$. According to the value of $\phi(y z)$, there are three cases under consideration.
(1) $\phi(y z) \in K$.

In this case, $|\phi(x) \cup\{\phi(y z)\}|=(d-1)+1=d<\Delta+2$. So we can find a color in $[\Delta+2] \backslash(\phi(x) \cup\{\phi(y z)\})$ that is valid for $x y$ under ϕ.
(2) $\phi(y z) \in I$.

Assume that $\phi(y z)=i$. Then $\left|\phi\left(v_{i}\right)\right| \leq 3$ (more precisely, $\left|\phi\left(v_{i}\right)\right|=3$ if $i=d-4 ; 2$ otherwise). Since $\left|\phi(x) \cup \phi\left(v_{i}\right)\right| \leq$ $d-1+2=d+1<\Delta+2$, we can find a color in $[\Delta+2] \backslash\left(\phi(x) \cup \phi\left(v_{i}\right)\right)$ that is valid for $x y$ under ϕ (note that $\left.\phi(y z)=i \in \phi\left(v_{i}\right)\right)$.
(3) $\phi(y z) \in J$.

This is an involving case to deal with. To exclude it, we need the following three claims.
Claim 1. $S_{y z}=I \cup K$.
If there is a color $i \in I \backslash S_{y z}$, by recoloring $y z$ with i, we then obtain a new acyclic edge coloring of G^{\prime} using colors from [$\Delta+2$], and then return to (2). So $I \subset S_{y z}$. If there is a color $k \in K \backslash S_{y z}$, by recoloring $y z$ with k, we then obtain a new
acyclic edge coloring of G^{\prime} using colors from [$\Delta+2$], and then return to (1). So $K \subset S_{y z}$. To conclude, $I \cup K \subseteq S_{y z}$. Since $\left|S_{y z}\right| \leq \Delta-1$ and $|I \cup K|=\Delta-1, S_{y z}=I \cup K$.

Claim 2. For every $j \in J, S_{x v_{j}}=I \cup K$.
Clearly, Claim 2 directly follows from the following two assertions: for every $j \in J$, there exists
(a) a (j, k, x, z)-maximal bichromatic path under ϕ for every $k \in K$;
(b) a (j, i,x,z)-maximal bichromatic path under ϕ for every $i \in I$.

Suppose to the contrary that there is no (j_{0}, k_{0}, x, z)-maximal bichromatic path under ϕ for some $j_{0} \in J, k_{0} \in K$. Observe that if $\phi(y z) \neq j_{0}$, then by recoloring $y z$ with j_{0}, we obtain a new acyclic edge coloring of G^{\prime} that differs from ϕ only on $y z$. Hence we may assume that $\phi(y z)=j_{0}$. Thus there is no ($j_{0}, k_{0}, x y$)-critical path under ϕ. It follows that k_{0} is valid for $x y$ under ϕ, a contradiction proving assertion (a).

Suppose to the contrary that there is no (j_{0}, i_{0}, x, z)-maximal bichromatic path under ϕ for some $j_{0} \in J, i_{0} \in I$. As above, we may assume that $\phi(y z)=j_{0}$. So there is no ($j_{0}, i_{0}, x y$)-critical bichromatic path under ϕ. If we can recolor $x v_{i_{0}}$ with a suitable color obtaining a new acyclic edge coloring of G^{\prime}, say ϕ^{\prime}, which differs from ϕ only on edge $x v_{i_{0}}$, then i_{0} is valid for $x y$ under ϕ^{\prime}, a contradiction proving assertion (b). Below we show that we can do so indeed.

According to the value of i_{0}, there are two possibilities.
(i) $i_{0} \neq d-4$.

