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Abstract Learning appropriate statistical models is a fundamental data analysis task which
has been the topic of continuing interest. Recently, finite Dirichlet mixture models have proved
to be an effective and flexible model learning technique in several machine learning and data
mining applications. In this article, the problem of learning and selecting finite Dirichlet
mixture models is addressed using an expectation propagation (EP) inference framework.
Within the proposed EP learning method, for finite mixture models, all the involved para-
meters and the model complexity (i.e. the number of mixture components), can be evaluated
simultaneously in a single optimization framework. Extensive simulations using synthetic
data along with two challenging real-world applications involving automatic image annota-
tion and human action videos categorization demonstrate that our approach is able to achieve
better results than comparable techniques.

Keywords Mixture models · Dirichlet distribution · Expectation propagation ·
Image annotation · Human action videos categorization

1 Introduction

As the availability of digital multimedia data (e.g. images, videos or text) continue to increase,
powerful approaches for analyzing, managing and clustering these data become extremely
important in various fields including machine learning, data mining, computer vision, etc.
In particular, clustering is a common unsupervised learning technique used to discover groups
of similar examples within a data set which is crucial for knowledge acquisition and has
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been the subject of extensive research. A powerful approach to clustering is the use of
finite mixture models which has important advantages such as its flexibility and addressing
unsupervised learning in a formal way [11,23]. A finite mixture model is formed by taking
linear combinations of a finite number of basic distributions. These basic distributions are
called components of the mixture model. Traditionally, several clustering methods have been
based implicitly or explicitly on the Gaussian assumption [11,17]. Although assuming that
the per-components densities are Gaussians has been widely considered in the past, due to
their approximation properties and simplicity, recent works have shown that other models
may provide better fitting capabilities in the case of non-Gaussian data. For instance, it has
been shown that the Dirichlet mixture can be a better alternative in several applications
especially those involving proportional data in [2–5]. Therefore, motivated by its flexibility
and good performance obtained in these previous works, we shall focus in this paper on the
finite Dirichlet mixture model.

A maximum likelihood (ML) approach based on the expectation-maximization (EM)
algorithm has been proposed in [5] to learn finite Dirichlet mixtures. Although the EM algo-
rithm is commonly used to estimate the parameters of finite mixture models, it has several
limitations such as the fact that it only guarantees convergence to a local maximum of the
likelihood and the necessity to know the appropriate number of components in advance. The
later limitation is especially serious since choosing too many components leads generally
to over-fitting and the specification of a comparatively small number of components causes
under-fitting. A common solution for selecting appropriate number of mixture components is
to consider model selection criteria such as those discussed in [4] where a minimum message
length criterion (MML) has been developed. Recently, some research works have shown that
the drawbacks of the EM algorithm can be addressed by adopting an expectation propagation
(EP) framework [26,27]. As a better alternative to the EM, the EP framework has received
considerable attention and has provided good generalization performance in many applica-
tions including finite Gaussian mixtures learning [7,26]. EP is a recursive approximation
scheme based on the minimization of a Kullback-Leibler (KL) divergence between the true
model’s posterior and an approximation [26,27]. It can provide full posterior distribution
of model parameters that represent the underlying structure of the data. Notice that, the EP
algorithm is an extension of the assumed-density filtering (ADF) [22] which is a one pass,
sequential approximation method. In contrast to the ADF, the order of the input data points
is not crucial in the EP inference and its inference accuracy could be improved by re-using
the data points many times. In the case of finite mixture modeling, unlike the ML method in
which the number of component is detected by applying some typical criteria, the EP infer-
ence framework can estimate model parameters and determine the number of component
(i.e. model selection) simultaneously.

The major contribution of this paper is that we construct a statistical Bayesian framework
based on finite Dirichlet mixture models using EP inference framework, such that the model
complexity selection and the model-parameters estimation can be performed simultaneously
in a single optimization framework. Furthermore, we apply the proposed approach to solve
two challenging problems involving automatic image annotation and human action videos
categorization. We are motivated mainly by the good results obtained in the past using EP
techniques in machine learning applications in general [12,21] and for the finite mixture
modeling in particular [7].

The rest of this paper is organized as follows. Section 2 introduces in sufficient details
the finite Dirichlet mixture model. In Sect 3, we describe our EP inference procedure for the
proposed model learning. Section 4 presents results on synthetic data and two challenging
real applications. Section 5 closes with conclusions.
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2 Finite Dirichlet Mixture Model

In this section, we briefly review the finite Dirichlet mixture model that we shall propose a
new learning approach and algorithm for it. Assume that we have a D-dimensional vector
X = (X1, . . . , X D) which follows a Dirichlet distribution with positive parameters α j =
(α j1, . . . , α j D), then the probability density function of X is given by

Dir(X|α j ) = �(
∑D

l=1 α jl)
∏D

l=1 �(α jl)

D∏

l=1

X
α jl−1
l (1)

where
∑D

l=1 Xl = 1 and 0 ≤ Xl ≤ 1 for l = 1, . . . , D. The mean and variance of the
Dirichlet distribution are given by

E[Xl ] = α jl
∑D

l=1 α jl
(2)

Var[Xl ] = α jl(
∑D

l=1 α jl − α jl)

(
∑D

l=1 α jl)2(
∑D

l=1 α jl + 1)
(3)

Assume now we have observed a set of N vectors X = {X1, . . . , XN }, where each vector
Xi = (Xi1, . . . , Xi D) is represented in a D-dimensional space and assumed to be generated
from a finite Dirichlet mixture model with M components as [5]

p(X|π ,α) =
M∑

j=1

π j Dir(X|α j ) (4)

where α = (α1, . . . ,αM ), and Dir(X|α j ) is the Dirichlet distribution of component j with
its own parameters α j = (α j1, . . . , α j D). π = {π j } are called the mixing coefficients that
are subject to the constraints 0 ≤ π j ≤ 1 and

