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Designing computational codeword is crucial in DNA computing. However, this is a bothersome
task as too many constraints need to be satisfied in terms of definiting of encoding problem. This
paper proves that the problem of finding the maximum number of computational codeword in a
randomly generated set of DNA sequences is not only NP-hard, but it can also be mapped onto the
solution of a graph of maximum clique problem. Thus, utilizing meta-heuristic algorithm to find an
optimal or near optimal solution and predestinating whether or not the computational codeword in
randomly generated set are required for the following controllable computation. Here we present an
improved Hopfield neural network algorithm to solve this problem. The simulation results show that
the proposed method is useful for a user to select an appropriate set of candidate DNA sequences
to filter and obtain good computational codeword.
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1. INTRODUCTION

DNA computing is a bio-inspired computing paradigm,
which always used to solve hard combinatorial optimiza-
tion problem due to its useful properties, such as its mas-
sive parallelism and huge memory capacity. Because DNA
computing relies heavily on biochemical reactions and is
restricted by technological difficulties, it may result in
undesirable computations. Therefore, designing codeword
for controllable computation is crucial in DNA computing.
However, this is a bothersome task as too many constraints
need to be satisfied in terms of definiting the encoding
problem.

In general, single-stranded DNA sequences that are
structure free are always utilized to perform DNA com-
puting. When faced with a large-scale computational prob-
lem, an exponentially increasing amount of computational
codeword is required. Therefore, the total number of com-
putational codeword, namely, the maximal set of encoding
DNA sequences, which can guarantee desirable computa-
tions should be surveyed to estimate whether or not it is
enough for mapping the instances of an algorithmic prob-
lem. To our knowledge there is currently no accredited
method to solve this problem. For this reason, an efficient
algorithm that can solve the maximum number of compu-
tational codeword problem (MNCCP) would be valuable.

∗Author to whom correspondence should be addressed.

This paper is organized as follows. Section 2 introduces
some necessary backgrounds, such as the encoding prob-
lem, the design strategies and criteria of computational
codeword; moreover, how to map MNCCP onto the solu-
tion of the graph of maximum clique problem (MCP) is
presented, too. Since the Hopfield neural network (HNN)
has been demonstrated to be effective in solving MCP, and
then we also introduce the basic HNN in brief. Section 3
presents the neural representation of MNCCP and pro-
poses an efficient algorithm to solve this problem. Com-
putational results are presented and conclusions are drawn
in Sections 4 and 5, respectively.

2. BACKGROUNDS

2.1. The Encoding Problem

The encoding problem of DNA computing can be simply
defined as mapping the instances of an algorithmic prob-
lem in a systematic manner onto specific DNA molecules
such that the certain chemical reactions avoid sources of
error, and at the same time, the resulting products contain,
with a high degree of reliability, enough DNA molecules to
encode the answers to the problem’s instances and enable
a successful extraction.1�2

In other words, good computational codeword should
ensure:3

(1) certain chemical reactions are specific hybridizations;
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(2) the controllable PCR reaction can amplify the resulting
products; and
(3) the resulting products are reliable and can be extracted
successfully.

2.2. Design Strategies and Criteria

To ensure a chemical reaction is controllable, some con-
straints have been proposed in terms of definiting the
encoding problem, such as similarity, H-measure, sec-
ondary structure, continuity, free energy, melting tem-
perature, GC content, polymerase chain reaction (PCR)
protocol, and so on.4 In our method, we only consider three
constraints: primary structure, melting temperature and free
energy, the detailed reasons for which will be explained in
Section 5. Note that as the sequences that satisfy the above
three constraints, we define computational codeword.

2.2.1. Primary Structure

The primary structure refers to the sequence of bases. To
satisfy the definition of the encoding problem, the primary
structure of each single-stranded DNA sequence that is
generated randomly should have:5

(1) No repeat structure in the sequence;
(2) No large GC rich or deficient regions;
(3) No nucleotide stretches; and
(4) No dimer potential.

Pi is denoted as the primary structure properties of DNA
sequence vi, which is defined as

Pi =




1� if vi ∈ ��1�∩ �2�∩ �3�∩ �4���
0� otherwise

(1)

2.2.2. Melting Temperature

Melting temperature (Tm) is an important factor for the
efficiency of a reaction. The accurate prediction of Tm is
particularly critical in the case of PCR. Large errors in the
Tm estimation can lead to the amplification of non-specific
products or to an inappropriate hybridization performance.