In this case, without loss of generality, we may assume that $i_{0}=1$. If $\phi\left(v_{1} v_{1}^{\prime}\right) \in K$, then we can recolor $x v_{1}$ with a color $k \in K \backslash\left\{\phi\left(v_{1} v_{1}^{\prime}\right)\right\}$, as required. If $\phi\left(v_{1} v_{1}^{\prime}\right)=i^{\prime} \in I$, then we can recolor $x v_{1}$ with a color in $K \backslash S_{x v_{i}^{\prime}}$ since $|K| \geq 3$ and $\left|S_{x v_{i^{\prime}}}\right| \leq 2$. Finally suppose $\phi\left(v_{1} v_{1}^{\prime}\right)=j^{\prime} \in J$. By assertion (a), there is a $\left(j^{\prime}, k, x, z\right)$-maximal bichromatic path under ϕ for every $k \in K$. By Fact 1 , there is no $\left(j^{\prime}, k, x, v_{1}\right)$-maximal bichromatic path under ϕ for every $k \in K$. It follows that we can recolor $x v_{1}$ with any color $k \in K$.
(ii) $i_{0}=d-4$.

Let $S_{x v_{d-4}}=\left\{i_{1}, i_{2}\right\}$. According to the values of i_{1} and i_{2}, there are $2^{3}=8$ subcases under consideration. In each subcase, as above, we can find a color $k \in K$ to recolor $x v_{d-4}$ as required. For example, if $\left|\left\{i_{1}, i_{2}\right\} \cap I\right|=2$, then we can choose a color $k \in K \backslash\left\{\phi\left(v_{i_{1}} v_{i_{1}^{\prime}}\right), \phi\left(v_{i_{2}} v_{i_{2}^{\prime}}\right)\right\}$; if $\left|\left\{i_{1}, i_{2}\right\} \cap J\right|=2$, then we can choose any color $k \in K$ by assertion (a) as above; if $\left|\left\{i_{1}, i_{2}\right\} \cap K\right|=2$, then we can choose a color $k \in K \backslash\left\{i_{1}, i_{2}\right\}$, etc.

We are intent to destroy some $(j, k, x y)$-critical paths under ϕ such that k is valid for $x y$ under a new acyclic edge coloring of G^{\prime}. This first requires us to exchange colors on two of edges $x v_{j}, j \in J$. However it may yield some new (j, i)-bichromatic cycles for some $i \in I$. Intuitively, we should first avoid to produce ($j, d-4$)-bichromatic cycles.

Claim 3. We can exchange some two of the colors on $x v_{d-1}, x v_{d-2}$ and $x v_{d-3}$ to obtain a proper edge coloring of G^{\prime}, under which there is no ($j, d-4$)-bichromatic cycle for every $j \in J$.

For convenience, we rewrite $J=\left\{j_{1}, j_{2}, j_{3}\right\}$. If $\left|S_{x v_{d-4}} \cap J\right| \leq 1$, say $S_{x v_{d-4}} \cap J=\emptyset$, or $S_{x v_{d-4}} \cap J=\left\{j_{1}\right\}$, then we only need to exchange the two colors on $x v_{j_{2}}$ and $x v_{j_{3}}$. Suppose $S_{x v_{d-4}} \subset J$. Without loss of generality, we may assume that $S_{x v_{d-4}}=\left\{j_{1}, j_{2}\right\}$. Now by exchanging the colors on $x v_{j_{1}}$ and $x v_{j_{2}}$, we obtain a new proper edge coloring ϕ^{\prime} of G^{\prime}. If there is neither $\left(j_{1}, d-4\right)$ - nor $\left(j_{2}, d-4\right)$-bichromatic cycle under ϕ^{\prime}, then we are done. Otherwise there is a $\left(j_{1}, d-4\right)$-bichromatic cycle, or a ($j_{2}, d-4$)-bichromatic cycle (or both bichromatic cycles) under ϕ^{\prime}. Without loss of generality, we may assume that there is a $\left(j_{1}, d-4\right)$-bichromatic cycle under ϕ^{\prime}. Clearly there is a $\left(d-4, j_{1}, x v_{j_{2}}\right)$-critical path under ϕ as well as under ϕ^{\prime}. By Fact 1 , there is no $\left(d-4, j_{1}, x v_{j_{3}}\right)$-critical path under ϕ. Now by exchanging the colors on $x v_{j_{1}}$ and $x v_{j_{3}}$, we obtain a new proper edge coloring of G^{\prime}, under which there is no $(j, d-4)$-bichromatic cycle for every $j \in J$. This proves Claim 3 .

