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a b s t r a c t

Let ∆ denote the maximum degree of a graph. Fiamčík first, Alon, Sudakov and Zaks
later conjectured that every graph is acyclically edge (∆ + 2)-colorable. In this paper, we
prove this conjecture for graphs with maximum average degree less than 4. As a corollary,
triangle-free planar graphs are acyclically edge (∆+ 2)-colorable.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. Used but undefined terminology and notation can be
found in [5].

A proper edge coloring of a graph G = (V , E) is a mapping from the edge set E of G to an available color set such that any
two adjacent edges receive distinct colors. In a proper edge coloring of G, a cycle is bichromatic if only two colors appear
on the cycle. An acyclic edge coloring of a graph G is a proper edge coloring that results in no bichromatic cycle. If an acyclic
edge coloring of G uses at most k colors, then it is called an acyclic edge k-coloring. A graph G is acyclically edge k-colorable
if it admits an acyclic edge k-coloring. The acyclic chromatic index of a graph G, denoted by χ ′

a(G), is the minimum number
k such that G is acyclically edge k-colorable. Note that if G is acyclically edge k-colorable, then E can be decomposed into k
subsets so that the union of any two of the k subsets is a forest.

The concept of acyclic edge coloring was first introduced by Fiamčík [8]. A conjecture proposed first by Fiamčík [8] and
then again by Alon et al. [1] states that, for every graph G, χ ′

a(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G.
Even for planar graphs, this conjecture remains open with large gap. For the main achievements on acyclic edge coloring of
graphs in the literature, we would like to refer the reader to the introductions of [2–4,7,9,10].

A graph is planar if it can be embedded into the plane so that its edgesmeet only at their ends. The acyclic edge colorability
for planar graphs has been extensively studied. LetGbe aplanar graph. Fiedorowicz et al. [9] proved thatχ ′

a(G) ≤ 2∆(G)+29.
Hou et al. [13] proved that χ ′

a(G) ≤ max{2∆(G) − 2,∆(G) + 22}. Recently Basavaraju et al. [4] have showed that every
planar graph G is acyclically edge (∆(G)+ 12)-colorable.

A k-cycle is a cycle of length k. A triangle is a 3-cycle. Let G be a triangle-free planar graph. Fiedorowicz et al. [9] proved
that χ ′

a(G) ≤ ∆(G) + 6. This bound was improved to ∆(G) + 5 in [7]. Hou et al. [10] showed that χ ′
a(G) ≤ ∆(G) + 3 if

∆(G) ≥ 8 (the condition∆(G) ≥ 8 was dropped in [3]).
For other interesting results on acyclic edge coloring of sparse (not necessarily planar) graphs, we refer the reader to

[2,6,11,12,14,15]. Here we would like to emphasize one result in [2]: χ ′
a(G) ≤ ∆ + 2 = 6 if G satisfies ∆(G) = 4 and

2|E(G)| ≤ 4|V (G)| − 1.
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In this paper, we improve some results stated above by proving the following result.

Theorem 1. If mad(G) := max{ 2|E(H)|
|V (H)| |H ⊆ G} < 4, then χ ′

a(G) ≤ ∆(G)+ 2.

Combining awell known fact that, for a planar graphGwith girth g (the length of the shortest cycles inG), mad(G) < 2g
g−2 ,

we immediately have the following.

Corollary 1. Every triangle-free planar graph is acyclically edge (∆+ 2)-colorable.

The rest of this section is mainly devoted to some terminology and notation used later. For a vertex v in a graph G, the
degree of v in G, denoted by dG(v) or simply d(v), is the number of edges incident with v in G. Call v a k-vertex, or a k+-vertex,
or a k−-vertex if d(v) = k, or d(v) ≥ k, or d(v) ≤ k, respectively. A k-neighbor of v is a k-vertex that is adjacent to v.

Let e = xy be an edge of Gwith two ends x and y. We call e a (d(x), d(y))-edge. G− e or G− xy is the graph obtained from
G by deleting the edge e = xy.

A partial acyclic edge coloring of G is an acyclic edge coloring of a proper subgraph of G. Let φ be a partial acyclic edge
coloring of G using colors from the color set [k] = {1, 2, . . . , k}. An (α, β)-maximal bichromatic path under φ is a non-
extendable path consisting of edges that are colored with colors α and β alternatingly. An (α, β, u, v)-maximal bichromatic
path is an (α, β)-maximal bichromatic path that starts at vertex u and ends at vertex v and the first edge on the path is
colored α. Note that under a partial acyclic edge coloring φ, if there exists an (α, β, u, v)-maximal bichromatic path, then no
edge colored β is incident with u, namely, the color β ismissing at u. Meanwhile exactly one of α and β is missing at v. The
following fact is obvious by the definition of a partial acyclic edge coloring.

Fact 1. Under a partial acyclic edge coloring φ of a graph G, given a pair of colors α and β , there is at most one (α, β)-maximal
bichromatic path containing a particular vertex v.

An edge colored α is called an α-edge. For an edge uv ∈ E(G), an (α, β, u, v)-maximal bichromatic path not passing
through uv (uv may be colored or uncolored) is called an (α, β, uv)-critical path if it starts and ends via an α-edge.

For any vertex u ∈ V (G), we define φ(u) = {φ(uz)|z ∈ NG(u)}. For an edge uv ∈ E(G), we define Suv = φ(v) \ {φ(uv)}.
Note that Suv need not to be the same as Svu.

A color θ is valid for an uncolored edge e = xy under a partial acyclic edge coloring of G if none of the adjacent edges of
e is colored θ and assigning the color θ to e = xy results in no bichromatic cycle; invalid otherwise.

2. Lemmas

Suppose Theorem 1 is false. Let G be a counterexample to Theorem 1 with the fewest edges. It is obvious that G is
connected and has no vertex of degree 1. This section is devoted to investigating some structural properties of G. Since
the first two lemmas below are known results, we directly cite them without proof.

Lemma 1 ([12]). G has no (3−, 3−)-edge.

Lemma 2 ([11]). Let x be a d-vertex and y a 2-vertex adjacent to x, where d ≥ 4. Then x is adjacent to at most (d−3)3−-vertices.

By Lemma 1, every neighbor of a 3-vertex in G is a 4+-vertex. Call a vertex in G special if it is a 3-vertex with at least one
4-neighbor.

Lemma 3. A special vertex has only one 4-neighbor.

Proof. Suppose to the contrary that x is a special vertex in G that has at least two 4-neighbors, say w and y. Let z be the
neighbor of x other than w and y, also y1, y2, y3 and w1, w2, w3 the three neighbors of y and w other than x, respectively.
Let G′

= G− xy. By the choice of G,G′ admits an acyclic edge coloring φ using colors from [∆+ 2]. Let F(xy) = φ(x)∪φ(y).
Without loss of generality, we may assume that φ(yyi) = i, i = 1, 2, 3. There are three cases under consideration.
1. |φ(x) ∩ φ(y)| = 0.

Since |φ(x) ∪ φ(y)| ≤ 2 + (∆− 1) = ∆+ 1 < ∆+ 2, there exists a color in [∆+ 2] \ (φ(x) ∪ φ(y)) that is valid for xy
under φ.
2. |φ(x) ∩ φ(y)| = 2.

Clearly |F(xy)| = |φ(y)| = |{1, 2, 3}| = 3. For convenience, we rename the neighbors of x other than y by xi, i = 1, 2.
Without loss of generality, we may assume that φ(xxi) = i, i = 1, 2. If there is a color in [∆+ 2] \ F(xy) that is valid for xy,
then we are done. Otherwise, for every θ ∈ [∆+ 2] \ F(xy), there is a (1, θ, xy)- or a (2, θ, xy)-critical path under φ. There
are two subcases under consideration.
2.1. (Sxx1 ∪ Sxx2) ∩ F(xy) = ∅.

Clearly, Sxx1 , Sxx2 ⊆ [∆+ 2] \ F(xy) = {4, 5, . . . ,∆+ 2}.
We are going to prove that Syyi = {4, 5, . . . ,∆ + 2}, i = 1, 2, 3. If there is not only a (1, 4, xy)-critical path but also

a (2, 4, xy)-critical path under φ, then we exchange the colors on xx1 and xx2, obtaining a new acyclic edge coloring of G′,
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under which 4 is valid for xy. So there is either a (1, 4, xy)-critical path or a (2, 4, xy)-critical path under φ. Similarly, for
every θ ∈ {5, 6, . . . ,∆ + 2}, there is either a (1, θ, xy)-critical path or a (2, θ, xy)-critical path under φ. Without loss of
generality, we may assume that for every 4 ≤ i ≤ k, there is a (1, i, xy)-critical path, and for every k+ 1 ≤ j ≤ ∆+ 2, there
is a (2, j, xy)-critical path under φ. Nowwe exchange the colors on xx1 and xx2, obtaining a new acyclic edge coloring φ′ of G′

that differs from φ only on xx1 and xx2. If there is a color in {4, 5, . . . ,∆+ 2} that is valid for xy under φ′, then we are done.
Otherwise for every 4 ≤ i ≤ k, there is a (2, i, xy)-critical path, and for every k + 1 ≤ j ≤ ∆+ 2, there is a (1, j, xy)-critical
path under φ′. It follows that Syy1 = {4, 5, . . . ,∆ + 2} and Syy2 = {4, 5, . . . ,∆ + 2}. By recoloring xx1 with 3, as above,
we know that {4, 5, . . . , k} ⊂ Syy3 . Similarly, by recoloring xx2 with 3, we know that {k + 1, k + 2, . . . ,∆ + 2} ⊂ Syy3 . To
conclude, Syy3 = {4, 5, . . . ,∆+ 2}.

Now by exchanging the colors on yy1 and yy3 from φ, we obtain a new acyclic edge coloring of G′, under which 4 to k is
valid for xy.
2.2. (Sxx1 ∪ Sxx2) ∩ F(xy) ≠ ∅.

Without loss of generality, let Sxx1 ∩ F(xy) ≠ ∅. It follows that at least one color in {4, 5, . . . ,∆ + 2} is missing in Sxx1 .
Without loss of generality, let 4 ∉ φ(x1). We may assume that there is a (2, 4, xy)-critical path under φ since otherwise 4 is
valid for xy. Hence 4 ∈ φ(x2) as well as φ(y2). By Fact 1, there is no (2, 4, xx1)-critical path under φ. By recoloring xx1 with 4,
we obtain a new acyclic edge coloring φ′ of G′ that differs φ only on xx1. If there is a color θ ∈ {5, 6, . . . ,∆+ 2} that is valid
for xy under φ′, then we are done. Otherwise for every color θ ∈ {5, 6, . . . ,∆+ 2}, there is a (2, θ, xy)-critical path under φ
as well as under φ′. Hence Sxx2 = {4, 5, . . . ,∆+ 2} = Syy2 . If there is also a (1, 5, xy)-critical path under φ, then we recolor
xx1, xx2 with 4, 1, respectively, obtaining a new acyclic edge coloring of G′, under which 5 is valid for xy. Hence there is no
(1, 5, xy)-critical path under φ. Similarly, there is no (1, θ, xy)-critical path for θ ∈ {6, 7, . . . ,∆+ 2} under φ. To conclude,
for every θ ∈ {4, 5, . . . ,∆+2}, there is no (1, θ, xy)-critical path under φ. By recoloring xx2 with 3, we obtain a new acyclic
edge coloring φ′′ of G′ that differs from φ only on xx2. Argument as above yields that, for every θ ∈ {4, 5, . . . ,∆+ 2}, there
is a (3, θ, xy)-critical path under φ′′. This implies that Syy3 = {4, 5, . . . ,∆ + 2}. Now by exchanging the colors on yy2 and
yy3 from φ, we obtain a new acyclic edge coloring of G′, under which every color in {4, 5, . . . ,∆+ 2} is valid for xy.
3. |φ(x) ∩ φ(y)| = 1.