Since oligonucleotides up to about 50 bases in length
are always utilized for performing DNA computing, here
we consider the method and thermodynamic parameters
provided by SantaLucia as having demonstrated that it
has a good performance in predicting the experimen-
tal Tm of short single-stranded DNA sequences. Please see
Ref. [6] for a more detailed discussion of the thermody-
namic parameters in Tm calculation.

To reduce the probability of non-specific hybridizations,
the melting temperature should be uniform. Tij is denoted
as the melting temperature between sequences vi and vj ,
which is defined as

Tij =




1� if �Tm�vi�−Tm�vj�� ≤ 5�

0� otherwise
(2)

2.2.3. Free Energy

Free energy is perhaps the most important thermodynamic
quantity that relates enthalpy and entropy. Many physical
properties of DNA sequences depend directly or indirectly
on free energy.

The change in free energy (�G) for a chemical reaction
indicates whether it will be thermodynamically favourable
at a given temperature. An exothermic reaction produces
heat ��G < 0�, while an endothermic reaction requires
heat ��G> 0�. The sign of �G determines whether or not
the reaction is spontaneous, as well as its direction. There-
fore, �G is the driving force for any chemical reaction.

For a candidate single-stranded DNA sequence, let �G
be the free energy released when specific hybridization
occurs between any randomly generated single-stranded
DNA sequence and its complement. To ensure reliable
results, we hope ��Gsp� is as large as possible where �Gsp

is defined as

�Gsp =




1� if ��Gsp� ≥ 20�

0� otherwise
(3)

2.3. MNCCP Is NP-Hard

Let G�V , E� be an arbitrary undirected graph, where V =
�vi � i = 1�2� � � � � n� is the set of vertices and E ⊆ V ⊕V
is the set of edges, namely, E = �aij � i� j = 1�2� � � � � n�.
Two distinct vertices vi and vj are called adjacent if they
are connected by an edge. The adjacent matrix of G is
the Boolean matrix A�aij�, where aij = 1, if (vi� vj� ∈ E
and aij = 0 otherwise. A clique of G is a subset C ⊆ V
where every pair of vertices is adjacent. A clique is called
maximal if it is not a subset of another clique, and the
highest-cardinality maximal clique is called maximum.
The maximal clique problem requires finding a maximum
clique in a given graph G. Formally,

Max Clique
Instance: Graph G�V , E�.
Solution: A clique in G, i.e., a subset C ⊆ V such that
every pair of vertices in C is adjacent.
Measure: Cardinality �C� of the clique.

The MCP has been proven to be a NP-hard problem.7

Constructing an arbitrary undirected graph G, if let
n vertices in G representing n DNA sequences, an edge
between two vertices vi and vj , represent the correspond-
ing two DNA sequences xi and xj that satisfies the above
three criteria, and is defined as

aij = Tij ·Pi ·�Gsp = 1 (4)

Therefore MNCCP problem can be mapped onto the
MCP in graph G.

As the problem is NP-hard, efficient procedures provid-
ing high quality solutions in reasonable runtimes are very
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useful. At present, most of meta-heuristics algorithms,
such as simulated annealing algorithms, genetic algo-
rithms, ant colony optimization algorithms and artificial
neural networks algorithms for NP-hard problems work
reasonably well on many cases. Although these approaches
do not obtain the optimum solutions, we can obtain sub-
optimum solutions by restricting bounds. For the MNCCP
discussed here, we consider it is efficient if the number
of computational codeword obtained by using the meta-
heuristics algorithms is enough for biological experiments.
Since the HNN has been demonstrated to be effective in
solving the MCP, we will address the MNCCP by using
HNN algorithm in this paper.

2.4. The Basic HNN

Hopfield presented the energy function approach to solve
several optimization problems, including the travelling
salesman problem (TSP), analog to digital conversion,
signal processing problems and linear programming
problems.8 His results have encouraged a number of
researchers to apply this network to different problems,
such as object recognition, graph recognition and eco-
nomic dispatch problems.

In general, the Hopfield network with n neurons is rep-
resented in the following differential equation.

dxi�t�

dt
=

n∑
j=1

wij ·yj�t�+ Ii�t�� i = 1�2� � � � � n (5)

where xi and yi are the input and output of neuron i at
time t, respectively; wij is the weight of the connection
from neuron j to neuron i; and Ii is the extra bias current
of neuron i.