∑M
j=1 π j = 1. Accordingly, the likelihood

function of X can be written as

p(X |π ,α) =
N∏

i=1

[ M∑

j=1

π j Dir(Xi |α j )

]

(5)

3 EP-Based Learning of the Finite Dirichlet Mixture Model

3.1 Expectation Propagation

In this subsection, a brief introduction to the EP approximation scheme is presented. Consider
an observed data set of N i.i.d vectors X = (X1, . . . , XN ) which follows a model with
unknown parameter �, then the joint distribution of X and � can be represented in the form
of a product of factors as [12,21]

p(X ,�) =
∏

i

fi (�) (6)

One possible factorization of Eq. (6) is that there is one factor fi (�) = p(Xi |�) for each
data point Xi , along with a factor f0(�) = p(�) which corresponds to the prior. The main
idea of the EP algorithm is to approximate the posterior distribution p(�|X ) by a product of
factors:
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q∗(�) =
∏

i f̃i (�)
∫ ∏

i f̃i (�)d�
(7)

where each factor f̃i (�) is an approximation to fi (�). In the EP learning framework, the
first step is to initialize all the factors f̃i (�). Then, each factor is optimized sequentially in
the context of the remaining factors. For a specific factor f j (�), we first remove it from the
current approximation to the posterior by

q\ j (�) = q∗(�)

f̃ j (�)
(8)

Then, a new distribution can be obtained by combining Eq. (8) with the true factor f j (�) as

p̂(�) = f j (�)q\ j (�)
∫

f j (�)q\ j (�)d�
(9)

Next, the approximated posterior q∗(�) can be evaluated by minimizing the KL divergence:
KL

(
p̂(�) ‖ q∗(�)

)
. This is achieved by matching the sufficient statistics of q∗(�) to the

corresponding moments of p̂(�). Then, the approximating factor f̃ j (�) can be updated as

f̃ j (�) = Z j
q∗(�)

q\ j (�)
(10)

where Z j = ∫
f j (�)q\ j (�)d� is a normalization constant. In EP learning, each factor can

be updated iteratively in the context of remaining factors as described in the above steps
until convergence. For more details about the EP learning framework, the reader is referred
to [26,27].

3.2 Expectation Propagation for the Dirichlet Mixture

In the following section, we adopt the EP framework for learning the Dirichlet mixture model.
In Bayesian modeling, we need to assign to each unknown parameter a prior distribution. In
our case, a Dirichlet distribution with positive parameters a = (a1, . . . , aM ) is adopted as
the conjugate prior of π :

p(π) = Dir(π |a) = �(
∑M

j=1 a j )
∏M

j=1 �(a j )

M∏

j=1

π
a j −1
j (11)

For the parameter α j of the Dirichlet mixture model, since the formal conjugate prior of
Dirichlet is analytically intractable, we adopt a Gaussian distribution to approximate the
prior which has shown good results in the case of the Beta (i.e. one-dimensional case
of the Dirichlet) [21]. This is motivated by the fact that the Gaussian allows analytically
tractable calculations and can fairly capture the correlation among the elements in α. Thus, a
D-dimensional Gaussian, with mean vector μ j and covariance matrix A j , is considered for
α j , such that:

p(α j ) = N (α j |μ j , A j ) = |A j |1/2

(2π)D/2 exp

(

− 1

2
(α j − μ j )

T A j (α j − μ j )

)

(12)

The first step in the EP inference is to initialize all the approximating factors f̃i (�). This
is done by initializing all the involved hyperparameters {a j ,μ j , A j }. Next, we initialize
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the posterior approximation q∗(�) by setting q∗(�) ∝ ∏
i f̃i (�). Therefore, we can easily

compute the hyperparameters of q∗(�) as

a∗
j =

∑

i

ai, j − N (13)

μ∗
j = ( ∑

i

A−1
i, j

)( ∑

i

Ai, jμi, j
)

(14)

A∗
j =

∑

i

Ai, j (15)

In order to update the factor f̃i (�), we have to remove it from the posterior q∗(�) as shown
in Eq. (8). Then, the corresponding hyperparameters can be computed analytically as

a\i
j = a∗

j − ai, j + 1 , (16)

μ
\i
j = (

A\i
j )−1(A∗

jμ
∗
j − Ai, jμi, j ) (17)

A\i
j = A∗

j − Ai, j (18)

Next, the updated posterior p̂(�) can be calculated as

p̂(�) = 1

Zi
fi (�)q\i (�) (19)

where

Zi =
∫

fi (�)q\i (�)d� =
M∑

j=1

ai, j
∑

j ai, j

∫

Dir(Xi |α j )N (α j |μ\i
j , A\i

j )dα j (20)

Notice that, the integration in Eq. (20) is intractable and that the moments cannot be calcu-
lated analytically. One way to tackle this problem is to adopt the Laplace approximation to
approximate the integrand with a Gaussian distribution as suggested in [21]. First, we can
define a normalized distribution for the integrand in Eq. (20) which is indeed a product of a
Dirichlet distribution and a Gaussian distribution as

H(α j ) = h(α j )∫
h(α j )dα j

(21)

where

h(α j ) = Dir(Xi |α j )N (α j |μ\i
j , A\i

j ) (22)

Then, we can obtain the logarithm of h(θ jl) as

ln h(α j ) = ln

∑D
l=1 �(α jl)

∏D
l=1 �(α jl)

+
D∑

l=1

(α jl − 1) ln Xil

−1

2
(α j − μ

\i
j )T A\i

j (α j − μ
\i
j ) + const. (23)

123



W. Fan, N. Bouguila

Subsequently, we can calculate the first and second derivatives with respect to α j as

∂ ln h(α j )

∂α j
=

⎡

⎢
⎣

∂ ln h(α j )/∂α j1
...