Without loss of generality, we may assume that φ(x) ∩ φ(y) = {1}, and 4 the remaining color in φ(x). Clearly
F(xy) = φ(x) ∪ φ(y) = {1, 2, 3, 4}. If there is a color in [∆ + 2] \ F(xy) = {5, 6, . . . ,∆ + 2} that is valid for xy under
φ, then we are done. Otherwise,

for every θ ∈ {5, 6, . . . ,∆+ 2}, there is a (1, θ, xy)-critical path under φ. (∗)

3.1. φ(xz) = 1 and φ(xw) = 4.
By (∗), {5, 6, . . . ,∆+ 2} ⊆ Sxz . We first claim that {1, 2, 3} ⊆ φ(w). If 1 ∉ φ(w), then by recoloring xw with 1, xz with

α ∈ {2, 3}\φ(z) from φ, we obtain a new acyclic edge coloring φ′ of G′, and hence return to case 2. So 1 ∈ φ(w). If 2 ∉ φ(w),
then we recolor xw with 2 from φ, obtaining a new proper edge coloring φ1 of G′. If φ1 is acyclic, then we return to case 2.
Otherwise, there is a (1, 2)-bichromatic cycle under φ1. Thus 2 ∈ φ(z). It follows that φ(z) = {1, 2, 5, 6, . . . ,∆+2}. Clearly
1, 4 ∈ φ(w). Now if 3 ∉ φ(w), then by recoloring xw with 3 from φ, we obtain a new acyclic edge coloring of G′, and return
to case 2. To conclude, if 2 ∉ φ(w), then 3 ∈ φ(w). Now, at least one of 5 and 6 is not in φ(w), say 5 ∉ φ(w). By (∗) and
Fact 1, there exists no (1, 5, xw)-critical path under φ. Now by recoloring xw with 5, we obtain a new acyclic edge coloring
of G′ from φ, under which 4 is valid for xy. This proves 2 ∈ φ(w). Similarly 3 ∈ φ(w). Our claim is proved.

Now φ(w) = {1, 2, 3, 4}. Note that there is no (1, 5, xw)-critical path. By recoloring xw with 5, we obtain a new acyclic
edge coloring φ′′ of G′ that differs from φ only on xw. If 4 is valid for xy under φ′′, then we are done. Otherwise there is a
(1, 4, xy)-critical path under φ as well as under φ′′. So Sxz = Syy1 = {4, 5, . . . ,∆+ 2}. Combining with (∗), we can conclude
that

for every θ ∈ {4, 5, . . . ,∆+ 2}, there is a (1, θ, xy)-critical path under φ. (∗∗)

Let us first show that there exist (4, 2, xz)- and (4, 3, xz)-critical paths under φ. Suppose not, say no (4, 2, xz)-critical
path under φ. By recoloring xz with 2, we obtain a new acyclic edge coloring φ′ of G′ that differs from φ only on xz, as above,
for every θ ∈ {4, 5, . . . ,∆ + 2}, there is a (2, θ, xy)-critical path under φ′. It follows that for every θ ∈ {4, 5, . . . ,∆ + 2},
there is a (2, θ, y, z)-maximal bichromatic path under φ; hence Syy2 = Sxz = {4, 5, . . . ,∆ + 2}. Now by exchanging the
colors on yy1 and yy2 from φ, we obtain a new acyclic edge coloring of G′, under which every color in {5, 6, . . . ,∆ + 2} is
valid for xy.

Let us next show that for every colorη ∈ {2, 3} and every color ξ ∈ {5, 6, . . . ,∆+2}, there exists an (η, ξ, w, z)-maximal
bichromatic path under φ. Suppose not, say no (2, 5, w, z)-maximal bichromatic path under φ. By recoloring xz, xw with
2, 5 respectively, we obtain a new acyclic edge coloring φ′′ of G′ that differs from φ only on xz and xw. By Fact 1, there is
no (2, 4, y, z)-maximal bichromatic path under φ since there is already (4, 2, xz)-critical paths under φ. It follows that 4 is
valid for xy under φ′′.

Now, without loss of generality, we may assume that φ(wwi) = i, i = 1, 2, 3. So {4, 5, . . . ,∆ + 2} ⊆ Swwi , i = 2, 3.
Since d(wi) ≤ ∆, |Swwi | ≤ ∆ − 1, i = 2, 3. It follows that Swwi = {4, 5, . . . ,∆ + 2}, i = 2, 3. Now, we first exchange the
colors onww2 andww3, then recolor xz, xw with 2, 5, respectively, obtaining a new acyclic edge coloring ϕ of G′ from φ. By
Fact 1, there is no (2, 4, y, z)-maximal bichromatic path under ϕ as well as under φ since there is already (4, 2, xz)-critical
paths under φ. It follows that 4 is valid for xy under ϕ.
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3.2. φ(xw) = 1 and φ(xz) = 4.
By (∗), {5, 6, . . . ,∆+ 2} ⊆ Sxw . This implies that (∆+ 2)− 5 + 1 ≤ |Sxw| = 3, i.e.,∆ ≤ 5. Clearly∆ ≥ 4.
If∆ = 4, then d(z) ≤ 4. Without loss of generality, we may assume that d(z) = 4. This returns to case 3.1.
Suppose∆ = 5. Observe that Sxw = {5, 6, 7}. If 5 ∉ Sxz , then by (∗) and Fact 1, there is no (1, 5, xz)-critical path under φ

since z ≠ y. Now by recoloring xz with 5 from φ, we obtain a new acyclic edge coloring of G′, under which 4 is valid for xy.
So 5 ∈ Sxz . Similarly, 6, 7 ∈ Sxz . Since∆ = 5, at least one of 2 and 3, say 2, is not in Sxz . Now, by recoloring xz with 2 from φ,
we obtain a new acyclic edge coloring of G′, under which 4 is valid for xy. �

Lemma 4. A 5-vertex x in G has at most three 3-neighbors.

Proof. Suppose to the contrary that x is a 5-vertex in G that has at least four 3-neighbors, say y, x1, x2, x3. Let z be the
remaining neighbor of x, and y1, y2 the two neighbors of y other than x. Let G′

= G− xy. By the choice of G,G′ has an acyclic
edge coloringφ using colors from [∆+2].Wemay assume thatφ(xxi) = i, i = 1, 2, 3 andφ(xz) = 4. Let F(xy) = φ(x)∪φ(y).

If φ(x)∩ φ(y) = ∅, then we can find a color in [∆+ 2] \ (φ(x)∪ φ(y)) that is valid for xy under φ, since |φ(x)∪ φ(y)| ≤

∆− 1 + 2 = ∆+ 1 < ∆+ 2. Suppose |φ(x) ∩ φ(y)| ≥ 1. There are two cases under consideration.
1. |φ(x) ∩ φ(y)| = 1.

Let α be the unique color in φ(x)∩ φ(y). If we can find a color in [∆+ 2] \ F(xy) that is valid for xy under φ, then we get
an acyclic edge coloring of G using ∆ + 2 colors, a contradiction. Hence for each color θ ∈ [∆ + 2] \ F(xy), there exists an
(α, θ, xy)-critical path under φ. Clearly, α ∈ {1, 2, 3, 4}. We discuss by distinguishing two subcases as follows.

(a) α ∈ {1, 2, 3}.
Without loss of generality, we may assume that φ(yy1) = α = 1 and φ(yy2) = 5. Now,
• for each color θ ∈ [∆+ 2] \ F(xy) = {6, 7, . . . ,∆+ 2}, there exists a (1, θ, xy)-critical path under φ.
By •, Syy1 , Sxx1 ⊇ {6, 7, . . . ,∆ + 2}. Hence 2 = |Sxx1 | ≥ (∆ + 2) − 6 + 1 = ∆ − 3, i.e., ∆ ≤ 5. Since d(x) = 5,∆ = 5.

Thus Sxx1 = {6, 7} and {6, 7} ⊆ Syy1 .
Now by recoloring xx1 with 5 from φ, we obtain a new acyclic edge coloring φ′ of G′, under which neither 6 nor 7 is valid

for xy, since otherwise G would be acyclically edge (∆ + 2)-colorable. This implies that there exists a (5, 6, y, x1)- as well
as a (5, 7, y, x1)-maximal bichromatic path under φ. Hence 6, 7 ∈ Syy2 .

If there is a color i ∈ {2, 3, 4} \ (Syy1 ∪ Syy2), then by recoloring yy2 with color i from φ, we obtain a new acyclic edge
coloring of G′, under which 5 would be valid for xy. So {2, 3, 4} ⊆ Syy1 ∪ Syy2 .

If 1 ∉ Syy2 , then by recoloring yy2 with a color in {2, 3, 4} \ Syy2 , we would obtain a new acyclic edge coloring of G′, under
which 5 is valid for xy. So 1 ∈ Syy2 .

In summary, |Syy1 | + |Syy2 | ≥ 2 + 2 + 4 = 8. On the other hand, ∆ = 5 implies |Syy1 | + |Syy2 | ≤ 4 + 4 = 8. So
|Syy1 | + |Syy2 | = 8. So 5 ∉ φ(y1).

Now by recoloring xx1 with 5, and yy1 with a color in {2, 3, 4} \ φ(y1), we would obtain a new acyclic edge coloring of G′

from φ, under which 1 is valid for xy.
(b) α = 4.
We may assume that φ(yy1) = 4 and φ(yy2) = 5. Clearly, for each color θ ∈ [∆+ 2] \ F(xy) = {6, 7, . . . ,∆+ 2}, there

exists a (4, θ, xy)-critical path under φ. Hence {6, 7, . . . ,∆+ 2} ⊆ Sxz ∩ Syy1 .
If 5 ∉ Syy1 , then by recoloring yy1 with a color in {1, 2, 3} \ Syy1 , we obtain a new acyclic edge coloring from φ, and return

to (a). So 5 ∈ Syy1 .
If 4 ∉ Syy2 , then by recoloring yy1, yy2 with a color i ∈ {1, 2, 3} \ Syy1 , 4, respectively, we obtain a new acyclic edge

coloring φ′ of G′. For each color θ ∈ {6, 7, . . . ,∆ + 2}, since there is already a (4, θ, xy)-critical path under φ, there is a
(4, θ, x, y1)-maximal bichromatic path under φ′. It follows that, for each color θ ∈ {6, 7, . . . ,∆+ 2}, there is no (4, θ, xy)-
critical path passing through y2 under φ′ by Fact 1. Note that 5 ∉ Syy2 and |Sxxi | = 2. Now a color in {5, 6, 7, . . . ,∆+2}\ Sxxi
would be valid for xy under φ′. This proves 4 ∈ Syy2 .

If there is a color β ∈ {1, 2, 3} \ (Syy1 ∪ Syy2), then by recoloring yy1 with β , we obtain a new acyclic edge coloring of G′,
and we return to (a). So {1, 2, 3} ⊂ (Syy1 ∪ Syy2).

If there is a color γ in {6, 7, . . . ,∆+ 2} that is not in Syy2 , then by recoloring yy2 with γ , we would obtain a new acyclic
edge coloring of G′ (since there is already a (4, γ , xy)-critical path under φ, by Fact 1, there is no (4, γ , x, y2)-maximal
bichromatic path under φ), under which 5 is valid for xy. Hence {6, 7, . . . ,∆+ 2} ⊆ Syy2 .

To conclude, we have shown that {4, 5, 6, . . . ,∆+ 2} ⊆ φ(y2), {4, 6, . . . ,∆+ 2} ⊆ φ(y1), and {1, 2, 3} ⊂ (Syy1 ∪ Syy2).
These imply 5 ∉ Syy1 .

Now, by recoloring yy1 with 5, yy2 with a color in {1, 2, 3} \ Syy2 , we obtain a new acyclic edge coloring of G′ from φ, and
return to (a).
2. |φ(x) ∩ φ(y)| = 2.