There are two kinds of modes to update the internal
potential xi of neuron:
(1) Time-independent mode, in which the internal potential
of neuron at t+ 1 does not directly depend on its value at t.

xi�t+1�= dxi�t�

dt
(6)

(2) Time-dependent mode, in which the internal potential
of neuron at t + 1 depends on its value at time t.

xi�t+1�= xi�t�+
dxi�t�

dt
(7)

The neuron state yi (output) is updated from xi using a
non-linear function called neuron model.

The following two neuron models have been used for
optimization problems:
(1) The McCulloch-Pitts neuron model

yi =




1� if xi > 0�

0� otherwise
i = 1�2� � � � � n (8)

(2) The Sigmoid model

yi =
1

1+ e�−xi/T � (9)

3. METHODS

3.1. Statement of the Problem

To provide a solution to an undirected graph MCP with
n vertices, we construct a Hopfield network with n neu-
rons, such that output Y = �y1� y2� � � � � yn� is stable, and
corresponds to a clique C in graph G. In which case, Y =
�y1� y2� � � � � yn� can be defined as

yi =




1� if vi ∈ C�
0� if vi  C

i = 1�2� � � � � n (10)

Objective Function. Obviously, the maximum vertices
of C in graph G can be denoted as

J =−
n∑
i=1

yi → min (11)

Constraint Conditions. The following cases should be
considered based on whether or not vertices are in C.9�10

(1) If vi, vj ∈ C, namely, vi = 1, vj = 1� then there must
exit one edge between vi and vj , namely, aij = 1.
(2) If vi ∈C; vj C, namely, vi = 1, vj = 0, then there may
exit one edge between vi and vj or not, namely, aij = 1 or
aij = 0.
(3) If vi, vj  C, namely, vi = 0, vj = 0, then there may
exit one edge between vi and vj or not, namely, aij = 1 or
aij = 0.

To summarize the above three cases, we can obtain a
stable output Y , and correspond to any one clique C in
graph G such that Y satisfies

yiyj�1−aij�= 0 i� j = 1�2� � � � � n� i �= j (12)

Based on formula (11) and (12), we can then construct
the energy function of Hopfield network, represented as
follows.

E =−A
n∑
i=1

yi+B
n∑
i=1

n∑
j=1� j �=i

yiyj�1−aij� (13)

where A and B are the weight coefficients of object func-
tion and constraint, respectively, and can be confirmed by
experiments.

This energy function can be rewritten into the standard
energy function of the Hopfield network:

E =−1
2

n∑
i=1

n∑
j=1� j �=i

wijyiyj −
n∑
i=1

Iiyi (14)

Where the weights and the thresholds of the Hopfield
network become:




wij =−2B�1−aij��1−!ij��
Ii = A

i = 1�2� � � � � n (15)

In Eq. (15), the notation !ij is 1 if i = j�0 otherwise.
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3.2. An Improved HNN

Wang et al.11�12 proposed a better solution to the MCP,
which we shall refer to as the “improved HNN” algorithm.
In this algorithm, the internal dynamics of the HNN is
modified to efficiently increase exchange of information
between neurons, and permit temporary increases in the
energy function in order to avoid local minima. Simulation
results on the p-random graph and the k-random clique

Table I. Two sets of DNA sequence generated randomly.