∂ ln h(α j )/∂α j D

⎤

⎥
⎦

=
⎡

⎢
⎣

�(
∑D

l=1 α jl) − �(α j1) + ln Xi1
...

�(
∑D

l=1 α jl) − �(α j D) + ln Xi D

⎤

⎥
⎦ − A\i

j (α j − μ
\i
j ) (24)

and

∂2 ln h(α j )

∂α2
j

=
⎡

⎢
⎣

∂2 ln h(α j )/∂α2
j1 · · · ∂2 ln h(α j )/∂α j1∂α j D

...
. . .

...

∂2 ln h(α j )/∂α j D∂α j1 . . . ∂2 ln h(α j )/∂α2
j D

⎤

⎥
⎦

=
⎡

⎢
⎣

� ′(
∑D

l=1 α jl) − � ′(α j1) · · · � ′(
∑D

l=1 α jl)
...

. . .
...

� ′(
∑D

l=1 α jl) · · · � ′(
∑D

l=1 α jl) − � ′(α j D)

⎤

⎥
⎦ − A\i

j

(25)

where �(·) is the digamma function. In the Laplace method the goal is to find a Gaussian
approximation which is centered on the mode of the distribution H(α j ). We could obtain the
mode α∗

j numerically by setting the first derivative of Eq. (24) to 0. Then, we can approximate
h(α j ) using its mode as

h(α j ) � h(α∗
j ) exp

(

− 1

2
(α j − α∗

j ) Â j (α j − α∗
j )

)

(26)

where

Â j = −∂2 ln h(α j )

∂α2
j

|α j =α∗
j

(27)

Therefore, the integration of h(α j ) can be approximated by using Eq. (26) as

∫

h(α j )dα j � h(α∗
j )

∫

exp

(

−1

2
(α j − α∗

j

)

Â j (α j − α∗
j ))dα j

= h(α∗
j )

(2π)D/2

| Â j |1/2
(28)

Hence, we can rewrite Eq. (20) as following:

Zi =
M∑

j=1

ai, j
∑

j ai, j
h(α∗

j )
(2π)D/2

| Â j |1/2
(29)

Then, we can revise the posterior distribution q∗(�) by matching its sufficient statistics to
the corresponding moments of p̂(�). This is done by calculating the partial derivative of
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ln Zi with respect to the model hyperparameters. For a\i
j , we can get

∇\i
a j ln Zi = 1

Zi

∫

fi (�)
q\i (�)

q\i (π
\i
j )

∂

∂a\i
j

q\i (π
\i
j )d�

=
∫

p̂(�)
[

ln π
\i
j + �

⎛

⎝
M∑

j=1

a\i
j

⎞

⎠ − �(a\i
j )

]
d�

= E p̂[ln π j ] + �

⎛

⎝
M∑

j=1

a\i
j

⎞

⎠ − �(a\i
j ) (30)

By applying moment matching, we obtain

E p̂[ln π j ] = Eq∗ [ln π j ] = �(a∗
j ) − �

⎛

⎝
M∑

j=1

a∗
j

⎞

⎠ (31)

Similarly, we can compute the partial derivatives of ln Zi with respect to the other model
hyperparameters:

∇\i
μ j ln Zi = 1

Zi

∫

fi (�)
q\i (�)

q\i (α
\i
j )

∂

∂μ
\i
j

q\i (α
\i
j )d�

=
∫

p̂(�)
[
A\i

j α
\i
j − A\i

j μ
\i
j

]
d�

= A\i
j E p̂[α j ] − A\i

j μ
\i
j (32)

∇\i
A j

ln Zi = 1

Zi

∫

fi (�)
q\i (�)

q\i (α
\i
j )

∂

∂ A\i
j

q\i (α
\i
j )d�

=
∫

p̂(�)

{
1

2
|(A\i

j )−1| − 1

2

[ D∑

l=1

(α
\i
jl )

2 − 2α
\i
jl μ

\i
jl + (μ

\i
jl)

2
]}

d�

= 1

2

{

|(A\i
jl)

−1| −
[ D∑

l=1

E p̂[α2
jl ] − 2E p̂[α jl ]μ\i

jl + (μ
\i
jl)

2
]}

(33)

The right hand sides in the above equations can be computed analytically by using Eq. (29).
Furthermore, the expectations in the above equations can be acquired by applying the moment
matching technique as

E p̂[α j ] = Eq∗ [α j ] = μ∗
jl (34)

E p̂[α2
j ] = Eq∗ [α2

j ] = (μ∗
j )

2 (35)

By substituting the above expectations into the corresponding partial derivative equations,
we can update the hyperparameters of q∗(�). After obtaining q∗(�) and q\i (�), we can
update the revised hyperparameters for the approximating factor fi as

ai, j = a∗
j − a\i

j + 1 (36)

μi, j = A−1
i, j (A∗

jμ
∗
j − A\i

j μ
\i
j ) (37)

Ai, j = A∗
j − A\i

j (38)
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The above procedure is repeated until the hyperparameters of the approximating factor con-
verge. The same procedure is applied sequentially for the remaining factors. Moreover, we
can estimate the expected values of the mixing coefficients as

E[π j ] = a∗
j

∑
j a∗

j
(39)