By Claims $1-3$, we know that G^{\prime} admits a proper edge coloring ψ that differs from ϕ only on two of the three edges $x v_{d-3}, x v_{d-2}$ and $x v_{d-1}$, under which, there is no $((d-4), j)$-bichromatic cycles for every $j \in J$. By symmetry, we may assume that the two edges, on which ψ and ϕ differs, are $x v_{d-1}$ and $x v_{d-2}$. More precisely, $\psi\left(x v_{d-1}\right)=\phi\left(x v_{d-2}\right)=d-2$, $\psi\left(x v_{d-2}\right)=\phi\left(x v_{d-1}\right)=d-1, \psi(e)=\phi(e)$, otherwise.

Recall that the motivation of Claim 3 is to destroy the $(j, k, x y)$-critical path under ϕ for every $k \in K$ when $\phi(x y)=j$. Also observe that under ϕ we can freely recolor $x y$ with any $j \in J$ in G^{\prime}, still giving an acyclic edge coloring of G^{\prime}. So now we may assume that $\psi(x y)=\phi(x y)=d-1$ and that all the $(d-1, k, x y)$-critical path for $k \in K$ under ϕ are destroyed under ψ. If ψ is acyclic, then every color in K is valid for $x y$ under ψ, we are done. Suppose ψ is not acyclic. We are going to show that we can make ψ into an acyclic edge coloring of G, under which, there is at least one color $k \in K$ that is valid for $x y$.

Let I_{1} (resp. I_{2}) be the subset of I such that, for every $i_{1} \in I_{1}$ (resp. $i_{2} \in I_{2}$), there is a $\left(d-1, i_{1}\right)$ - (resp. $\left(d-2, i_{2}\right)$)-bichromatic cycle under ψ, and $n_{i}=\left|I_{i}\right|, i=1,2$. According to the values of n_{1} and n_{2}, there are six cases under consideration.
(0) $n_{1} \geq 2, n_{2}=0$.

Without loss of generality, we may assume that the bichromatic cycles under ψ are ($i_{1}, d-1$)-bichromatic cycle for $i_{1} \in\left\{1,2, \ldots, n_{1}\right\}$. By taking a rotation of the colors $1,2, \ldots, n_{1}$ on edges $x v_{1}, x v_{2}, \ldots, x v_{n_{1}}$ (i.e., assigning i to $x v_{i+1}$ for $i=1,2, \ldots, n_{1}-1$ and n_{1} to $x v_{1}$), we destroy all the present bichromatic cycles, and produce no new bichromatic cycles (because $d\left(v_{i}\right)=2$, and $\left.\psi\left(v_{i} v_{i}^{\prime}\right)=d-1, i=1,2, \ldots, n_{1}\right)$, hence make ψ into an acyclic edge coloring of G^{\prime}, under which, every color $k \in K$ is valid for $x y$.
(i) $n_{1}=1, n_{2}=0$.

Without loss of generality, we may assume that the unique bichromatic cycle under ψ is a ($1, d-1$)-bichromatic cycle. Observe that under ψ there is a $\left(d-1,1, x v_{1}\right)$-critical path. By Fact 1 , there is no $(d-1,1, x y)$-critical path under ψ. If we can find a color $k \in K$ such that recoloring $x v_{1}$ with k under ψ results in a new acyclic edge coloring ϕ_{1} of G^{\prime}, then 1 is valid for $x y$ under ϕ_{1}, we are done. So we assume that for every $k \in K$, there is a ($d-1, k, x v_{1}$)-critical path under ψ. It follows that $K \subset \psi\left(v_{1}^{\prime}\right)\left(=\phi\left(v_{1}^{\prime}\right)\right)$. Let us prove $I \subset \psi\left(v_{1}^{\prime}\right)$. Clearly $1 \in \psi\left(v_{1}^{\prime}\right)$. Suppose there is a color $i \in I \backslash\{1\}$ that is not in $\psi\left(v_{1}^{\prime}\right)$. We recolor $v_{1} v_{1}^{\prime}$ with $i, x v_{1}$ with a color $k \in K \backslash\left\{\phi\left(v_{i}\right)\right\}$ under ψ, obtaining an acyclic edge coloring of G^{\prime}, under which 1 is valid for $x y$. This proves $I \subset \psi\left(v_{1}^{\prime}\right)\left(=\phi\left(v_{1}^{\prime}\right)\right)$.