Number Set 1 Number Set 2

1-01 GACCTAGCGGTTCTACATAC 2-01 AATTCGCCTTTAGGCACGGG
1-02 ATCTTTCCGTCTCAGCCTTG 2-02 GTCCACCTATAGATTGCTAG
1-03 GCTCCGATTAAGAACTCCGA 2-03 CTTGAGAGGCCGTGACATAG
1-04 GTGATCGTAGCTAGGGCAA 2-04 CCAAATACGTGAACTGCAGG
1-05 CCTCTGGTAATTCCAACACT 2-05 GCAGCGCACAGTCATCATAG
1-06 TTAACCTCTCCGTGCCACTT 2-06 ACGAGTAGCCCATTGAGATG
1-07 CATTTAGTGCCGCTCGTTCA 2-07 ATGGGTTCTTGGAGTGCCTT
1-08 CGCTATAGTTCGTGACCGGT 2-08 GCTCCATAAGCTTAGCCTAA
1-09 CCTTGCGATAGGTATGTGAT 2-09 CGGACTTTATTGACCACTAC
1-10 ACGTTCCTGGGCCCGTTAAA 2-10 TTTATGGGCCTTATAACGGG
1-11 CCCAATTCCCGATGCTGTGT 2-11 GCGTATGGCGATGCGTGATT
1-12 AGGTATCGCCTTCTATTGCG 2-12 ATCACTAGAGAAAGCACCCG
1-13 TGCGTCCAAACCTTGAAGGT 2-13 AGTAGGTTGCCACGACACGT
1-14 GTATCTCTAGTCTGGTGAGT 2-14 AGGGCGCGTTTGTCTCCAAT
1-15 CTTGGTACCGAATAGAGCCG 2-15 AATGTTACGAGGTATCCTGG
1-16 CCGCGAACACAGGACTTTAT 2-16 TTGGTAGGAACTGGTGAGCC
1-17 TTCCTCAGTGGAACCTTAGA 2-17 ATCCATCCCATCTTAGCTGT
1-18 ATGCATAGCGAGGTCTTATC 2-18 GACCCTCTGAGCTGTTTGCT
1-19 CAATCAGCTGAATCCCACAC 2-19 CCCTGTGACTTGATCTTTGT
1-20 ATAATTCTACGAGGCCGGCA 2-20 TGAACTCTGTAGAACGACCT
1-21 CGTAGTGACGGATGGTTCAC 2-21 GTGTTGTAGCGTATATGAGC
1-22 GGACTTATTGCACGCTTGAC 2-22 GCAAATAGCCCGAGACACAA
1-23 GAGTAGATTGAGCTGACCCG 2-23 TAGCGCCTGGTTGCAGATTG
1-24 TCTTACTTTCGGTCGGCTGT 2-24 TCGGCAATATCAACCGTAGA
1-25 AGCGACCTTATGTAACCCAG 2-25 AGGGTGAAGCGCATCAGATA
1-26 ACTCTCCTAAAGACGGTCTC 2-26 ATGAAGCAGAAGGAATGTCC
1-27 CGTAGCCAACAGGTTTCGTG 2-27 CATAATCCATTCTCAGTCGG
1-28 CTGCCTGTAACAGCAACTTG 2-28 CTTGGATCCACATCTAGTCC
1-29 GTTTATAACCACCTACCTCC 2-29 GGTCACCTGGAGTTATTGTT
1-30 AGACGCGATTCTGTGGAGCT 2-30 GCCTAATTCGTCTGGTCAGA
1-31 CAGAGAGTTGGCCTGACCTT 2-31 ACAACGATCGGTTCGCCGTT
1-32 ATCATTAGGTTCTGCTCCCT 2-32 GATTACGACAGACGCTTAAG
1-33 TACTATCTCCCTCTAAAGGC 2-33 ACTTCTCGTTGCGACCCGAA
1-34 AACATGAATTCATGGGCGCA 2-34 CATTTCGAGATCCGCACTTA
1-35 CGAAGTGTCATTGCTTCTTC 2-35 GACAGAGCTGCAATGTAAGC
1-36 TTGTTAGACCACCCTTGTGC 2-36 GCTATCTCTCCTTATTTCCG
1-37 AAAGGGTCAAACCGGGTAGT 2-37 TGTTGCGGTACGAGTTGTCT
1-38 GGCTTGAATGCTATTACGTG 2-38 TACGTGGACTGTCCTCAACA
1-39 GTAAGTGGTGCACGGTGCAA 2-39 GCGGACGATTACATAGTTCG
1-40 CCTACTAGCTCTGGAGTTGT 2-40 CCAAACGGTTCTAAAGCGTG
1-41 CGCCTAATATCCATTAACGC 2-41 TGTGAGTGATTGAGGGCACT
1-42 CATAGATACGTTGAGTGGGC 2-42 AGCATTACCTTCGCTCACTG
1-43 CCGGTGGCAACATATTCTCA 2-43 GACGTCTACGTTACCGGATG
1-44 TCTCGGAGACTCATCGTGTA 2-44 AGGCTGTCATGTTTGACCGC
1-45 ATAATTTGACTCTCGGGAGC 2-45 CAGAAGCTGGTACAATGACG
1-46 TCGACTTAACTTTGCCCACC 2-46 CAGGAAGATTCGCGGCATCA
1-47 CACAACCCAAGTTATCATGC 2-47 AATTACGGTGACTGGCTAGT
1-48 AGGGCGAGTGCTATATCACA 2-48 TCTCATCTGTTCCCTCATGA
1-49 ACCGCCATTGATATCGTACT 2-49 AAATACTCGGAGTGGGAGCA
1-50 TCATACTGGCGCCCTTGATC 2-50 GGCCAGGAATTAAATATCCC

graph have demonstrated that it is good in approximat-
ing MCP compared with that of Funabiki’s Binary Neural
Network13 and RaCLIQUE.14

The detailed description of the improved HNN is as
follows.