The complete learning process is summarized in Algorithm 1.1

Algorithm 1 EP learning of finite Dirichlet mixtures
1: Choose the initial number of components.
2: Initialize the approximating factors f̃i (�) by initializing all the involved hyperparameters {a j ,μ j , A j }.
3: Initialize the posterior approximation by setting q∗(�) ∝ ∏

i f̃i (�). The hyperparameters of of q∗(�)

are calculated by Eqs. (13)–(15).
4: repeat
5: Choose a factor f̃i (�) to refine.
6: Remove f̃i (�) from the posterior q∗(�) by division q\i (�) = q∗(�)/ f̃i (�).
7: Evaluate the new posterior by setting the sufficient statistics (moments) of q∗(�) to the corresponding

moments of p̂(�).
8: Update the factor f̃i (�) by updating the corresponding hyperparameters as in Eqs. (36)–(38).
9: until Convergence criterion is reached.
10: Compute the estimated values of the mixing coefficients π j as in Eq. (39).
11: Detect the optimal number of components M by eliminating the components with small mixing coefficients

close to 0.

4 Experimental Results

In this section, the effectiveness of the proposed EP-based framework for learning the
Dirichlet mixture model (denoted as EPDMM) is tested on both synthetic data and two
real-world applications namely automatic image annotation and human action videos cat-
egorization. In our experiments, we initialize the number of components M to 15. The
specific choice for the hyperparameters of each factor fi (�) in all the experiments is
(ai, j ,μi, j , Ai, j ) = (0.1, 0.5, 0.01). Notice that these specific choices were found conve-
nient according to our experiments.

4.1 Synthetic Data

The aim of the synthetic data is to evaluate the performance of the proposed EP-based algo-
rithm (EPDMM) and compare it with the ML-based technique proposed in [5]. First, we
investigate the accuracy of EPDMM in terms of estimation (estimating the model’s para-
meters) and selection (selecting the number of components of the mixture model) on four
three-dimensional synthetic data sets. Note that, here we choose D = 3 purely for ease of
representation. We ran the proposed algorithm 10 times. Table 1 shows the actual and aver-
age estimated parameters obtained from EPDMM for each data set. Based on this table, we
can see that our algorithm is able to correctly estimate both the parameters and the mixing
coefficients of the synthetic mixture models for all data sets. The resultant mixtures for these
data sets are illustrated in Fig. 1. Figure 2 demonstrates the estimated mixing coefficients of

1 The complete source code of this work is available upon request.
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Table 1 Parameters of the different generated data sets

N j j α j1 α j2 α j3 π j α̂ j1 α̂ j2 α̂ j3 π̂ j

Data set 1 100 1 10 15 20 0.50 9.31 14.29 21.04 0.506

(N = 200) 100 2 5 20 12 0.50 4.86 19.55 11.71 0.494

Data set 2 100 1 10 15 20 0.25 10.12 15.75 19.28 0.253

(N = 400) 100 2 5 20 12 0.25 5.37 20.66 11.87 0.244

200 3 30 13 26 0.50 31.64 12.51 27.19 0.503

Data set 3 150 1 10 15 20 0.25 10.41 14.37 20.34 0.246

(N = 600) 150 2 5 20 12 0.25 4.63 21.12 12.72 0.241

150 3 30 13 26 0.25 28.96 13.58 24.85 0.257

150 4 40 8 22 0.25 41.82 8.72 21.28 0.256

Data set 4 160 1 10 15 20 0.20 9.49 14.45 19.27 0.191

(N = 800) 160 2 5 20 12 0.20 5.58 20.34 12.62 0.208

160 3 30 13 26 0.20 29.17 12.61 27.44 0.193

160 4 40 8 22 0.20 38.78 7.69 22.56 0.207

160 5 4 33 8 0.20 4.31 34.83 7.45 0.201

N denotes the total number of elements, N j denotes the number of elements in cluster j . α j1, α j2, α j3 and π j
are the real parameters. α̂ j1, α̂ j2, α̂ j3 andπ̂ j are the estimated parameters by EP

0
0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x1x2

p
 (

x1
,x

2,
1−

x1
−x

2)

0
0.5

1

0
0.5

1
0

0.2

0.4

0.6

0.8

1

x1x2

p
 (

x1
,x

2,
1−

x1
−x

2)

(a) (b)

0 0.2 0.4 0.6 0.8 1

0
0.5

1
−0.2

0

0.2

0.4

0.6

0.8

x1x2

p
 (

x1
,x

2,
1−

x1
−x

2)

0

0.5

1

0

0.5

1
0

0.05

0.1

0.15

0.2

x1x2

p
 (

x1
,x

2,
1−

x1
−x

2)

(c) (d)

Fig. 1 Estimated mixture densities for the synthetic data sets. a Data set 1, b Data set 2, c Data set 3, d Data
set 4
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Fig. 2 Estimated mixing coefficients for the synthetic data sets. a Data set 1, b Data set 2, c Data set 3, d
Data set 4

each mixture component for each data set. According to this figure, we can see that redundant
components have estimated mixing coefficients close to 0 after convergence. By removing
the components with very small mixing coefficients (close to 0), we obtain the correct number
of components for each generated data set.

For comparison, we have also performed the ML-based approach to learn finite Dirichlet
mixture models (DMM) as proposed in [5] on these four synthetic data sets. According to our
results, the DMM can provide comparable results in estimating the model parameters of finite
Dirichlet mixture models as EPDMM. Nevertheless, the dominant factor of the EPDMM is
the computational time which is shown in Table 2.