In this case, φ(x) ∪ φ(y) = {1, 2, 3, 4}; hence [∆ + 2] \ F(xy) = {5, 6, . . . ,∆ + 2}. Since ∆ ≥ 5, {5, 6, 7} ⊆

{5, 6, . . . ,∆+ 2}. There are two subcases under consideration.
(i) 4 ∉ φ(y).
By the symmetry of 1, 2 and 3, wemay assume that φ(yy1) = 1 and φ(yy2) = 2. If we can find a color in [∆+2]\F(xy) =

{5, 6, . . . ,∆+2} that is valid for xyunderφ, thenweare done. Otherwise, for every θ ∈ {5, 6, . . . ,∆+2}, there is a (1, θ, xy)-
or a (2, θ, xy)-critical pathunderφ. It follows that {5, 6, . . . ,∆+2} ⊆ Sxx1∪Sxx2 . Since d(x1) = d(x2) = 3, |Sxx1 | = |Sxx2 | = 2.
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Wemay assume that Sxx1 = {5, 6} and 7 ∈ Sxx2 . Now, by recoloring xx1 with 7 from φ, we obtain a new acyclic edge coloring
of G′, under which a color in {5, 6} \ Sxx2 would be valid for xy.

(ii) 4 ∈ φ(y).
By the symmetry of 1, 2 and 3, wemay assume that φ(yy1) = 1 and φ(yy2) = 4. If we can find a color in [∆+2]\F(xy) =

{5, 6, . . . ,∆+2} that is valid for xyunderφ, thenweare done. Otherwise, for every θ ∈ {5, 6, . . . ,∆+2}, there is a (1, θ, xy)-
or a (4, θ, xy)-critical path under φ.

If there is a color β ∈ {5, 6, . . . ,∆+ 2} \ Syy1 , then there is a (4, β, xy)-critical path under φ. It follows that there is no
(4, β, yy1)-critical path under φ by Fact 1. Now, by recoloring yy1 with β , we obtain a new acyclic edge coloring of G′, and
return to case 1. So {5, 6, . . . ,∆+ 2} ⊆ Syy1 . Similarly, {5, 6, . . . ,∆+ 2} ⊆ Syy2 .

If |{2, 3} \ (Syy1 ∪ Syy2)| ≥ 1, then by recoloring yy2 with a color in {2, 3} \ (Syy1 ∪ Syy2), we obtain a new acyclic edge
coloring of G′, and return to (i). So {2, 3} ⊂ (Syy1 ∪ Syy2).

Combining conclusions above with |{5, 6, . . . ,∆ + 2}| = ∆ − 2 and |Syy1 |, |Syy2 | ≤ ∆ − 1, we get 1 ∉ Syy2 . Now by
recoloring yy2 with a color in {2, 3}\Syy2 , we obtain a newacyclic edge coloring ofG′, and return to (i). Lemma4 is proved. �

Lemma 5. If a 5-vertex x in G has a special neighbor y, then it has at most two 3-neighbors.

Proof. Suppose to the contrary that a 5-vertex x in G has at least three 3-neighbors, say y, x1 and x2 with y special. Let z1, z2
be the remaining two neighbors of x, and y1, y2 the two neighbors of y other than x. Let G′

= G−xy. By the choice of G,G′ has
an acyclic edge coloring φ using colors from [∆+ 2]. We may assume that φ(xxi) = i, i = 1, 2, φ(xz1) = 3 and φ(xz2) = 4.
Let F(xy) = φ(x) ∪ φ(y).

If φ(x) ∩ φ(y) = ∅, then we can find a color in [∆+ 2] \ (φ(x) ∪ φ(y)) that is valid for xy under φ since |φ(x) ∪ φ(y)| ≤

∆− 1 + 2 = ∆+ 1 < ∆+ 2. Suppose |φ(x) ∩ φ(y)| ≥ 1. There are two cases under consideration.
1. |φ(x) ∩ φ(y)| = 1.

Let α be the unique color in φ(x)∩ φ(y). If we can find a color in [∆+ 2] \ F(xy) that is valid for xy under φ, then we get
an acyclic edge coloring of G using ∆ + 2 colors, a contradiction. Hence for each color θ ∈ [∆ + 2] \ F(xy), there exists an
(α, θ, xy)-critical path under φ. Note that α ∈ {1, 2, 3, 4}. We discuss by distinguishing two subcases as follows.

(a) α ∈ {1, 2}.
We may assume that φ(yy1) = α = 1 and φ(yy2) = 5. Thus, for each color θ ∈ [∆ + 2] \ F(xy) = {6, 7, . . . ,∆ + 2},

there exists a (1, θ, xy)-critical path under φ. It follows that Syy1 , Sxx1 ⊇ {6, 7, . . . ,∆ + 2}. Since d(x1) = 3,∆ = 5. Hence
Sxx1 = {6, 7} and {6, 7} ⊆ Syy1 . Now by recoloring xx1 with 5 from φ, we obtain a new acyclic edge coloring φ′ of G′,
under which neither 6 nor 7 is valid for xy, since otherwise Gwould be acyclically edge (∆+ 2)-colorable. This implies that
there exists a (5, 6, y, x1)- as well as a (5, 7, y, x1)-maximal bichromatic path under φ. Hence 6, 7 ∈ Syy2 . If there is a color
i ∈ {2, 3, 4} \ (Syy1 ∪ Syy2), then by recoloring yy2 with color i from φ, we obtain a new acyclic edge coloring of G′, under
which 5 would be valid for xy as 5 ∉ Syy2 . So {2, 3, 4} ⊆ (Syy1 ∪ Syy2). It follows that |Syy1 | + |Syy2 | ≥ 2 + 2 + 3 = 7. Notice
that ∆ = 5 and y being special implies |Syy1 | + |Syy2 | ≤ 4 + 3 = 7. So |Syy1 | + |Syy2 | = 7. Therefore, 1 ∉ Syy2 . Now by
recoloring yy2 with a color in {2, 3, 4} \ Syy2 , we would obtain a new acyclic edge coloring of G′, under which 5 is valid for
xy.

(b) α ∈ {3, 4}.
Wemay assume that φ(yy1) = 4 and φ(yy2) = 5. Note that for each color θ ∈ [∆+2] \ F(xy) = {6, 7, . . . ,∆+2}, there

exists a (4, θ, xy)-critical path underφ. Hence Sxz2 , Syy1 ⊇ {6, 7, . . . ,∆+2}.We are going to show that [∆+2] ⊆ (Syy1∪Syy2).
This will be done by the following four claims.

• 5 ∈ Syy1 .
Suppose 5 ∉ Syy1 . Then we first have 1, 2 ∈ Syy1 , since otherwise, {1, 2} \ Syy1 ≠ ∅, by recoloring yy1 with a color in
{1, 2}\Syy1 from φ, we obtain a new acyclic edge coloring of G′, and return to (a). Now |Syy1 | ≥ |{1, 2, 6, 7, . . . ,∆+2}| =

∆+2−5+2 = ∆−1 implies d(y1) = ∆ ≥ 5. Since y is special, d(y2) = 4. If {1, 2}\Syy2 ≠ ∅, then by recoloring yy1 with
5, yy2 with a color in {1, 2}\Syy2 fromφ, we obtain a new acyclic edge coloring ofG′, and return to (a). Hence {1, 2} ⊂ Syy2 .
If 4 ∉ Syy2 , then by exchanging the colors on yy1 and yy2 from φ, we obtain a new acyclic edge coloring of G′, under which
6 is valid for xy (by Fact 1). Hence 4 ∈ Syy2 . Since y2 is a 4-neighbor of y, Syy2 = {1, 2, 4}. Thus 3 ∉ (Syy1 ∪ Syy2). Now
by recoloring yy2 with 3 from φ, we obtain a new acyclic edge coloring of G′, under which 5 is valid for xy. This proves
5 ∈ Syy1 .

• 4 ∈ Syy2 .
Suppose 4 ∉ Syy2 . Since now {5, 6, . . . ,∆+ 2} ⊆ Syy1 , at least one of 1 and 2, say 1, is not in Syy1 . By recoloring yy1 with
1, yy2 with 4 from φ, we obtain a new acyclic edge coloring φ′ of G′. For each color θ ∈ {6, 7, . . . ,∆+ 2}, since there is
already a (4, θ, xy)-critical path under φ, there is a (4, θ, x, y1)-maximal bichromatic path under φ′. By Fact 1, there is
no (4, θ, xy)-critical path passing through y2 under φ′ for each color θ ∈ {6, 7, . . . ,∆ + 2}. By 5 ∉ Syy2 and d(x1) = 3,
There exists a color in {5, 6, 7, . . . ,∆+ 2} \ Sxx1 that is valid for xy under φ′. This proves 4 ∈ Syy2 .

• 1, 2 ∈ (Syy1 ∪ Syy2).
If there is a color β ∈ {1, 2} \ Syy1 ∪ Syy2 , then by recoloring yy1 with β , we obtain a new acyclic edge coloring of G′, and
return to (a).

• 3 ∈ (Syy1 ∪ Syy2).
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If 3 ∉ (Syy1 ∪ Syy2), then by recoloring yy1 with 3, we obtain a new acyclic edge coloring φ′ of G′ that differs from φ
only on yy1, under which there would be a (3, θ, xy)-critical path for each θ ∈ {6, 7, . . . ,∆ + 2}. It follows that there
is no (3, θ, x, y2)-maximal bichromatic path under φ for each θ ∈ {6, 7, . . . ,∆ + 2} by Fact 1. Now by recoloring yy2
with 3, yy1 with a color i ∈ {1, 2} \ Syy1 from φ, we obtain a new acyclic edge coloring of G′, under which a color in
{5, 6, . . . ,∆+ 2} \ Sxxi would be valid for xy.

Recall that y has a 4-neighbor. |Syy1 | + |Syy2 | ≤ (∆− 1)+ 3 = ∆+ 2. According to [∆+ 2] ⊆ (Syy1 ∪ Syy2), [∆+ 2] =

Syy1 ∪ Syy2 . It follows that |Syy1 ∩ Syy2 | = |Syy1 ∪ Syy2 | − (|Syy1 | + |Syy2 |) = 0, i.e., Syy1 ∩ Syy2 = ∅. So {5, 6, . . . ,∆+ 2} ⊆ Syy1
and Syy2 ⊆ {1, 2, 3, 4}. According to which of y1 and y2 is the 4-neighbor of y, there are two subcases under consideration.

(b1) d(y1) = 4, and d(y2) ≥ 5.
Since {5, 6, . . . ,∆ + 2} ⊆ Syy1 and |Syy1 | = 3, |{5, 6, . . . ,∆ + 2}| = ∆ + 2 − 4 = ∆ − 2 ≤ 3, i.e., ∆ ≤ 5. Since

d(x) = 5,∆ ≥ 5. So∆ = 5. Hence Syy1 = {5, 6, 7} and Syy2 = {1, 2, 3, 4}. Now by recoloring yy2 with 6 from φ, we obtain a
new acyclic edge coloring φ′ of G′. (Since there is already a (4, 6, xy)-critical path under φ, by Fact 1, there is no (4, 6, yy2)-
critical path under φ.) Since G is not acyclically edge (∆+ 2)-colorable, there exists a (4, 5, xy)-critical path under φ as well
as under φ′.