Recall that there is already a ($d-3,1, x, z$)-maximal bichromatic path under ϕ (as well as under ψ), by Fact 1 , there is no ($d-3,1, x, v_{1}^{\prime}$)-maximal bichromatic path under ϕ (as well as under ψ) (note that $z \neq v_{1}^{\prime}$ since otherwise $\phi(y z)=\phi\left(v_{1} v_{1}^{\prime}\right)=d-1$ implies $y=v_{1}$). Now we recolor $v_{1} v_{1}^{\prime}$ with $d-3$ under ψ, obtaining a new acyclic edge coloring of G^{\prime}, under which every $k \in K$ is valid for $x y$.
(ii) $n_{1}=0, n_{2}=1$.

By recoloring $y z$ with $d-2$, we obtain a new acyclic edge coloring of G^{\prime} that differs from ϕ only on $y z$, under which (ii) turns into (i).
(iii) $n_{1} \geq 2, n_{2}=1$.

Without loss of generality, we may assume that the bichromatic cycles under ψ are ($i_{1}, d-1$)-bichromatic cycle for $i_{1} \in\left\{1,2, \ldots, n_{1}\right\}$ and a $(d-5, d-2)$-bichromatic cycle C. By taking a rotation of colors $1,2, \ldots, n_{1}$ on edges $x v_{1}, x v_{2}, \ldots, x v_{n_{1}}$, we destroy all the ($d-1, i_{1}$)-bichromatic cycles, where $i_{1} \in I_{1}$, and obtain a new proper edge coloring φ of G^{\prime} that differs from ψ only on $x v_{1}, x v_{2}, \ldots, x v_{n_{1}}$, under which there is exactly one bichromatic cycle C, hence return to (ii).
(iv) $n_{1}=n_{2}=1$.

Let C_{1} and C_{2} be the only two bichromatic cycles under ψ. Without loss of generality, we may assume that C_{1} is a ($d-1,1$)bichromatic cycle and C_{2} is a $(d-2,2)$-bichromatic cycle. In most of the subcases below, we are going to show that we can destroy C_{2}, and then return to case (i).

If there is a color $k \in K$ that is not in $\psi\left(v_{2}^{\prime}\right)$, then we recolor $v_{2} v_{2}^{\prime}$ with k under ψ. This action clearly destroys C_{2} and does not produce any new bichromatic cycle as $d\left(v_{2}\right)=2$ and $\psi(x) \cap K=\emptyset$, hence return to case (i). So we may assume that $K \subset \psi\left(v_{2}^{\prime}\right)$. Clearly, $2 \in \psi\left(v_{2}^{\prime}\right)$.