Table 2 Average computational
time (in seconds) required before
convergence for EPDMM and
DMM

Method EPDMM DMM

Data set 1 3.97 9.58

Data set 2 5.78 16.34

Data set 3 10.21 29.16

Data set 4 15.08 43.65
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4.2 Automatic Image Annotation

Automatic image annotation (also known as automatic image tagging or linguistic indexing)
is the process of automatically assigning captions or keywords to a digital image. It is a crucial
step in image retrieval systems to organize and locate images of interest in large volumes of
images. During the last decade, automatic image annotation has drawn significant attention
and has been the topic of extensive research [6,10,20,28,32]. One of the most successful
approaches for automatic image annotation is to divide this problem into two independent
steps where the first step categorizes images and the second one affects labels to them using the
top ranked categories (see, for instance, [6,8]). Thus, the goal of this experiment is to develop
an effective automatic image annotation approach, based on the methodology proposed in
[8], via categorization results obtained with the proposed EPDMM using a bag of visual key
words representation.

4.2.1 Experimental Design

In the categorization stage, the proposed EPDMM is integrated with the probabilistic latent
semantic analysis (pLSA) model [13] to categorize images through a bag of key visual words
representation. First, the Difference-of-Gaussian (DoG) detector [24] is applied to detect
interest points (or keypoints) in input images followed with PCA-SIFT descriptors2 [14]
extracted from each image and resulting in a 36-dimensional vector for each key point. Then,
we build a visual vocabulary by quantizing these PCA-SIFT vectors into visual words using
the K -Means algorithm. Notice that, the vocabulary size is set to 1,000 in our experiment.
Each image is then represented by a frequency histogram over the visual words. Subse-
quently, we apply the pLSA model on the obtained histograms to represent each image by
a 50-dimensional proportional vector where 50 is the number of latent aspects. Finally, our
EPDMM is applied to cluster the images.

The obtained categorization results are then exploited to perform image annotation. In our
experiment, the performance of image annotation is affected by three aspects as proposed in
[8]: (1) the frequency of occurrence of potential tags based on the categorization results; (2)
saliency of the given tags; (3) the congruity of a word among all the candidate tags. Assume
that we have a training image data set that contains several categories. Each category is
annotated by 4–5 tags where common tags may appear in different categories. First, all the
tags from each category are collected together. The total number of categories in the data
set is denoted as C and the number of categories that have each unique tag t is represented
as F(t). Then, tag saliency can be evaluated similarly as for inverse document frequency in
the field of document retrieval. For a testing image, a ranked list of predicted categories is
generated according to the Bayes’ decision rule via classification. Next, the top 5 predicted
categories are chosen and the union of all involved unique tags denoted as U (I ) forms the set
of candidate tags. Thus, we define f (t |I ) as the frequency of the occurrence of each unique
tag t among the top 5 predicted categories. We follow the idea proposed in [8] to determine
the word congruity using WordNet3 [25] with the Leacock and Chowdrow measure [18].
Thus, the congruity for a candidate tag t can be calculated by [8]:

G(t |I ) = dtot (I )

dtot (I ) + |U (I )| ∑x∈U (I ) dLC H (x, t)
(40)

2 Source code of PCA-SIFT: http://www.cs.cmu.edu/~yke/pcasift.
3 WordNet is a large lexical database for English, which groups English words into sets of cognitive synonyms
called synsets.
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Table 3 The classification
accuracies computed by different
algorithms

Method Accuracy (%)

EPDMM 77.45

SC-GM 75.17

EPGMM 73.93

K-Means 70.29

Table 4 Performance evaluation on the automatic annotation system based on different categorization
methods

Method EPDMM SC-GM EPGMM K-Means

Mean precision (%) 28.61 26.78 24.33 22.06

Mean recall (%) 41.75 38.59 36.17 33.34

We adopt the same settings for dLC H and rLC H as in [8], such that the distance between
two tags t1 and t2 is: dLC H (t1, t2) = exp(−rLC H (t1, t2) + 3.584) − 1. In addition, dtot (I )
evaluates the pairwise semantic distance among all candidate tags and is defined as: dtot (I ) =∑

x∈U (I )
∑

y∈U (I ) dLC H (x, y). By having all the three annotation factors on hand, we can
compute the overall score for a candidate tag as

A(t |I ) = a1 f (t |I ) + a2

ln C
ln

(
C

1 + F(t)

)

+ a3G(t |I ) (41)

where a1 + a2 + a3 = 1 represents the degree of importance of the three factors. Then,
a tag t is chosen for annotation only if its score is within the top ε percentile among the
candidate tags. According to our experimental results, we set a1 = 0.5, a2 = 0.2, a3 = 0.3,
and ε = 0.7.

4.2.2 Results

We evaluate the performance of the proposed image annotation approach using a subset of
LabelMe data set [30] which contains both class labels and annotations. First, we use the
LabelMe Matlab toolbox4 to obtain images online from 8 scene classes (4 indoor and 4
outdoor): “bedroom”, “kitchen”, “living room”, “bathroom”, “forest”, “highway”, “coast”,
and “mountain” and then randomly choose 200 images from each category. Overall, we have
1600 images in total. Each category is associated with 4–5 tags. This data set was randomly
divided into two partitions: one for training and the other for testing. First, we performed
the categorization step as described in the previous section. We compare our approach with
three other well-defined approaches: the EP-based Gaussian mixture model (EPGMM), the
combination of a structure-composition model and a Gaussian mixture model (we denote
it as SC-GM) proposed in [8], and the traditional K-Means algorithm. The categorization
result of 8 classes of scene images is illustrated in Table 3. Findings observed from the
comparison are that (1) the EPDMM provides the best categorization performance among all
approaches and (2) it verifies that images represented by vectors of proportions are modeled
more appropriately by the Dirichlet rather than the Gaussian.