We are going to prove 3 ∈ (Sxx1 ∩ Sxx2). Suppose 3 ∉ Sxx1 . We first claim 2 ∈ Sxx1 . If 2 ∉ Sxx1 , then by recoloring xx1 with
a color in {5, 6, 7} \ Sxx1 , we obtain a new edge coloring φ′ of G′ from φ. φ′ is also acyclic since there is already a (4, θ, xy)-
critical path under φ′ as well as under φ, by Fact 1, there is no (4, θ, xx1)-critical path under φ′ for each θ ∈ {5, 6, 7}. Now,
1 would be valid for xy under φ′ since 1 ∉ Sxx1 and 1 ∉ Syy1 . This proves 2 ∈ Sxx1 . Now, if {5, 6, 7} \ (Sxx1 ∪ Sxx2) ≠ ∅, then
we could recolor xx1 with a color in {5, 6, 7} \ (Sxx1 ∪ Sxx2), and then 1 is valid for xy; otherwise, Sxx1 ∪ Sxx2 = {2, 5, 6, 7}, we
could recolor xx1 with a color in Sxx2 , and then 1 is valid for xy. This proves 3 ∈ Sxx1 . Similarly, 3 ∈ Sxx2 . So 3 ∈ (Sxx1 ∩ Sxx2).

Now recolor xx1 with a color ϑ ∈ {5, 6, 7} \ (Sxx1 ∪ Sxx2) from φ. If we obtain a new acyclic edge coloring ϕ of G′, then 1 is
valid for xy under ϕ; hence we are done. Otherwise there is a (3, ϑ)-bichromatic cycle under ϕ, hence there is a (3, ϑ, xx1)-
critical path under φ as well as under ϕ. By Fact 1, there is no (3, ϑ, xx2)-critical path under φ (since x1 ≠ x2). Hence by
recoloring xx2 with ϑ from φ, we obtain a new acyclic edge coloring of G′, under which 2 would be valid for xy.

(b2) d(y2) = 4 and 5 ≤ d(y1) ≤ ∆.
By recoloring yy2 with 6 from φ, we obtain a new acyclic edge coloring φ′ of G′, under which there is a (4, 5, xy)-critical

path, since otherwise, by coloring xywith 5, we would obtain an acyclic edge (∆+ 2)-coloring of G from φ′. Thus there is a
(4, 5, xy)-critical path under φ.

If neither 1 nor 2 is in Syy1 , then arguing as in (b1) could yield an acyclic edge (∆+2)-coloring of G. So |{1, 2}∩ Syy1 | ≥ 1.
Since {5, 6, . . . ,∆+ 2} ⊆ Syy1 , |{1, 2} ∩ Syy1 | = 1. We may assume that 1 ∈ Syy1 and Syy2 = {2, 3, 4} (since d(y2) = 4 and
Syy1 ∩ Syy2 = ∅).

In what follows we shall show that we can finally recolor yy1 with 2 from some acyclic edge (∆ + 2)-coloring of G′,
obtaining a new acyclic edge (∆ + 2)-coloring of G′, and return to subcase (a), hence completing the proof of case 1. This
will be completed based on the following four claims.

• For each η ∈ {5, 6, . . . ,∆+ 2}, there is an (η, 2, y1, y2)-maximal bichromatic path under φ.
Suppose, for some η0 ∈ {5, 6, . . . ,∆ + 2}, there is no (η0, 2, y1, y2)-critical path under φ. By recoloring yy1 with 2, yy2

with η0 (if η0 ≠ 5) from φ, we obtain a new acyclic edge coloring of G′, and return to (a).
• There is a (1, 2, y1, y2)-maximal bichromatic path under φ.
If not, then by recoloring yy1, yy2 with 2, 1, respectively, we obtain a new acyclic edge coloring of G′, under which there

would be a color in {5, 6, . . . ,∆+ 2} \ Sxx2 that is valid for xy (since Syy2 = {2, 3, 4} and d(x2) = 3).
• There is a (5, 3, yy1)-critical path under φ.
If not, by recoloring yy1 with 3 from φ, we obtain a new acyclic edge coloring φ′ of G′, under which there would be a

(3, θ, xy)-critical path for each θ ∈ {6, 7, . . . ,∆ + 2}. By Fact 1, for each θ ∈ {6, 7, . . . ,∆ + 2}, there is no (3, θ, yy2)-
critical path under φ′. Now by recoloring yy2 with 6 from φ′, we obtain a new acyclic edge coloring ϕ of G′, under which,
there would be a (3, 5, xy)-critical path. By Fact 1, for each θ ∈ {5, 6, . . . ,∆+ 2}, there is no (3, θ, xx2)-critical path under
φ as well as under ϕ. If 1 ∉ Sxx2 , by recoloring yy1 with 3, xx2 with a color γ ∈ {5, 6, . . . ,∆+ 2} \ Sxx2 from φ, we obtain a
new acyclic edge coloring of G′ (since there is already a (4, γ , xy)-critical path, by Fact 1, there is no (4, γ , xx2)-critical path
under φ), under which 2 is valid for xy (2 ∉ Syy1 and 2 ∉ Sxx2 ). Hence 1 ∈ Sxx2 . If {5, 6, . . . ,∆+2}\ (Sxx1 ∪Sxx2) ≠ ∅, thenwe
recolor xx2 with a color in {5, 6, . . . ,∆+2} \ (Sxx1 ∪ Sxx2) from φ, obtaining a new acyclic edge (∆+2)-coloring of G′, under
which, arguing as just above, 2 is valid for xy. So {5, 6, . . . ,∆ + 2} ⊂ Sxx1 ∪ Sxx2 . Note that |{5, 6, . . . ,∆ + 2}| ≥ 3. Since
1 ∈ Sxx2 and d(x1) = d(x2) = 3, Sxx1 ⊂ {5, 6, . . . ,∆+ 2}. Now by recoloring xx2 with a color in Sxx1 \ Sxx2 , say γ , from φ, we
obtain a new edge coloring ϕ of G′. If ϕ is acyclic, then 2 is valid for xy under ϕ. Otherwise, there is a cycle alternately colored
by γ and 1 under ϕ. Namely, there is a (1, γ , xx2)-critical path under φ. In this case, we recolor xx1 with 2 from ϕ, obtaining
an acyclic edge coloring ϕ′ of G′. If 1 is valid for xy under ϕ′, then we are done. Otherwise, there is a (1, 4, xy)-critical path
under φ as well as ϕ′. By recoloring yy1 with 3 from φ, we obtain a new acyclic edge coloring φ′. A similar argument (or by
symmetry of z1 and z2) yields that there is a (1, 3, xy)-critical path underφ′. It follows that Sxz1 = Sxz2 = {1, 5, 6, . . . ,∆+2}.
Nowwe first exchange the colors on xz1 and xz2 from φ, then recolor xx2 with γ , xx1 with 2, yielding an acyclic edge coloring
of G′, under which 1 is valid for xy.

• For each ξ ∈ {1, 6, 7, . . . ,∆+ 2} there is a (ξ , 3, y1, y2)-maximal bichromatic path under φ.
If there is no (ξ , 3, y1, y2)-maximal bichromatic path under φ for some color ξ ∈ {1, 6, 7, . . . ,∆+2}, then by recoloring

yy1 with 3, yy2 with ξ , we obtain a new acyclic edge coloring φ′ of G′ that differs from φ only on yy1 and yy2. Since there is
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already a (5, 3, yy1)-critical path under φ, there is a (3, 5, yy2)-critical path under φ′. It follows that there is no (3, 5, xy)-
critical path under φ′ by Fact 1. Note that 5 ∉ Syy2 . Therefore, 5 is valid for xy under φ′.

Now we can complete the proof of case 1. Recall that Syy2 = {2, 3, 4}. We may assume that v1, v2 and v3 are the
three neighbors of y2 other than y with φ(y2v1) = 2 and φ(y2v2) = 3. According to the four claims above, Sy2v1 =

{1, 5, 6, . . . ,∆ + 2} = Sy2v2 , and for each color α ∈ {1, 5, 6, . . . ,∆ + 2}, β ∈ {2, 3}, there is an (α, β, y1, y2)-maximal
bichromatic path under φ. Now by exchanging the colors on y2v1 and y2v2 from φ, we destroy the old (5, 2, yy1)-critical
path in φ, and by Fact 1, we do not create any new (5, 2, yy1)-critical path in the new acyclic edge coloring ψ of G′. Hence
by recoloring yy1 with 2 from ψ , we obtain a new acyclic edge coloring of G′, and return to (a).
2. |φ(x) ∩ φ(y)| = 2.

Let φ(x)∩φ(y) = {α, β}. If we can find a color in [∆+ 2] \ F(xy) that is valid for xy under φ, then we get an acyclic edge
coloring of G using∆+ 2 colors, a contradiction. Hence for each color θ ∈ [∆+ 2] \ F(xy) = {5, 6, . . . ,∆+ 2} there exists
an (α, θ, xy)-critical path or a (β, θ, xy)-critical path under φ. Note that {α, β} ⊂ F(xy) = {1, 2, 3, 4}. Wemay assume that
φ(yy1) = α and φ(yy2) = β .

If ξ is a color in {5, 6, . . . ,∆ + 2} \ Syy1 , then there is a (β, ξ, xy)-critical path. By Fact 1, there is no (β, ξ, yy1)-
critical path under φ. Recoloring yy1 with ξ from φ, we obtain a new acyclic edge coloring of G′, and return to case 1. So
{5, 6, . . . ,∆+ 2} ⊆ Syy1 . Similarly, {5, 6, . . . ,∆+ 2} ⊆ Syy2 . By symmetry, we discuss by distinguishing three subcases as
follows.

(i) {α, β} = {1, 2}.
Wemay assume thatφ(yyi) = i, i = 1, 2. In this case, for each color θ ∈ {5, 6, . . . ,∆+2}, there exists a (1, θ, xy)-critical

path or a (2, θ, xy)-critical path under φ. Hence {5, 6, . . . ,∆+2} ⊆ (Sxx1 ∪Sxx2). Since∆ ≥ 5, {5, 6, 7} ⊆ {5, 6, . . . ,∆+2}.
Note that d(x1) = d(x2) = 3. We may assume that Sxx1 = {5, 6} and 7 ∈ Sxx2 . Now by recoloring xx1 with 7 from φ, we
obtain a new acyclic edge coloring of G′, and return to case 1.

(ii) α ∈ {1, 2} and β ∈ {3, 4}.
We may assume that φ(yy1) = 1 and φ(yy2) = 4. If 2 ∈ Syy2 , then φ(y2) = {5, 6, . . . ,∆ + 2} ∪ {2, 4}. So d(y2) = ∆.

Hence d(y1) = 4. So Syy1 = {5, 6, 7}. By recoloring yy1 with 2, yy2 with 1 from φ, we obtain a new acyclic edge coloring of
G′, and return to subcase (i). So 2 ∉ S(yy2). If there is no (1, 2, yy2)-critical path under φ, then by recoloring yy2 with 2 from
φ, we obtain a new acyclic edge coloring of G′, and return to subcase (i). Otherwise, there is a (1, 2, yy2)-critical path under
φ. So, 2 ∈ Syy1 and 1 ∈ Syy2 . It follows that d(yi) ≥ 5, i = 1, 2, contradicting that y is special.

(iii) {α, β} = {3, 4}.
We may assume that d(y1) = 4, φ(yy1) = 3 and φ(yy2) = 4. Recall that {5, 6, . . . ,∆ + 2} ⊆ Syy1 . This implies ∆ = 5

and φ(y1) = {3, 5, 6, 7}. Now we can recolor yy1 with 1 from φ, obtaining a new acyclic edge coloring of G′, and returning
to subcase (ii).

The proof of Lemma 5 is completed. �

Lemma 6. A 7-vertex x with a special neighbor y has at most six 3−-neighbors (including y).

Proof. Suppose to the contrary that x has seven 3−-neighbors. Without loss of generality, wemay assume that all the seven
neighbors of x are 3-vertices. Let x1, x2, . . . , x6 be the six neighbors of x other than y, and y1, y2 the two neighbors of y other
than x. Let G′

= G− xy. By the choice of G,G′ has an acyclic edge coloring φ using colors from the color set [∆+ 2]. Without
loss of generality, we may assume that φ(xxi) = i for i = 1, 2, . . . , 6. Let F(xy) = φ(x) ∪ φ(y).