Suppose there is a color $i \in I \backslash\{2, d-4\}$ that is not in $\psi\left(v_{2}^{\prime}\right)$. Clearly, by recoloring $v_{2} v_{2}^{\prime}$ with i under ψ, we destroy C_{2}. If this operation results in no new bichromatic cycle, then we are done. Otherwise, there is a ($2, i$)-bichromatic cycle C_{3} under the new proper edge coloring φ obtained by recoloring $v_{2} v_{2}^{\prime}$ with i under ψ. If there is a color $k \in K$ that is not in $\varphi\left(v_{i}^{\prime}\right)$, then we recolor $v_{i} v_{i}^{\prime}$ with k under φ, destroying C_{3}, and return to (i). So $K \subset \varphi\left(v_{i}^{\prime}\right)$. If $1 \notin \varphi\left(v_{i}^{\prime}\right)$, then we recolor $v_{i} v_{i}^{\prime}$ with 1 under φ, destroying C_{3}, and return to (i). So $1 \in \varphi\left(v_{i}^{\prime}\right)$. Clearly, $2, i \in \varphi\left(v_{i}^{\prime}\right)$. If there is a color $i^{*} \in I \backslash\{1,2, i, d-4\}$ that is not in $\varphi\left(v_{i}^{\prime}\right)$, then we recolor $v_{i} v_{i}^{\prime}$ with i^{*} under φ, obtaining a new proper edge coloring φ^{\prime} of G^{\prime} : if there is exactly one bichromatic cycle C_{1} under φ^{\prime}, then we return to (i); otherwise, except C_{1}, there is another (i, i^{*})-bichromatic cycle under φ^{\prime}. But then we can exchange the colors on $x v_{2}$ and $x v_{i^{*}}$ under φ^{\prime}, obtaining a new proper edge coloring of G^{\prime}, under which there is exactly one bichromatic cycle C_{1}, hence return to (i). Now $(I \backslash\{d-4\}) \cup K \subset \varphi\left(v_{i}^{\prime}\right)$. If $d-3 \notin \varphi\left(v_{i}^{\prime}\right)$, then we recolor $v_{i} v_{i}^{\prime}$ with $d-3$, obtaining a new proper edge coloring of G^{\prime}, under which there is exactly one bichromatic cycle C_{1}. (Otherwise, there is a $(d-3, i)$-bichromatic cycle, hence there is a $\left(d-3, i, x, v_{i}^{\prime}\right)$-maximal bichromatic path under ϕ. By Fact 1 , there is no ($d-3,2, x, z$)-maximal bichromatic path under ϕ as $z \neq v_{i}^{\prime}$. This contradicts assertion (b) in Claim 2), hence return to (i). Thus $(d-3) \in \varphi\left(v_{i}^{\prime}\right)$. If $d-2 \notin \varphi\left(v_{i}^{\prime}\right)$, then we recolor $v_{i} v_{i}^{\prime}$ with $d-2$ under φ, obtaining a new proper edge coloring $\varphi^{\prime \prime}$ of G^{\prime} : if there is exactly one bichromatic cycle C_{1} under $\varphi^{\prime \prime}$, then we return to (i); otherwise, except C_{1}, there is a ($d-2, i$)bichromatic cycle under $\varphi^{\prime \prime}$. Now by recoloring $v_{2} v_{2}^{\prime}$ with $d-2$ and exchanging the colors on $x v_{2}, x v_{i}$ under $\varphi^{\prime \prime}$, we obtain a new proper edge coloring of G^{\prime}, under which there is exactly one bichromatic cycle C_{1}, hence return to (i). It follows that $d-1 \notin \varphi\left(v_{i}^{\prime}\right)$. Now we recolor $v_{i} v_{i}^{\prime}$ with $d-1$ under φ, obtaining a new proper edge coloring $\varphi^{\prime \prime \prime}$ of G^{\prime} : if there is exactly one bichromatic cycle C_{1} under $\varphi^{\prime \prime \prime}$, then we return to (i); otherwise, except C_{1}, there is another ($d-1, i$)-bichromatic cycle under $\varphi^{\prime \prime \prime}$, hence return to (0). So far, we have proved $(I \backslash\{d-4\}) \cup K \subset \psi\left(v_{2}^{\prime}\right)$.