The updating mode of the internal potential has been
modified as such:

xi�t+1�= $i�yi� t� ·xi�t�+
dxi�t�

dt
(16)
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where $i�yi� t) represents the stabilization of neuron i,
which is used to control the internal potential change in
any neuron, and is defined as follows:

$i�yi� t�= 1− e−��1/2−yi�t��2/%��t/&� (17)

And clearly, 0 ≤ $i�yi� t�≤ 1, where yi is the state of neu-
ron i, t is the updating iteration, and % and & are constants
that decide the neuron growth speed and network conver-
gent speed. To ensure the network converges to a stable
state as soon as possible, % and & are selected around 1 and
at or near the maximum number of iteration steps allowed
by a user, respectively.

3.3. Algorithm

Thus, we obtain the program for MNCCP based on
the improved HNN algorithm, which consists of the
following.
Step 1. Set parameters A, B, T , % and &, and set itera-

tion step t = 1;
Step 2. Randomly initialize the internal potential for xi

(i = 1�2� � � � � n�;
Step 3. Update the neuron state yi �i = 1�2� � � � � n�

using Eq. (9);
Step 4. Set loop_time= 1;
Step 5. Loop until loop_time≥ n, where n is the number

of vertices;
(a) Randomly select a neuron i;
(b) Use Eqs. (17, 16) to update the internal potential

xi of neuron i;
(c) Use Eq. (9) to update neuron state yi;
(d) Increase the loop_time by 1;

Step 6. Increase the t by 1;
Step 7. If the system reaches equilibrium state, go to

Step 8; otherwise return to Step 4;
Step 8. Calculate the maximum clique using the stable

state of the network.

4. COMPUTATIONAL RESULTS

This improved Hopfield network algorithm has been exper-
imented using C++ programming language to randomly
generate sets of DNA sequences. We let A= B = 1 in the
experiment, and gave % and & the value of 0.1 and 135,
respectively. The temperature parameter T in Eq. (9) was
set to 0.64. For this paper, we only randomly selected two
sets of 50 DNA sequences (as shown in Table I) to show
the simulation results (as shown in Fig. 1).

In Table I, the sequences marked in italic type repre-
sent the computational codeword and the corresponding
vertices in the maximal clique of graph (a) and graph (b),
respectively, in Figure 1. The simulation results show that
there are 12 and 11 computational codewords available in
set 1 and set 2, respectively.
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Fig. 1. The computational codeword in Table I and their correspond-
ing maximal clique graphs. Graph (a) corresponds to set 1, and the
graph with maximal clique �03�07�09�14�23�27�33�35�38�41�46�47�
corresponds to the computational codeword in set 1. Graph (b) cor-
responds to set 2, and the graph with maximal clique �02�07�11�
15�19�22�27�36�39�45�48� corresponds to the computational codeword
in set 2.

5. DISCUSSION

In this paper, we have proposed an efficient algo-
rithm to resolve the MNCCP problem based on the
improved Hopfield neural network, and shown its effec-
tiveness by simulation experiments. The simulation results
show that the proposed method is useful for a user to
select an appropriate set of candidate DNA sequences to
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filter and obtain good computational codeword for DNA
computing.

It should be mentioned that considering only the melt-
ing temperature (Tm) and the free energy (�G� may in fact
be enough for designing computational codeword, because
the two parameters govern the kinetics of hybridization
and ligation. Besides the above three constraints, the fac-
tor that should be considered likewise might be the shift-
ing free energy between single-stranded DNA sequences.
If this is utilized by concatenating single-stranded DNA
sequence to perform DNA computing, the free energy
should also be considered for the set of long strands
obtained by concatenating these computational codeword.
Even if all the factors are considered, a clique cannot be
obtained, because the radio of computational codeword to
candidate DNA sequences is so small. This is the reason
why we only considered primary structure, melting tem-
perature and free energy of single-stranded DNA sequence
in this paper.
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