If φ(x) ∩ φ(y) = ∅, then |φ(x) ∪ φ(y)| ≤ (∆ − 1) + 2 = ∆ + 1 < ∆ + 2; hence there exists at least one color
α ∈ [∆ + 2] \ F(xy) that is valid for xy under φ. So we may assume that φ(x) ∩ φ(y) ≠ ∅. There are two cases under
consideration.
(1) |φ(x) ∩ φ(y)| = 1.

Without loss of generality, we may assume that φ(yy1) = 1 and φ(yy2) = 7. If we can find a color α ∈ [∆ + 2] \ F(xy)
that is valid for xy under φ, thenwe get an acyclic edge coloring of G using∆+2 colors, a contradiction. Hence for each color
θ ∈ [∆+ 2] \ F(xy), there exists a (1, θ, xy)-critical path under φ. It follows that [∆+ 2] \ F(xy) = {8, 9, . . . ,∆+ 2} ⊆ Sxx1
as well as Syy1 . Since d(x1) = 3,∆ = 7. It follows that Sxx1 = {8, 9} and {8, 9} ⊆ Syy1 . Now by recoloring xx1 with 7, we
obtain a new acyclic edge coloring φ′ of G′, under which neither 8 nor 9 is valid for xy since otherwise Gwould be acyclically
edge (∆ + 2)-colorable. This implies that there are (7, 8, y, x1)- and (7, 9, y, x1)-maximal bichromatic paths under φ as
well as under φ′. Hence 8, 9 ∈ Syy2 . If there is a color i ∈ {2, 3, 4, 5, 6} \ (Syy1 ∪ Syy2), then by recoloring yy2 with color i,
we obtain a new acyclic edge coloring of G′ from φ, under which, 7 would be valid for xy. So {2, 3, 4, 5, 6} ⊆ Syy1 ∪ Syy2 . It
follows that |Syy1 | + |Syy2 | ≥ 2 + 2 + 5 = 9. Note that y is a special vertex, i.e., y has a 4-neighbor that is y1 or y2. Hence
|Syy1 | + |Syy2 | ≤ 3 + 6 = 9 (recall that∆ = 7). It follows that |Syy1 | + |Syy2 | = 9. So 1 ∉ Syy2 . Now by recoloring yy2 with a
color in {2, 3, 4, 5, 6} \ φ(y2), we obtain a new acyclic edge coloring of G′, under which, 7 is valid for xy, a contradiction.
(2) |φ(x) ∩ φ(y)| = 2.

Without loss of generality, wemay assume thatφ(yy1) = 1 andφ(yy2) = 2. If we can find a color in {7, 8, . . . ,∆+2} that
is valid for xy underφ, thenwe are done. Otherwise, for every θ ∈ {7, 8, . . . ,∆+2}, there is a (1, θ, xy)- or (2, θ, xy)-critical
path under φ. It follows that {7, 8, . . . ,∆+ 2} ⊆ Sxx1 ∪ Sxx2 . Note that d(x1) = d(x2) = 3 implies |Sxx1 | = |Sxx2 | = 2. Since
∆ ≥ 7, {7, 8, 9} ⊆ Sxx1 ∪Sxx2 . Without loss of generality, wemay assume that Sxx1 = {7, 8} and 9 ∈ Sxx2 . So |{7, 8}\Sxx2 | ≥ 1
(note that |Sxx2 | = 2). Now by recoloring xx1 with 9, we obtain a new acyclic edge coloring of G′ from φ, under which, the
color in {7, 8} \ Sxx2 would be valid for xy. This completes the proof of Lemma 5. �
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Lemma 7. A 6-vertex x with a special neighbor y has at most four 3−-neighbors (including y).

Proof. Suppose to the contrary that x has at least five 3−-neighbors, say, x1, x2, x3, x4, y. Let z be the remaining neighbor of
x. Without loss of generality, we may assume that all the 3−-neighbors of x are 3-vertices. Let G′

= G − xy. By the choice of
G,G′ has an acyclic edge coloring φ using colors from [∆ + 2]. Without loss of generality, we may assume that φ(xxi) = i
for i = 1, 2, 3, 4 and φ(xz) = 5. Let F(xy) = φ(x) ∪ φ(y).

If φ(x) ∩ φ(y) = ∅, then |φ(x) ∪ φ(y)| ≤ (∆ − 1) + 2 = ∆ + 1 < ∆ + 2. Hence there exists at least one color
α ∈ [∆ + 2] \ F(xy) that is valid for xy under φ. So we may assume that φ(x) ∩ φ(y) ≠ ∅. There are two cases under
consideration.
(1) |φ(x) ∩ φ(y)| = 1.

Let φ(x) ∩ φ(y) = {α}. Clearly, α ∈ {1, 2, 3, 4, 5}. We discuss by distinguishing two subcases as follows.
(a) α ∈ {1, 2, 3, 4}.
Without loss of generality, we may assume that φ(yy1) = 1 and φ(yy2) = 6. If we can find a color α ∈ [∆+ 2] \ F(xy)

that is valid for xy under φ, thenwe get an acyclic edge coloring of G using∆+2 colors, a contradiction. Hence for each color
θ ∈ [∆+ 2] \ F(xy), there exists a (1, θ, xy)-critical path under φ. It follows that [∆+ 2] \ F(xy) = {7, 8, . . . ,∆+ 2} ⊆ Sxx1
as well as Syy1 . Since d(x1) = 3,∆ = 6. Thus Sxx1 = {7, 8} and {7, 8} ⊆ Syy1 . Now by recoloring xx1 with 6, we obtain
a new acyclic edge coloring φ′ of G′, under which neither 7 nor 8 is valid for xy, since otherwise G would be acyclically
edge (∆ + 2)-colorable. This implies that there are (6, 7, y, x1)- and (6, 8, y, x1)-maximal bichromatic paths under φ as
well as under φ′. Hence 7, 8 ∈ Syy2 . If there is a color i ∈ {2, 3, 4, 5} \ (Syy1 ∪ Syy2), then by recoloring yy2 with color i, we
obtain a new acyclic edge coloring of G′, under which 6 would be valid for xy. So {2, 3, 4, 5} ⊆ Syy1 ∪ Syy2 . It follows that
|Syy1 | + |Syy2 | ≥ 2 + 2 + 4 = 8. Note that y is special, i.e., one of y1 and y2 is a 4-vertex. Hence |Syy1 | + |Syy2 | ≤ 3 + 5 = 8
(recall that∆ = 6). It follows that |Syy1 | + |Syy2 | = 8. So 1 ∉ Syy2 . Now by recoloring yy2 with a color in {2, 3, 4, 5} \ φ(y2),
we obtain a new acyclic edge coloring of G′, under which, 6 would be valid for xy.

(b) α = 5.
Without loss of generality, we may assume that φ(yy1) = 5 and φ(yy2) = 6.
If we can find a color α ∈ [∆ + 2] \ F(xy) that is valid for xy under φ, then we get an acyclic edge coloring of G using

∆ + 2 colors, a contradiction. Hence for each color θ ∈ [∆ + 2] \ F(xy), there exists a (5, θ, xy)-critical path under φ.
It follows that [∆ + 2] \ F(xy) = {7, 8, . . . ,∆ + 2} ⊆ Syy1 as well as Sxz . Since d(y1) ≤ ∆, |Syy1 | ≤ ∆ − 1. Note that
|{7, 8, . . . ,∆+ 2}| = ∆+ 2 − 7 + 1 = ∆− 4. It follows that |Syy1 \ {7, 8, . . . ,∆+ 2}| ≤ (∆− 1)− (∆− 4) = 3. Hence
|{1, 2, 3, 4} \ Syy1 | ≥ 1. Without loss of generality, we may assume that 1 ∉ Syy1 .

If 6 ∉ Syy1 , then by recoloring yy1 with color 1, we obtain a new acyclic edge coloring of G′ from φ, and return to (a). So
6 ∈ Syy1 .

We are going to prove 5 ∈ Syy2 . If not, by recoloring yy1, yy2 with 1, 5, respectively, we obtain a new acyclic edge coloring
φ′ of G′ that differs from φ only on yy1 and yy2. Note that d(x1) = 3, {6, 7, 8}\Sxx1 ≠ ∅. Let α ∈ {6, 7, 8}\Sxx1 . If α = 6, then
6 is valid for xy under φ′ (since 6 belongs to neither Sxx1 nor Syy2 ), a contradiction. So α ∈ 7, 8. Without loss of generality,
we may assume that α = 7. Since G is not acyclically edge (∆ + 2)-colorable, coloring xy with 7 under φ′ produces a
bichromatic cycle C . Clearly C is either a (1, 7)- or a (5, 7)-bichromatic cycle. If C is a (1, 7)-bichromatic cycle, then 7 ∈ Sxx1 ,
a contradiction. So C is a (5, 7)-bichromatic cycle. It follows that there is a (5, 7, xy)-critical path under φ′, namely, there
is a (5, 7, x, y2)-maximal bichromatic path under φ. By Fact 1, there is no (5, 7, x, y1)-maximal bichromatic path under φ.
However, there is already a (5, 7, x, y1)-maximal bichromatic path under φ. This contradiction shows that 5 ∈ Syy2 .

If there is a color α ∈ {1, 2, 3, 4} \ (Syy1 ∪ Syy2), then by recoloring yy1 with α, we obtain a new acyclic edge coloring
of G′ from φ, and return to (a). So {1, 2, 3, 4} ⊂ Syy1 ∪ Syy2 . To conclude, [∆ + 2] ⊆ Syy1 ∪ Syy2 . On the other hand,
Syy1 ∪ Syy2 ⊆ [∆ + 2]. So Syy1 ∪ Syy2 = [∆ + 2]. Since y is special, |Syy1 | + |Syy2 | ≤ ∆ − 1 + 3 = ∆ + 2.
Hence |Syy1 ∩ Syy2 | = |Syy1 | + |Syy2 | − |Syy1 ∪ Syy2 | ≤ (∆ + 2) − (∆ + 2) = 0. Therefore Syy1 ∩ Syy2 = ∅. Since
{6, 7, 8, . . . ,∆ + 2} ⊆ Syy1 , Syy2 ⊆ {1, 2, 3, 4, 5}. According to which of y1 and y2 is the 4-neighbor of y, there are two
cases under consideration.

(b1) d(y1) = 4.
Clearly, |Syy1 | = 3. Since {6, 7, 8, . . . ,∆ + 2} ⊆ Syy1 , |{6, 7, 8, . . . ,∆ + 2}| ≤ 3, i.e., 3 ≥ ∆ + 2 − 6 + 1 = ∆ − 3.

Hence ∆ ≤ 6. Since d(x) = 6, ∆ ≥ 6. So ∆ = 6. It follows that Syy1 = {6, 7, 8}. Recall that [∆ + 2] ⊆ Syy1 ∪ Syy2 , i.e.,
|Syy2 | ≥ (∆+ 2)− |Syy1 |. Hence d(y2) = |Syy2 | + 1 ≥ (∆+ 2)− |Syy1 | + 1 = ∆. So d(y2) = ∆ = 6, hence |Syy2 | = 5. Note
that Syy2 ⊆ {1, 2, 3, 4, 5}. Hence Syy2 = {1, 2, 3, 4, 5}. Let u1, u2, u3 be the three neighbors of y1 other than y. Without loss of
generality, wemay assume thatφ(y1u1) = 7 andφ(y1u2) = 8. Nowwe claim that for every color η ∈ {1, 2, 3, 4}, ξ ∈ {7, 8},
there is a (η, ξ, y2, y1)-maximal bichromatic path under φ. Suppose not, without loss of generality, we may assume that
there is no (1, 7, y2, y1)-maximal bichromatic path under φ. Then by recoloring yy1, yy2 with 1, 7, respectively, we obtain
a new acyclic edge coloring of G′ from φ, and return to (a). It follows that {1, 2, 3, 4} ⊂ Sy1ui , i = 1, 2. Note that there are
(5, 7, xy)-, (5, 8, xy)-critical paths under φ. Hence 5 ∈ Sy1ui , i = 1, 2. It follows that {1, 2, 3, 4, 5} ⊆ Sy1ui , i = 1, 2. Since
∆ = 6, |Sy1ui | ≤ 5, i = 1, 2. Therefore, Sy1ui = {1, 2, 3, 4, 5}, i = 1, 2. Now, we first exchange the colors on y1u1 and y1u2,
then recolor yy1, yy2 with 1, 7, respectively, obtaining a new acyclic edge coloring of G′, and returning to (a).