4 http://labelme.csail.mit.edu/.
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Table 5 Sample annotation results

Our la-
bels:

wall, bathtub,
door, cabinet

window, floor,
bed

cabinet, stove,
chair

sofa, cushion,
wall

LabelMe
labels:

faucet, mirror,
bathtub, cabi-
net, washbasin

bed, cushion,
pillow, desk
lamp, window

stove, worktop,
ceiling lamp,
window, cabinet

painting, sofa,
chair, window,
cushion

Our la-
bels:

mountain, sea
water, rock

tree, mountain,
cloud

sky, car, road,
tree

cloud, tree,
mountain

LabelMe
labels:

sand, cloud, sea
water, sky, rock

tree, tree trunk,
bush, sky

car, road, sign,
truck

mountain, sky,
tree, field, grass

Then, annotation was performed based on results obtained from the categorization stage.
The performance of our automatic annotation system was evaluated by precision and recall
which are defined in the standard way as follows: the annotation precision for a keyword is
defined as the number of tags correctly predicted, divided by the total number of predicted
tags. The annotation recall is defined as the number of tags correctly predicted, divided by
the number of tags in the ground-truth annotation. In our experiments, the average number
of tags generated for each test image is 4.12. Table 4 illustrates the average annotation
precision and recall results over all the testing images according to the categorization results
using different methods. According to this table, we can observe that the best annotation
performance is achieved by using the categorization result through EPDMM. It confirms
that the choice of categorization techniques has an significant impact on our annotation
performance. Some examples of the annotation results obtained from EPDMM categorization
method are displayed in Table 5.

4.3 Human Action videos Categorization

4.3.1 Experimental design

Categorizing multimedia data such as videos is a critical and challenging research topic
[9,15,16]. With thousands of videos readily available, grouping them according to their con-
tents is highly important for a variety of visual tasks such as event analysis, video indexing,
browsing and retrieval, and digital libraries organization [33]. Videos categorization remains,
however, an extremely challenging task due to several typical scenarios such as unconstrained
motions, cluttered scenes, moving backgrounds, variations of illumination conditions and
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diving g_swinging kicking lifting riding

running skating swinging walking

Fig. 3 Examples of frames of different human actions from video sequences in the UCF sports dataset action
dataset

viewpoints. In this section, we focus on applying the proposed EPDMM approach for cate-
gorizing human action videos. A similar methodology was adopted in this application as for
the image categorization step in our previous application of automatic image annotation. The
major difference is that in this application, instead of using PCA-SIFT features, we employ
the space-time interest point detector proposed in [16] to extract local spatio-temporal fea-
tures from each video sequence. After that, K -Means algorithm was applied on the obtained
spatio-temporal features to construct a visual vocabulary with a size of 1,200. Then, the
pLSA model was adopted to represent each video sequence by a 55-dimensional propor-
tional vector. Lastly, we employ the EPDMM as a classifier to categorize videos by assigning
the video sequence to the group which has the highest posterior probability according to
Bayes’ decision rule.

4.3.2 Evaluation on UCF Datasets

First, the experiments were conducted on two very challenging and popular datasets, namely
the UCF sports [29] action and the UCF11 datasets [19].5 The UCF sports dataset is col-
lected by the UCF group from various sports featured on broadcast television channels such
as the BBC and ESPN. It consists of over 200 video sequences at a resolution of 720 ×
480 with nine actions, such as: “diving”, “golf swinging” (g_swinging), “kicking”, “lift-
ing”, “horseback riding” (riding), “running”, “skating”, “swinging”, and “walking”. Some
examples of frames from each action class are displayed in Fig. 3. The UCF11 dataset
contains 1168 video sequences in total with 11 action categories: “cycling”, “diving”, “golf
swinging” (g_swinging), “soccer juggling” (s_juggling), “trampoline jumping” (t_jumping),
“horse-back riding” (h_riding), “basketball shooting” (b_shooting), “volleyball spiking”
(v_spiking), “swinging”, “tennis swinging” (t_swinging), and “walking with a dog” (walk-
ing). Sample frames from each action class are shown in Fig. 4. For the UCF sports dataset,
we used 70% of the video sequences to construct the visual vocabulary. In the case of the
UCF11 dataset, we used half of the data set to construct the visual vocabulary.

5 Datasets are available at: http://vision.eecs.ucf.edu/datasetsActions.html.
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cycling diving g_swinging s_juggling t_jumping h_riding

b_shooting v_spiking swinging t_swinging walking

Fig. 4 Examples of frames of different human actions from video sequences in the UCF11 dataset

Table 6 The average classification accuracy and the number of components (M̂) obtained using different
algorithms over 20 runs

Dataset EPDMM EPGMM

M̂ Acc. (%) M̂ Acc. (%)

UCF sports 8.13 (0.41) 78.52 (1.61) 7.45 (0.72) 73.08 (1.93)

UCF11 10.04 (0.58) 72.02 (1.37) 9.29 (0.83) 65.17 (1.82)

The numbers in parenthesis are the standard deviations

Fig. 5 Performance comparison in terms of the classification accuracy between EPDMM and EPGMM for
the UCF sports dataset

The results that we will discuss in the following are obtained over 20 runs. Table 6 shows the
average number of clusters and the average categorization accuracies using both Dirichlet
and Gaussian mixture (EPGMM) models learned by running their respective EP learning
algorithms 20 times. Figures 5 and 6 show the performance comparison of categorization
accuracy among all action categories for the UCF sports and UCF11 datasets, respectively.
According to the obtained results we can clearly see that the EPDMM outperforms the
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Fig. 6 Performance comparison in terms of the classification accuracy between EPDMM and EPGMM for
the UCF11 dataset

Table 7 The average classification accuracy rate (%) with the corresponding standard deviations when con-
sidering different datasets using different methods

Method Dataset

UCF sports UCF11

EPDMM 78.52 % (1.61) 72.02 % (1.37)