If $d-1 \notin \psi\left(v_{2}^{\prime}\right)$, then by recoloring $v_{2} v_{2}^{\prime}$ with $d-1$ under ψ, we obtain a new proper edge coloring ψ^{\prime} of G^{\prime} : if there is exactly one bichromatic cycle C_{1} under ψ^{\prime}, then we return to (i); otherwise, except C_{1}, there is another ($2, d-1$)-bichromatic cycle under ψ^{\prime}, hence return to case (0). So $d-1 \in \psi\left(v_{2}^{\prime}\right)$. It follows that $d-3 \notin \psi\left(v_{2}^{\prime}\right)$. Now recoloring $v_{2} v_{2}^{\prime}$ with $d-3$ under ψ, C_{2} is destroyed, and no new bichromatic cycle is produced (otherwise, there is a $(d-3,2$)-bichromatic cycle, hence there is a $\left(d-3,2, x, v_{2}^{\prime}\right)$-maximal bichromatic path under ϕ; by Fact 1 , there is no $(d-3,2, x, z)$-maximal bichromatic path under ϕ as $z \neq v_{2}^{\prime}$. This contradicts assertion (b) in Claim 2), hence return to case (i).
(v) $n_{1} \geq 2, n_{2} \geq 2$.

In this case, we only need make two rotations as in case (0).
(vi) $n_{1}=1, n_{2} \geq 2$.

By recoloring $y z$ with $d-2$, we obtain a new acyclic edge coloring of G^{\prime} that differs from ϕ only on $y z$, which turns (vi) into (iii).
(vii) $n_{1}=0, n_{2} \geq 2$.

Now by recoloring $y z$ with $d-2$, we obtain a new acyclic edge coloring of G^{\prime} that differs from ϕ only on $y z$, which turns (vii) into (0).

Lemma 9 is proved.

3. Discharging

To complete the proof of Theorem 1, we shall derive a contradiction by a discharging procedure proceeded in G.
First, we define the initial charge function μ on $V=V(G)$ by letting $\mu(v)=d(v)-4$ for every $v \in V$. Since $\operatorname{mad}(G)<4$, the sum of the initial charge is negative. If we can make suitable discharging rules to redistribute charges among vertices so that the final charge $\mu^{\prime}(v)$ of every vertex $v \in V$ is nonnegative, then we get a contradiction completing the proof.

The needed discharging rules are as follows.
R1. Every 2 -vertex gets 1 from each of its 6^{+}-neighbors.
R2. Let v be a 3 -vertex. If v is special, then it gets $\frac{1}{2}$ from each of its 5^{+}-neighbors. Otherwise, v gets $\frac{1}{3}$ from each of its 5^{+}-neighbors.
We are going to show that $\mu^{\prime}(v) \geq 0$ for all $v \in V$. Recall that every vertex in G has degree at least 2 .
Let v be a 2-vertex. By Lemma 8, the two neighbors of v are 6^{+}-vertices. By R1, $\mu^{\prime}(v) \geq-2+2 \times 1=0$.
Let v be a 3 -vertex. By Lemma $1, v$ has no 3^{-}-neighbors. By Lemma 3, v has at most one 4 -neighbor. If v has a 4-neighbor, i.e., v is special, then $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{2}=0$ by R2. Otherwise, $\mu^{\prime}(v) \geq-1+3 \times \frac{1}{3}=0$ by R2.

Let v be a 4-vertex. By our rules, v gives and gets nothing. Hence, $\mu^{\prime}(v)=\mu(v)=0$.
Let v be a 5^{+}-vertex. If v has no 3^{-}-neighbor, then v gives and gets nothing, we have $\mu^{\prime}(v)=\mu(v) \geq 5-4=1>0$. Suppose v has at least one 3^{-}-neighbor.

First assume that v has no 2-neighbor. If $d(v) \geq 8$, then $\mu^{\prime}(v) \geq \mu(v)-d(v) \times \frac{1}{2}=d(v)-4-\frac{d(v)}{2}=\frac{d(v)-8}{2} \geq 0$ by R2. Suppose $d(v)=7$: if v has at least one special-neighbor, by Lemma $6, \mu^{\prime}(v) \geq \mu(v)-6 \times \frac{1}{2}=7-4-3=0$; otherwise, $\mu^{\prime}(v) \geq \mu-7 \times \frac{1}{3}=7-4-\frac{7}{3}=\frac{2}{3}>0$. Suppose $d(v)=6$: if v has at least one special-neighbor, by Lemma 7 , $\mu^{\prime}(v) \geq \mu(v)-4 \times \frac{1}{2}=6-4-2=0$; otherwise, $\mu^{\prime}(v) \geq \mu-6 \times \frac{1}{3}=6-4-2=0$. Finally suppose $d(v)=5$. By Lemma 4, v has at most three 3-neighbors. If v has at least one special-neighbor, by Lemma 5, $\mu^{\prime}(v) \geq \mu(v)-2 \times \frac{1}{2}=5-4-1=0$; otherwise, $\mu^{\prime}(v) \geq \mu(v)-3 \times \frac{1}{3}=5-4-1=0$.