(b2) d(y2) = 4.
In this case, d(y1) = ∆. Clearly |Syy2 | = 3. By the symmetry of 1, 2, 3 and 4, we may assume that Syy2 = {3, 4, 5} and

Syy1 = {1, 2, 6, 7, . . . ,∆ + 2}. Let v1, v2, v3 be the three neighbors of y2 other than y. Without loss of generality, we may
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assume thatφ(y2v1) = 3 andφ(y2v2) = 4.We first claim that for every colorη1 ∈ {1, 2}, ξ ∈ {3, 4}, there is a (η1, ξ , y1, y2)-
maximal bichromatic path under φ. Suppose not, without loss of generality, we may assume that there is no (1, 3, y1, y2)-
maximal bichromatic path underφ. Then by recoloring yy1, yy2 with 3, 1, respectively, we obtain a new acyclic edge coloring
of G′, under which, a color in {6, 7, 8}\Sxx3 is valid for xy (note that |Sxx3 | = 2, Syy2 = {3, 4, 5}). This proves the claim. Hence
1, 2 ∈ Sy2vi , i = 1, 2.We next claim that for every color η2 ∈ {6, 7, . . . ,∆+2}, ξ ∈ {3, 4}, there is a (η2, ξ , y1, y2)-maximal
bichromatic path under φ. Suppose not, without loss of generality, we may assume that there is no (6, 3, y1, y2)-maximal
bichromatic path under φ. Then by recoloring yy1, yy2 with 3, 6, respectively, we obtain a new acyclic edge coloring of G′,
and return to (a). It follows that {6, 7, . . . ,∆ + 2} ⊆ Sy2vi , i = 1, 2. To conclude, {1, 2, 6, 7, . . . ,∆ + 2} ⊆ Sy2vi , i = 1, 2.
Since |{1, 2, 6, 7, . . . ,∆+ 2}| = ∆+ 2 − 6 + 1 + 2 = ∆− 1 and |Sy2vi | ≤ ∆− 1, Sy2vi = {1, 2, 6, 7, . . . ,∆+ 2}, i = 1, 2.
Now, we first exchange the colors on y2v1 and y2v2, then recolor yy1 with 3, obtaining a new acyclic edge coloring of G′ from
φ, and returning to (a).
(2) |φ(x) ∩ φ(y)| = 2.

In this case, F(xy) = φ(x) ∪ φ(y) = {1, 2, 3, 4, 5}; hence [∆+ 2] \ F(xy) = {6, 7, . . . ,∆+ 2}. Since∆ ≥ 6, {6, 7, 8} ⊆

{6, 7, . . . ,∆+ 2}. There are two subcases under consideration.
(i) 5 ∉ φ(y).
By the symmetry of 1, 2, 3 and 4,wemay assume thatφ(yy1) = 1 andφ(yy2) = 2. Ifwe can find a color in [∆+2]\F(xy) =

{6, 7, . . . ,∆+2} that is valid for xy underφ, thenwe are done. Otherwise, for every θ ∈ {6, 7, . . . ,∆+2}, there is (1, θ, xy)-
or (2, θ, xy)-critical paths underφ. It follows that {6, 7, . . . ,∆+2} ⊆ Sxx1∪Sxx2 . Since d(x1) = d(x2) = 3, |Sxx1 | = |Sxx2 | = 2.
Without loss of generality, we may assume that Sxx1 = {6, 7} and 8 ∈ Sxx2 . Now, by recoloring xx1 with 8, we obtain a new
acyclic edge coloring of G′, under which, a color in {6, 7} \ Sxx2 would be valid for xy.

(ii) 5 ∈ φ(y).
By the symmetry of 1, 2, 3 and 4, we may assume that φ(yy1) = 1 and φ(yy2) = 5. If we can find a color in

[∆+2]\F(xy) = {6, 7, . . . ,∆+2} that is valid for xy under φ, thenwe are done. Otherwise, for every θ ∈ {6, 7, . . . ,∆+2},
there is a (1, θ, xy)- or a (5, θ, xy)-critical path underφ. If there is a colorβ ∈ {6, 7, . . . ,∆+2}\Syy1 , then there is a (5, β, xy)-
critical path under φ. It follows that there is no (5, β, yy1)-critical path under φ by Fact 1. Now, by recoloring yy1 with β , we
obtain a new acyclic edge coloring of G′, and return to (1). So {6, 7, . . . ,∆+ 2} ⊆ Syy1 . Similarly, {6, 7, . . . ,∆+ 2} ⊆ Syy2 .
It follows that ∆ − 3 = |{6, 7, . . . ,∆ + 2}| ≤ min{|Syy1 |, |Syy2 |} = 3, i.e., ∆ ≤ 6; hence ∆ = 6, and one of Syy1 and Syy2 is
equal to {6, 7, 8}, and at least one of 2, 3 and 4 is not contained in Syy1 ∪ Syy2 (otherwise∆ > 6). Now by recoloring yy2 with
a color in {2, 3, 4} \ (Syy1 ∪ Syy2), we obtain a new acyclic edge coloring of G′, and return to (i). �

Lemma 8. G has no (2, 5−)-edge.

Proof. Suppose to the contrary that xy is a (2, 5−)-edge with d(x) = 2. Let z be the neighbor of x other than y. Without loss
of generality, we may assume that d(y) = 5 and yi, i = 1, 2, 3, 4, the four neighbors of y other than x. Let G′

= G − xy.
By the minimality of G,G′ has an acyclic edge coloring φ using colors from the color set [∆ + 2]. We may assume that
φ(yyi) = i, i = 1, 2, 3, 4. If φ(xz) ∉ {1, 2, 3, 4}, then we can color xy with a color from [∆ + 2] \ {1, 2, 3, 4, φ(xz)} as
|[∆+ 2] \ {1, 2, 3, 4, φ(xz)}| = (∆+ 2)− 5 = ∆− 3 ≥ d(y)− 3 = 5 − 3 = 2, giving an acyclic edge coloring of G using
∆+ 2 colors, a contradiction. Thus, φ(xz) ∈ {1, 2, 3, 4}.

Without loss of generality, we may assume that φ(xz) = 1 and, for i = 1, 2, 3, 4, d(yi) = d(z) = ∆. If ([∆ + 2] \

{1, 2, 3, 4}) \ Syy1 ≠ ∅, then we can color xywith a color θ ∈ ([∆+ 2] \ {1, 2, 3, 4}) \ Syy1 , giving an acyclic edge coloring of
G using colors from [∆+ 2], a contradiction. So ([∆+ 2] \ {1, 2, 3, 4}) \ Syy1 = ∅. Namely, {5, 6, . . . ,∆+ 2} ⊂ Syy1 . Since
G is not acyclic edge (∆+ 2)-colorable, for every i ∈ {5, 6, . . . ,∆+ 2}, there is a (1, i, xy)-critical path passing through xz
under φ. It follows that {5, 6, . . . ,∆+ 2} ⊂ Sxz . Without loss of generality, we may assume that Sxz = {4, 5, 6, . . . ,∆+ 2}.
If {5, 6, . . . ,∆ + 2} \ φ(y2) ≠ ∅, then we can recolor xz with 2 and color xy with a color in {5, 6, . . . ,∆ + 2} \ φ(y2),
giving an acyclic edge coloring of G using colors from [∆ + 2], a contradiction. So {5, 6, . . . ,∆ + 2} \ φ(y2) = ∅, i.e.,
{5, 6, . . . ,∆+ 2} ⊂ Syy2 . Similarly, {5, 6, . . . ,∆+ 2} ⊂ Syy3 .

Let us prove that {5, 6, . . . ,∆+ 2} ⊂ Syy4 , too. If not, say 5 ∉ Syy4 , then we can recolor yy4 with 5, getting a new proper
edge coloring φ′ of G′ that differs from φ only on yy4. We are going to show that φ′ is also acyclic, i.e., there is no bichromatic
cycle under φ′. Suppose to the contrary that C is a bichromatic cycle under φ′. As φ is acyclic, C must be colored with 5 and
a color α ∈ {1, 2, 3}. If α = 1, then there is a (1, 5, yy4)-critical path under φ. By Fact 1, there is no (1, 5, yx)-critical path
under φ (note that x ≠ y4). However, there has already been a (1, 5, yx)-critical path under φ, a contradiction. Suppose
α = 2. Clearly there is a (2, 5, yy4)-critical path under φ. This implies that there is no (2, 5, y, z)-maximal chromatic path
by Fact 1. (Note that z ≠ y4 since otherwise 2 ∈ φ(y4) = φ(z) contradicting 2 ∉ φ(z).) Then we can recolor xz with 2
and then color xy with 5, modifying φ into an acyclic edge coloring of G using colors from [∆+ 2], a contradiction. Similar
argument tells us that α ≠ 3. Hence φ′ is acyclic indeed. Now, if 4 is valid for edge xy under φ′, then we are done. Otherwise,
there is a (1, 4, xy)-critical path under φ as well as under φ′. It follows that 4 ∈ φ(y1). By recoloring xz with 2 (resp. 3),
we know that 4 ∈ φ(y2) (resp. 4 ∈ φ(y3)). To conclude, Syyi = Sxz = {4, 5, . . . ,∆ + 2} for i = 1, 2, 3 under φ. Now, by
exchanging the colors on yy1 and yy2, we obtain a new proper edge coloring φ1 of G′ from φ. If φ1 is acyclic, then 5 is valid
for xy. Otherwise, there is either a (4, 1)-bichromatic cycle or a (4, 2)-bichromatic cycle under φ1. It follows that there is
either a (4, 1, yy2)-critical path P12 or a (4, 2, yy1)-critical path P21 under φ. Similar argument can yield that there is either
a (4, 1, yy3)-critical path P13 or a (4, 3, yy1)-critical path P31 under φ. Also note that, by recoloring xz with 2, arguing as
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above, there is either a (4, 2, yy3)-critical path P23 or a (4, 3, yy2)-critical path P32 under φ. Without loss of generality, we
may assume that P12 exists under φ. By Fact 1, P13 does not exist, hence P31 exists, by the same reason, P32 does not exist,
P23 exists, hence P21 does not exists by Fact 1 under φ. Now, by recoloring yy1, yy2, yy3 with 2, 3, 1, respectively, we obtain
a new acyclic edge coloring of G′, under which, 5 is valid for xy. This proves {5, 6, . . . ,∆+ 2} ⊂ Syy4 .

Now let αi be the unique uncertain color in φ(yi), i ∈ {1, 2, 3, 4}. By the property of φ, these uncertain colors cannot be
identical since they all are in {1, 2, 3, 4}. We shall complete the proof by distinguishing three cases as follows.

(1) Exactly three of the four uncertain colors are identical.
Let the three uncertain identical colors be equal to α, and β the remaining color of the four uncertain colors.
We first consider the case α4 = β . Clearly α = 4; hence β ∈ {1, 2, 3}. If β = 1, then we first recolor xz with 2, then

exchange the colors on yy2 and yy3, obtaining a new acyclic edge coloring of G′, under which, 5 is valid for xy. Suppose
β ∈ {2, 3}. Without loss of generality, we may assume that β = 2. In this case, we can exchange the colors on yy1 and yy3,
obtaining a new acyclic edge coloring of G′, under which, 5 is valid for xy.