EPGMM 73.08 % (1.93) 65.17 % (1.82)

SVM 76.75 % (1.56) 70.92 % (1.41)

Naive Bayes 73.91 % (1.77) 66.05 % (1.69)

K-NN 72.49 % (1.82) 63.54 % (1.58)
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EPGMM

Fig. 7 Classification accuracy as a function of the number of videos used to construct the visual vocabulary
in the case of the UCF sports dataset

EPGMM in terms of both categorization accuracy and selection of the optimal number of
video categories. Given the difficulty of the datasets, these results are rather encouraging. The
fact that the proposed EPDMM performs better than the EPGMM is actually expected, since
in our case videos are represented by vectors of proportions and Dirichlet mixture models
provide better modeling capabilities than Gaussian mixtures in this case. Furthermore, we
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Fig. 8 Classification accuracy as a function of the number of videos used to construct the visual vocabulary
in the case of the UCF11 dataset

S1

S2

S3

S4

walking jogging running boxing hand
waving

hand
clapping

Fig. 9 Examples of frames, representing different human actions in different scenarios, from video sequences
in the KTH dataset

have also tested the performance of categorizing human action videos for the UCF sports and
UCF11 datasets using three other well-known classifiers: support vector machine (SVM),
k-nearest neighbor (K-NN) and Naive Bayes. The corresponding test results are shown in
Table 7. Obviously, the proposed EPDMM provides the best performance among all the
tested methods for both datasets. Figures 7 and 8 illustrate the accuracy of the classification,
when using EPDMM and EPGMM approaches, as a function of the number of videos used
to construct the visual vocabulary. It is clear that the accuracy increases as the number of
videos used to construct the visual vocabulary increases.
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bend jack jump pjump run

side skip walk wave1 wave2

Fig. 10 Examples of frames of different human actions from video sequences in the Weizmann human action
dataset

Table 8 The average
classification accuracy rate for
the KTH and Weizmann datasets
using different methods

Method Dataset

KTH Weizmann

EPDMM 77.83 % (0.93) 85.91 % (1.13)

EPGMM 74.17 % (0.89) 81.72 % (1.08)

SVM 76.92 % (1.02) 84.85 % (0.94)

Naive Bayes 74.23 % (1.15) 83.08 % (1.21)

K-NN 73.64 % (0.97) 80.26 % (1.29)

4.3.3 Evaluation Using Other Datasets

In this subsection, we have evaluated the performance of our approach for categorizing human
action videos on two older but classic datasets: the KTH dataset [31] and the Weizmann dataset
[1]. The KTH human action dataset is one of the largest available video sequences datasets of
human actions. It contains 2391 video sequences from six types of human actions: “walking”,
“jogging”, “running”, “boxing”, “hand waving” and “hand clapping”. Each action class is
performed several times by 25 subjects in four different scenarios: outdoors (S1), outdoors
with scale variation (S2), outdoors with different clothes (S3) and indoors (S4). All video
samples were downsampled to the spatial resolution of 160×120 pixels and have a length of
four seconds in average. Examples of frames from video sequences of each category are shown
in Fig. 9. For this dataset, we construct the visual vocabulary from video sequences related
to 16 subjects and evaluate the performance on the sequences of the remaining 9 subjects.
The Weizmann dataset consists of 90 video sequences with ten different types of human
actions that were performed by 9 subjects. These action categories include: “run”, “walk”,
“skip”, “jumping-jack” (or shortly “jack”), “jump-forward-on-two-legs” (or “jump”), “jump-
in-place-on-two-legs” (or “pjump”), “gallop-sideways” (or “side”), “wave-two-hands” (or
“wave2”), “wave-one-hand” (or “wave1”), and “bend”. Some example frames of each action
class can be viewed in Fig. 10. Since this dataset is small and has only has 90 sequences,
we adopt a common scheme which extends the dataset by adding a horizontally flipped
version of each video sequence to the original dataset. A leave-one-out setup is adopted for
this dataset to test the performance of our categorization approach. That is, we construct our
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Fig. 11 The confusion matrix obtained by EPDMM for the KTH dataset
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Fig. 12 The confusion matrix obtained by EPDMM for the Weizmann dataset

visual vocabulary from the video sequences of eight subjects (original + the flipped versions),
and test the efficiency on the sequences of the remaining subject (only original ones). The
categorization results were obtained over 20 runs.

We have applied EPGMM, SVM, Naive Bayes and K-NN on these two datasets for com-
parison and shown the corresponding results in Table 8. As we can see in this table, it is clear
that our algorithm outperforms the other algorithms for categorizing human action videos for
these two datasets. Furthermore, the confusion matrices calculated using EPDMM for the
KTH and Weizmann datasets are shown in Figs. 11 and 12, respectively. We may notice that,
for the KTH dataset, most of the confusion occurs between similar actions such as “walking”
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and “jogging”, “jogging” and “running”, “hand clapping” and “boxing”. For the Weizmann
dataset, most errors are also generated from similar action categorizes, such as “run” with
“walk”, “jump” with “skip”, and “skip” with “jump” and “run”.

5 Conclusion

In this paper, we have proposed an EP framework for learning finite Dirichlet mixture models.
Within this framework, all model’s parameters and the number of clusters can be determined
simultaneously, which allows to avoid under- or over-fitting. Extensive experiments have
been conducted and have involved synthetic data and real-world challenging applications
namely automatic image annotation and human action videos categorization using the pLSA
model and the bag of visual words representation. Possible future works can be devoted to
integrate feature selection within the proposed framework, to extend the learning approach
proposed in this paper to online settings or to the extension of the proposed model to the
infinite case using Dirichlet processes.