Next assume that v has at least one 2 -neighbor. By Lemma $8, v$ is a 6^{+}-vertex. If v has no 3-neighbor, by Lemma $9, v$ has at most $(d(v)-4)$ 2-neighbors, hence $\mu^{\prime}(v) \geq \mu(v)-(d(v)-4) \times 1=0$. If v has exactly one 3-neighbor, by Lemma 9 , v has at most $(d(v)-5)$ 2-neighbors, giving $\mu^{\prime}(v) \geq \mu(v)-\frac{1}{2}-(d(v)-5) \times 1=\frac{1}{2}>0$. Suppose v has at least two 3-neighbors, by Lemma 2, it has at most $(d(v)-3) 3^{-}$-neighbors, we have $\mu^{\prime}(v) \geq \mu(v)-2 \times \frac{1}{2}-(d(v)-3-2) \times 1=$ $d(v)-4-1-(d(v)-5)=0$.

Theorem 1 is completely proved.

Acknowledgments

The first author was supported by the Natural Science Foundation of China, Grant No. 11271335.

References

[1] N. Alon, B. Sudakov, A. Zaks, Acyclic edge-colorings of graphs, J. Graph Theory 37 (2001) 157-167.
[2] M. Basavaraju, L.S. Chandran, Acyclic edge coloring of graphs with maximum degree 4, J. Graph Theory 61 (2009) 192-209.
[3] M. Basavaraju, L.S. Chandran, Acyclic edge coloring of triangle free planar graphs, 2010. http://arxiv.org/abs/1007.2282v1.
[4] M. Basavaraju, L.S. Chandran, N. Cohen, F. Havet, T. Müller, Acyclic edge-colouring of planar graphs, SIAM J. Discrete Math. 25 (2011) $463-478$.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[6] M. Borowiecki, A. Fiedorowicz, Acyclic edge colouring of planar graphs without short cycles, Discrete Math. 310 (2010) 1445-1455.
[7] W. Dong, B. Xu, Some results on acyclic edge coloring of plane graphs, Inform. Process. Lett. 110 (2010) 887-892.
[8] J. Fiamčík, The acyclic chromatic class of a graph, Math. Slovaca 28 (1978) 139-145.
[9] A. Fiedorowicz, M. Hałuszczak, N. Narayanan, About acyclic edge colourings of planar graphs, Inform. Process. Lett. 108 (2008) 412-417.
[10] J. Hou, G. Liu, G. Wang, Improved bounds for acyclic chromatic index of planar graphs, Discrete Appl. Math. 159 (2011) 876 -881.
[11] J. Hou, G. Liu, J. Wu, Acyclic edge coloring of planar graphs without small cycles, Graphs Combin. 28 (2012) 215-226.
[12] J. Hou, N. Roussel, J. Wu, Acyclic chromatic index of planar graphs with triangles, Inform. Process. Lett. 111 (2011) 836-840.
[13] J. Hou, J. Wu, G. Liu, B. Liu, Acyclic edge colorings of planar graphs and series-parallel graphs, Sci. China Ser. A 51 (2009) 605-616.
[14] P. Sheng, Y. Wang, On acyclic edge colorings of planar graphs without intersecting triangles, Discrete Math. 311 (2011) 2490-2495.
[15] Y. Wang, P. Sheng, Improved upper bound for acyclic chromatic index of planar graphs without 4-cycles, J. Comb. Optim. http://dx.doi.org/10.1007/s10878-012-9524-5.

[^0]: * Corresponding author.

 E-mail address: yqwang@zjnu.cn (Y. Wang).