We next consider the case α4 = α. Note that, if we recolor xz with 2 or 3, then we obtain a new acyclic edge coloring of
G′ that differs from φ only on xz. Thus 1, 2, 3 are symmetric. Without loss of generality, wemay assume that α1 = β . Clearly
α = 1; hence β ∈ {2, 3, 4}. So either β ≠ 2 or β ≠ 3. Without loss of generality, we may assume that β ≠ 2. Now we first
recolor xz with 2, then exchange the colors on yy2 and yy4 if β = 3 or exchange the colors on yy2 and yy3 if β = 4, obtaining
a new acyclic edge coloring of G′, under which, 5 is valid for xy.

(2) At least one pair of the four uncertain colors are the same.
Let α be the same color or one of the two same colors among the four uncertain colors.
We first consider the case α4 = α. Clearly α4 ∈ {1, 2, 3}. Since 1, 2, 3 are symmetric, we may assume that α = 1 and

α3 = α = 1. If α1 ∉ {3, 4}, then we first recolor xz with 3, and then exchange the colors on yy3 and yy4, obtaining a new
acyclic edge coloring of G′, under which, 5 is valid for xy. Suppose α1 = 3(4). In this case, we first recolor xz with 2, then
exchange the colors on yy2 and yy4 if α2 = 3 or exchange the colors on yy2 and yy3 if α2 = 4, obtaining a new acyclic edge
coloring of G′, under which, 5 is valid for xy.

We next consider the case α4 is distinct from the other three uncertain colors. Clearly α4 ∈ {1, 2, 3}. Since 1, 2 and 3 are
symmetric, we may assume that α4 = 1; hence α ∈ {2, 3, 4}. If α = 4, then by the symmetry of 1, 2 and 3, we may assume
that α1 = α2 = 4, hence α3 = 2, and then we only need exchange the colors on yy1 and yy3, obtaining a new acyclic edge
coloring of G′, under which, 5 is valid for xy. Suppose α ∈ {2, 3}. Without loss of generality, we may assume that α = 2,
hence α1 = α3 = α = 2. Thus α2 ∈ {3, 4}. If α2 = 4, then we exchange the colors on yy1 and yy3; otherwise α2 = 3, then
we first recolor xz with 3, and then exchange the colors on yy3 and yy4, obtaining a new acyclic edge coloring of G′, under
which, 5 is valid for xy.

(3) The four uncertain colors are distinct.
Clearly α4 ∈ {1, 2, 3}. By the symmetry of 1, 2 and 3, we may assume that α4 = 1. Clearly α1 ∈ 2, 3, 4. If α1 = 4, then

α2 = 3 and α3 = 2. Now, by exchanging the colors on yy1 and yy2, we obtain a new acyclic edge coloring of G′, under which,
5 is valid for xy. So α1 ∈ {2, 3}. Without loss of generality, we may assume that α1 = 2. In this case, α2 = 3 and α3 = 4.
Now, by recoloring yy1, yy2, yy3, yy4 with 3, 4, 1, 2, respectively, we obtain a new acyclic edge coloring of G′, under which,
5 is valid for xy. This completes the proof. �

Lemma 9. Let d ≥ 6 be an integer and x a d-vertex in G. If x has a 2-neighbor y and a 3−-neighbor y′. Then x has at most
(d − 6) 2-neighbors other than y and y′.

Proof. Let v1, v2, . . . , vd−1 be the neighbors of x other than y, and z the neighbor of y other than x. As before, G′
= G − xy

and φ an acyclic edge coloring of G′ using colors from [∆ + 2]. Without loss of generality, we may assume that φ(xvi) = i
for i = 1, 2, . . . , d − 1. Suppose to the contrary that x has at least (d− 5) 2-neighbors other than y and y′. For convenience,
let v1, v2, . . . , vd−5 be 2-neighbors of x other than y and y′, and y′

= vd−4. Without loss of generality, we may assume that
d(vd−4) = 3. Let v′

i be the neighbor of vi other than x for i = 1, 2, . . . , d− 5, and v′

d−4, v
′′

d−4 the two neighbors of vd−4 other
than x. Let I = {1, 2, . . . , d − 4}, J = {d − 3, d − 2, d − 1} and K = {d, d + 1, . . . ,∆+ 2}. According to the value of φ(yz),
there are three cases under consideration.
(1) φ(yz) ∈ K .

In this case, |φ(x) ∪ {φ(yz)}| = (d − 1) + 1 = d < ∆ + 2. So we can find a color in [∆ + 2] \ (φ(x) ∪ {φ(yz)}) that is
valid for xy under φ.
(2) φ(yz) ∈ I .

Assume that φ(yz) = i. Then |φ(vi)| ≤ 3 (more precisely, |φ(vi)| = 3 if i = d − 4; 2 otherwise). Since |φ(x) ∪ φ(vi)| ≤

d − 1 + 2 = d + 1 < ∆ + 2, we can find a color in [∆ + 2] \ (φ(x) ∪ φ(vi)) that is valid for xy under φ (note that
φ(yz) = i ∈ φ(vi)).
(3) φ(yz) ∈ J .

This is an involving case to deal with. To exclude it, we need the following three claims.

Claim 1. Syz = I ∪ K .

If there is a color i ∈ I \ Syz , by recoloring yz with i, we then obtain a new acyclic edge coloring of G′ using colors from
[∆ + 2], and then return to (2). So I ⊂ Syz . If there is a color k ∈ K \ Syz , by recoloring yz with k, we then obtain a new
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acyclic edge coloring of G′ using colors from [∆ + 2], and then return to (1). So K ⊂ Syz . To conclude, I ∪ K ⊆ Syz . Since
|Syz | ≤ ∆− 1 and |I ∪ K | = ∆− 1, Syz = I ∪ K .

Claim 2. For every j ∈ J, Sxvj = I ∪ K.

Clearly, Claim 2 directly follows from the following two assertions: for every j ∈ J , there exists

(a) a (j, k, x, z)-maximal bichromatic path under φ for every k ∈ K ;
(b) a (j, i, x, z)-maximal bichromatic path under φ for every i ∈ I .

Suppose to the contrary that there is no (j0, k0, x, z)-maximal bichromatic path under φ for some j0 ∈ J, k0 ∈ K . Observe
that if φ(yz) ≠ j0, then by recoloring yz with j0, we obtain a new acyclic edge coloring of G′ that differs from φ only on yz.
Hence we may assume that φ(yz) = j0. Thus there is no (j0, k0, xy)-critical path under φ. It follows that k0 is valid for xy
under φ, a contradiction proving assertion (a).

Suppose to the contrary that there is no (j0, i0, x, z)-maximal bichromatic path under φ for some j0 ∈ J, i0 ∈ I . As above,
we may assume that φ(yz) = j0. So there is no (j0, i0, xy)-critical bichromatic path under φ. If we can recolor xvi0 with a
suitable color obtaining a new acyclic edge coloring of G′, say φ′, which differs from φ only on edge xvi0 , then i0 is valid for
xy under φ′, a contradiction proving assertion (b). Below we show that we can do so indeed.

According to the value of i0, there are two possibilities.
(i) i0 ≠ d − 4.
In this case, without loss of generality, we may assume that i0 = 1. If φ(v1v′

1) ∈ K , then we can recolor xv1 with a color
k ∈ K \ {φ(v1v

′

1)}, as required. If φ(v1v′

1) = i′ ∈ I , then we can recolor xv1 with a color in K \ Sxvi′ since |K | ≥ 3 and
|Sxvi′ | ≤ 2. Finally suppose φ(v1v′

1) = j′ ∈ J . By assertion (a), there is a (j′, k, x, z)-maximal bichromatic path under φ for
every k ∈ K . By Fact 1, there is no (j′, k, x, v1)-maximal bichromatic path under φ for every k ∈ K . It follows that we can
recolor xv1 with any color k ∈ K .

(ii) i0 = d − 4.
Let Sxvd−4 = {i1, i2}. According to the values of i1 and i2, there are 23

= 8 subcases under consideration. In each subcase,
as above, we can find a color k ∈ K to recolor xvd−4 as required. For example, if |{i1, i2} ∩ I| = 2, then we can choose a
color k ∈ K \ {φ(vi1vi′1

), φ(vi2vi′2
)}; if |{i1, i2} ∩ J| = 2, then we can choose any color k ∈ K by assertion (a) as above; if

|{i1, i2} ∩ K | = 2, then we can choose a color k ∈ K \ {i1, i2}, etc.
We are intent to destroy some (j, k, xy)-critical paths under φ such that k is valid for xy under a new acyclic edge coloring

of G′. This first requires us to exchange colors on two of edges xvj, j ∈ J . However it may yield some new (j, i)-bichromatic
cycles for some i ∈ I . Intuitively, we should first avoid to produce (j, d − 4)-bichromatic cycles.

Claim 3. We can exchange some two of the colors on xvd−1, xvd−2 and xvd−3 to obtain a proper edge coloring of G′, under which
there is no (j, d − 4)-bichromatic cycle for every j ∈ J .

For convenience, we rewrite J = {j1, j2, j3}. If |Sxvd−4 ∩ J| ≤ 1, say Sxvd−4 ∩ J = ∅, or Sxvd−4 ∩ J = {j1}, then we only
need to exchange the two colors on xvj2 and xvj3 . Suppose Sxvd−4 ⊂ J . Without loss of generality, we may assume that
Sxvd−4 = {j1, j2}. Now by exchanging the colors on xvj1 and xvj2 , we obtain a new proper edge coloring φ′ of G′. If there is
neither (j1, d−4)- nor (j2, d−4)-bichromatic cycle under φ′, then we are done. Otherwise there is a (j1, d−4)-bichromatic
cycle, or a (j2, d − 4)-bichromatic cycle (or both bichromatic cycles) under φ′. Without loss of generality, we may assume
that there is a (j1, d− 4)-bichromatic cycle under φ′. Clearly there is a (d− 4, j1, xvj2)-critical path under φ as well as under
φ′. By Fact 1, there is no (d − 4, j1, xvj3)-critical path under φ. Now by exchanging the colors on xvj1 and xvj3 , we obtain a
new proper edge coloring of G′, under which there is no (j, d − 4)-bichromatic cycle for every j ∈ J . This proves Claim 3.

By Claims 1–3, we know that G′ admits a proper edge coloring ψ that differs from φ only on two of the three edges
xvd−3, xvd−2 and xvd−1, under which, there is no ((d − 4), j)-bichromatic cycles for every j ∈ J . By symmetry, we may
assume that the two edges, on which ψ and φ differs, are xvd−1 and xvd−2. More precisely, ψ(xvd−1) = φ(xvd−2) = d − 2,
ψ(xvd−2) = φ(xvd−1) = d − 1, ψ(e) = φ(e), otherwise.

Recall that the motivation of Claim 3 is to destroy the (j, k, xy)-critical path under φ for every k ∈ K when φ(xy) = j.
Also observe that under φ we can freely recolor xywith any j ∈ J in G′, still giving an acyclic edge coloring of G′. So now we
may assume thatψ(xy) = φ(xy) = d − 1 and that all the (d − 1, k, xy)-critical path for k ∈ K under φ are destroyed under
ψ . If ψ is acyclic, then every color in K is valid for xy under ψ , we are done. Suppose ψ is not acyclic. We are going to show
that we can make ψ into an acyclic edge coloring of G, under which, there is at least one color k ∈ K that is valid for xy.

Let I1 (resp. I2) be the subset of I such that, for every i1 ∈ I1 (resp. i2 ∈ I2), there is a (d−1, i1)- (resp. (d−2, i2))-bichromatic
cycle under ψ , and ni = |Ii|, i = 1, 2. According to the values of n1 and n2, there are six cases under consideration.