Acknowledgments The completion of this research was made possible thanks to the Natural Sciences and
Engineering Research Council of Canada (NSERC). The authors would like to thank the anonymous referees
and the associate editor for their comments. The complete source code of this work is available upon request.

References

1. Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as Space-Time Shapes. In: Proc. of
the IEEE International Conference on Computer Vision (ICCV), pp 1395–1402.

2. Bouguila N, Ziou D (2005) Using unsupervised learning of a finite dirichlet mixture model to improve
pattern recognition applications. Pattern Recognit Lett 26(12):1916–1925

3. Bouguila N, Ziou D (2006a) Online clustering via finite mixtures of dirichlet and minimum message
length. Eng Appl Artif Intell 19(4):371–379

4. Bouguila N, Ziou D (2006b) Unsupervised selection of a finite dirichlet mixture model: an MML-based
approach. IEEE Trans Knowl Data Eng 18(8):993–1009

5. Bouguila N, Ziou D, Vaillancourt J (2004) Unsupervised learning of a finite mixture model based on the
dirichlet distribution and its application. IEEE Trans Image Process 13(11):1533–1543

6. Chang E (2003) CBSA: content-based soft annotation for multinomial image retrieval using bayes point
machines. IEEE Trans Circuit Syst Video Technol 13(1):26–38

7. Chang S, Dasgupta N, Carin L (2005) A Bayesian approach to unsupervised feature selection and density
estimation using expectation propagation. In: Proceedings of IEEE conference on computer vision and
pattern recognition (CVPR), pp 1043–1050

8. Datta R, Ge W, Li J, Wang JZ (2006) Toward bridging the annotation-retrieval gap in image search by
a generative modeling approach. In: Proceedings of the 14th annual ACM international conference on
multimedia (MM), ACM, pp 977–986

9. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal feature.
In: Proceedings of the IEEE international workshop on visual surveillance and performance evaluation
of tracking and surveillance (VS-PETS), pp 65–72

10. Fan J, Gao Y, Luo H, Xu G (2005) Statistical modeling and conceptualization of natural images. Pattern
Recognit 38:865–885

11. Figueiredo M, Jain A (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal
Mach Intell 24(3):381–396

12. Heskes T, Zoeter O (2002) Expectation propagation for approximate inference in dynamic Bayesian
networks. In: Proceedings of the conference on uncertainty in artificial intelligence (UAI), pp 216–223

13. Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn
42(1/2):177–196

14. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In:
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 506–513

123



Non-Gaussian Data Clustering via Expectation Propagation Learning

15. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2/3):107–123
16. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies.

In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8
17. Law MHC, Figueiredo MAT, Jain AK (2004) Simultaneous feature selection and clustering using mixture

models. IEEE Trans Pattern Anal Mach Intell 26(9):1154–1166
18. Leacock C, Chodorow M (1998) In: Fellbaum C (Ed) WordNet: an electronic lexical database. MIT Press,

pp 305–332
19. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “In The Wild”. In: Proceedings

of IEEE conference on computer vision and pattern recognition (CVPR), pp 1996–2003
20. Luo J, Savakis AE, Singhal A (2005) A Bayesian network-based framework for semantic image under-

standing. Pattern Recognit 38:919–934
21. Ma Z, Leijon A (2010) Expectation propagation for estimating the parameters of the beta distribution.

In: Proceedings of IEEE international conference on acoustics speech and signal processing (ICASSP),
pp 2082–2085

22. Maybeck PS (1982) Stochastic models, estimation and control. Academic Press
23. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York
24. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis

60:63–86
25. Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38:39–41
26. Minka T (2001) Expectation propagation for approximate Bayesian inference. In: Proceedings of the

conference on uncertainty in artificial intelligence (UAI), pp 362–369
27. Minka T, Lafferty J (2002) Expectation-propagation for the generative aspect model. In: Proceedings of

the conference on uncertainty in artificial intelligence (UAI), pp 352–359
28. Naphade MR, Huang TS (2001) A probabilistic framework for semantic video indexing, filtering, and

retrieval. IEEE Trans Multimed 3:141–151
29. Rodriguez M, Ahmed J, Shah M (2008) Action mach a spatio-temporal maximum average correlation

height filter for action recognition. In: Proceedings of IEEE conference on computer vision and pattern
recognition (CVPR), pp 1–8

30. Russell B, Torralba A, Murphy K, Freeman W (2008) LabelMe: a database and Web-based tool for image
annotation. Int J Comput Vis 77:157–173

31. Schüldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proceedings
of the 17th international conference on pattern recognition (ICPR), pp 32–36

32. Zhao R, Grosky WI (2000) From features to semantics: some preliminary results. In: Proceedings of the
IEEE international conference on multimedia and expo (ICME). IEEE Computer Society, pp 679–682

33. Zhong D, Zhang H, Chang SF (1997) Clustering methods for video browsing and annotation. In: Pro-
ceedings of the SPIE conference on storage and retrieval for video and image databases, pp 239–246

123


	Non-Gaussian Data Clustering via Expectation Propagation Learning of Finite Dirichlet Mixture Models and Applications
	Abstract
	1 Introduction
	2 Finite Dirichlet Mixture Model
	3 EP-Based Learning of the Finite Dirichlet Mixture Model
	3.1 Expectation Propagation
	3.2 Expectation Propagation for the Dirichlet Mixture

	4 Experimental Results
	4.1 Synthetic Data
	4.2 Automatic Image Annotation
	4.2.1 Experimental Design
	4.2.2 Results

	4.3 Human Action videos Categorization
	4.3.1 Experimental design
	4.3.2 Evaluation on UCF Datasets
	4.3.3 Evaluation Using Other Datasets


	5 Conclusion
	Acknowledgments
	References