(0) n1 ≥ 2, n2 = 0.
Without loss of generality, we may assume that the bichromatic cycles under ψ are (i1, d − 1)-bichromatic cycle for

i1 ∈ {1, 2, . . . , n1}. By taking a rotation of the colors 1, 2, . . . , n1 on edges xv1, xv2, . . . , xvn1 (i.e., assigning i to xvi+1 for
i = 1, 2, . . . , n1 − 1 and n1 to xv1), we destroy all the present bichromatic cycles, and produce no new bichromatic cycles
(because d(vi) = 2, and ψ(viv′

i) = d − 1, i = 1, 2, . . . , n1), hence make ψ into an acyclic edge coloring of G′, under which,
every color k ∈ K is valid for xy.
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(i) n1 = 1, n2 = 0.
Without loss of generality, we may assume that the unique bichromatic cycle underψ is a (1, d − 1)-bichromatic cycle.

Observe that underψ there is a (d − 1, 1, xv1)-critical path. By Fact 1, there is no (d − 1, 1, xy)-critical path underψ . If we
can find a color k ∈ K such that recoloring xv1 with k under ψ results in a new acyclic edge coloring φ1 of G′, then 1 is valid
for xy under φ1, we are done. So we assume that for every k ∈ K , there is a (d − 1, k, xv1)-critical path under ψ . It follows
that K ⊂ ψ(v′

1)(=φ(v
′

1)). Let us prove I ⊂ ψ(v′

1). Clearly 1 ∈ ψ(v′

1). Suppose there is a color i ∈ I \ {1} that is not inψ(v′

1).
We recolor v1v′

1 with i, xv1 with a color k ∈ K \ {φ(vi)} under ψ , obtaining an acyclic edge coloring of G′, under which 1 is
valid for xy. This proves I ⊂ ψ(v′

1)(=φ(v
′

1)).
Recall that there is already a (d − 3, 1, x, z)-maximal bichromatic path under φ (as well as under ψ), by Fact 1,

there is no (d − 3, 1, x, v′

1)-maximal bichromatic path under φ (as well as under ψ) (note that z ≠ v′

1 since otherwise
φ(yz) = φ(v1v

′

1) = d − 1 implies y = v1). Now we recolor v1v′

1 with d − 3 under ψ , obtaining a new acyclic edge coloring
of G′, under which every k ∈ K is valid for xy.

(ii) n1 = 0, n2 = 1.
By recoloring yz with d − 2, we obtain a new acyclic edge coloring of G′ that differs from φ only on yz, under which (ii)

turns into (i).
(iii) n1 ≥ 2, n2 = 1.
Without loss of generality, we may assume that the bichromatic cycles under ψ are (i1, d − 1)-bichromatic cycle

for i1 ∈ {1, 2, . . . , n1} and a (d − 5, d − 2)-bichromatic cycle C . By taking a rotation of colors 1, 2, . . . , n1 on edges
xv1, xv2, . . . , xvn1 , we destroy all the (d − 1, i1)-bichromatic cycles, where i1 ∈ I1, and obtain a new proper edge coloring
ϕ of G′ that differs fromψ only on xv1, xv2, . . . , xvn1 , under which there is exactly one bichromatic cycle C , hence return to
(ii).

(iv) n1 = n2 = 1.
Let C1 and C2 be the only twobichromatic cycles underψ .Without loss of generality,wemay assume that C1 is a (d−1, 1)-

bichromatic cycle and C2 is a (d− 2, 2)-bichromatic cycle. In most of the subcases below, we are going to show that we can
destroy C2, and then return to case (i).

If there is a color k ∈ K that is not in ψ(v′

2), then we recolor v2v′

2 with k under ψ . This action clearly destroys C2 and
does not produce any new bichromatic cycle as d(v2) = 2 and ψ(x) ∩ K = ∅, hence return to case (i). So we may assume
that K ⊂ ψ(v′

2). Clearly, 2 ∈ ψ(v′

2).
Suppose there is a color i ∈ I \ {2, d− 4} that is not inψ(v′

2). Clearly, by recoloring v2v′

2 with i underψ , we destroy C2. If
this operation results in no new bichromatic cycle, then we are done. Otherwise, there is a (2, i)-bichromatic cycle C3 under
the new proper edge coloring ϕ obtained by recoloring v2v′

2 with i underψ . If there is a color k ∈ K that is not in ϕ(v′

i), then
we recolor viv′

i with k under ϕ, destroying C3, and return to (i). So K ⊂ ϕ(v′

i). If 1 ∉ ϕ(v′

i), then we recolor viv′

i with 1 under
ϕ, destroying C3, and return to (i). So 1 ∈ ϕ(v′

i). Clearly, 2, i ∈ ϕ(v′

i). If there is a color i∗ ∈ I \ {1, 2, i, d − 4} that is not in
ϕ(v′

i), then we recolor viv′

i with i∗ under ϕ, obtaining a new proper edge coloring ϕ′ of G′: if there is exactly one bichromatic
cycle C1 under ϕ′, thenwe return to (i); otherwise, except C1, there is another (i, i∗)-bichromatic cycle under ϕ′. But thenwe
can exchange the colors on xv2 and xvi∗ under ϕ′, obtaining a new proper edge coloring of G′, under which there is exactly
one bichromatic cycle C1, hence return to (i). Now (I \ {d − 4}) ∪ K ⊂ ϕ(v′

i). If d − 3 ∉ ϕ(v′

i), then we recolor viv′

i with
d − 3, obtaining a new proper edge coloring of G′, under which there is exactly one bichromatic cycle C1. (Otherwise, there
is a (d − 3, i)-bichromatic cycle, hence there is a (d − 3, i, x, v′

i)-maximal bichromatic path under φ. By Fact 1, there is no
(d − 3, 2, x, z)-maximal bichromatic path under φ as z ≠ v′

i . This contradicts assertion (b) in Claim 2), hence return to (i).
Thus (d − 3) ∈ ϕ(v′

i). If d − 2 ∉ ϕ(v′

i), then we recolor viv′

i with d − 2 under ϕ, obtaining a new proper edge coloring ϕ′′

of G′: if there is exactly one bichromatic cycle C1 under ϕ′′, then we return to (i); otherwise, except C1, there is a (d − 2, i)-
bichromatic cycle under ϕ′′. Now by recoloring v2v′

2 with d − 2 and exchanging the colors on xv2, xvi under ϕ′′, we obtain
a new proper edge coloring of G′, under which there is exactly one bichromatic cycle C1, hence return to (i). It follows that
d − 1 ∉ ϕ(v′

i). Now we recolor viv′

i with d − 1 under ϕ, obtaining a new proper edge coloring ϕ′′′ of G′: if there is exactly
one bichromatic cycle C1 under ϕ′′′, then we return to (i); otherwise, except C1, there is another (d− 1, i)-bichromatic cycle
under ϕ′′′, hence return to (0). So far, we have proved (I \ {d − 4}) ∪ K ⊂ ψ(v′

2).
If d − 1 ∉ ψ(v′

2), then by recoloring v2v′

2 with d − 1 under ψ , we obtain a new proper edge coloring ψ ′ of G′: if there is
exactly one bichromatic cycle C1 underψ ′, thenwe return to (i); otherwise, except C1, there is another (2, d−1)-bichromatic
cycle under ψ ′, hence return to case (0). So d − 1 ∈ ψ(v′

2). It follows that d − 3 ∉ ψ(v′

2). Now recoloring v2v′

2 with d − 3
underψ, C2 is destroyed, and no newbichromatic cycle is produced (otherwise, there is a (d−3, 2)-bichromatic cycle, hence
there is a (d − 3, 2, x, v′

2)-maximal bichromatic path under φ; by Fact 1, there is no (d − 3, 2, x, z)-maximal bichromatic
path under φ as z ≠ v′

2. This contradicts assertion (b) in Claim 2), hence return to case (i).
(v) n1 ≥ 2, n2 ≥ 2.
In this case, we only need make two rotations as in case (0).
(vi) n1 = 1, n2 ≥ 2.
By recoloring yz with d − 2, we obtain a new acyclic edge coloring of G′ that differs from φ only on yz, which turns (vi)

into (iii).
(vii) n1 = 0, n2 ≥ 2.
Now by recoloring yz with d − 2, we obtain a new acyclic edge coloring of G′ that differs from φ only on yz, which turns

(vii) into (0).
Lemma 9 is proved. �
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3. Discharging

To complete the proof of Theorem 1, we shall derive a contradiction by a discharging procedure proceeded in G.
First, we define the initial charge functionµ on V = V (G) by lettingµ(v) = d(v)− 4 for every v ∈ V . Since mad(G) < 4,

the sum of the initial charge is negative. If we can make suitable discharging rules to redistribute charges among vertices so
that the final charge µ′(v) of every vertex v ∈ V is nonnegative, then we get a contradiction completing the proof.

The needed discharging rules are as follows.

R1. Every 2-vertex gets 1 from each of its 6+-neighbors.
R2. Let v be a 3-vertex. If v is special, then it gets 1

2 from each of its 5+-neighbors. Otherwise, v gets 1
3 from each of its

5+-neighbors.

We are going to show that µ′(v) ≥ 0 for all v ∈ V . Recall that every vertex in G has degree at least 2.
Let v be a 2-vertex. By Lemma 8, the two neighbors of v are 6+-vertices. By R1, µ′(v) ≥ −2 + 2 × 1 = 0.
Let v be a 3-vertex. By Lemma 1, v has no 3−-neighbors. By Lemma 3, v has at most one 4-neighbor. If v has a 4-neighbor,

i.e., v is special, then µ′(v) ≥ −1 + 2 ×
1
2 = 0 by R2. Otherwise, µ′(v) ≥ −1 + 3 ×

1
3 = 0 by R2.

Let v be a 4-vertex. By our rules, v gives and gets nothing. Hence, µ′(v) = µ(v) = 0.
Let v be a 5+-vertex. If v has no 3−-neighbor, then v gives and gets nothing, we have µ′(v) = µ(v) ≥ 5 − 4 = 1 > 0.

Suppose v has at least one 3−-neighbor.
First assume that v has no 2-neighbor. If d(v) ≥ 8, then µ′(v) ≥ µ(v) − d(v) ×

1
2 = d(v) − 4 −

d(v)
2 =

d(v)−8
2 ≥ 0

by R2. Suppose d(v) = 7: if v has at least one special-neighbor, by Lemma 6, µ′(v) ≥ µ(v) − 6 ×
1
2 = 7 − 4 − 3 = 0;

otherwise,µ′(v) ≥ µ− 7×
1
3 = 7− 4−

7
3 =

2
3 > 0. Suppose d(v) = 6: if v has at least one special-neighbor, by Lemma 7,

µ′(v) ≥ µ(v)−4×
1
2 = 6−4−2 = 0; otherwise,µ′(v) ≥ µ−6×

1
3 = 6−4−2 = 0. Finally suppose d(v) = 5. By Lemma4,

v has at most three 3-neighbors. If v has at least one special-neighbor, by Lemma 5,µ′(v) ≥ µ(v)−2×
1
2 = 5−4−1 = 0;

otherwise, µ′(v) ≥ µ(v)− 3 ×
1
3 = 5 − 4 − 1 = 0.

Next assume that v has at least one 2-neighbor. By Lemma 8, v is a 6+-vertex. If v has no 3-neighbor, by Lemma 9, v has
at most (d(v) − 4) 2-neighbors, hence µ′(v) ≥ µ(v) − (d(v) − 4) × 1 = 0. If v has exactly one 3-neighbor, by Lemma 9,
v has at most (d(v) − 5) 2-neighbors, giving µ′(v) ≥ µ(v) −

1
2 − (d(v) − 5) × 1 =

1
2 > 0. Suppose v has at least two

3-neighbors, by Lemma 2, it has at most (d(v)− 3)3−-neighbors, we have µ′(v) ≥ µ(v)− 2 ×
1
2 − (d(v)− 3 − 2)× 1 =

d(v)− 4 − 1 − (d(v)− 5) = 0.
Theorem 1 is completely proved.
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