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Abstract – A novel spectral algorithm utilizing multiple eigenvectors is proposed to identify
the communities in networks based on the modularity Q. We investigate the reduced modularity
on low-rank approximations of the original modularity matrix consisting of leading eigenvectors.
By exploiting the rotational invariance of the reduced modularity, near-optimal partitions of the
network can be found. This approach generalizes the conventional spectral network partitioning
algorithms which usually use only one eigenvector, and promises better results because more
spectral information is used. The algorithm shows excellent performance on various real-world and
computer-generated benchmark networks, and outperforms the most known community detection
methods.
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Introduction. – Network models are widely used in
diverse fields to describe complex systems where large
numbers of objects are interconnected, ranging from
natural science to engineering systems and the human
society [1,2]. One common feature of many networks is the
community structure. A community is usually thought of
as a subset of nodes which are interconnected densely and
only sparsely connected to the rest of the network [3–5].
Such a heterogeneous distribution of links is believed to
be closely related to the functioning of the underlying
system. For example, in the WWW network, web pages
consist of communities [6] dealing with the same topic.
For more complicated systems, finding closely connected
components may shed light on the organizations of
the systems and their functions. Therefore, community
detection has become one of the fundamental problems in
network science.
There are various ways to describe community struc-

tures in networks. Of particular importance is the concept
of modularity Q [3–5], defined as the difference between
the total number of edges within the communities and
their expected number. It is a function of the partitions
which divide the network into groups, with larger value
indicating stronger community structure. The merit of
the modularity function is that it makes the role of the
null model explicit and clear, and thus can better cope

with real networks which usually have prominent heavy-
tailed degree distributions [7]. If the modularity Q is used
as the benefit function, the problem of community detec-
tion becomes that of searching for a good partition of the
network which maximizes Q. In recent years, many algo-
rithms have been developed trying to find good partition
and get large modularity [8–15]. One particular interesting
approach is the spectral method [16,17].
Usually, in a spectral partitioning algorithm, an opti-

mization problem hinging on certain benefit function is
solved first in the relaxed continuous domain, dropping
the discrete constraint (0 or 1) on elements of the partition
matrix S [18]. A legitimate partition, which satisfies all
constraints, is then obtained by finding a suitable discrete
approximation of the intermediate results. A well-known
example is the method which is based on the eigenvector
associated with the second smallest eigenvalue of the graph
Laplacian L [19], to bisect a network to achieve the mini-
mum cut. In the context of community detection, the
connection between a partition of a network and the spec-
tral representation of the modularityQ has been studied in
[16,17]. An effective spectral algorithm has been proposed
by using the leading eigenvector of the modularity matrix
recursively to find multiple communities in a network.
What makes the spectral partitioning methods

appealing is their global-optimal property in the relaxed
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continuous domain due to the extremal properties of the
eigenvalues, which also implies a better achievable perfor-
mance should more eigenvectors be used. However, there
are few algorithms that incorporate multiple eigenvec-
tors [14,20]. The main reason is that, except for the situ-
ation where only a single eigenvector is involved, finding
the discrete approximation is highly non-trivial. Further-
more, it is usually unclear in what sense the discrete
solution (the found partition) is optimal. It remains
as a challenging problem to construct a good discrete
approximation efficiently from multiple eigenvectors.
In this paper, we developed an efficient way to derive

a near-optimal partition from multiple eigenvectors of the
modularity matrix B to maximize the modularity1. We
consider sets of Bk’s which are rank-k approximations of
the original modularity matrix by using k leading eigen-
vectors. The reduced modularity Qk is the modularity
value when any legitimate partition S is applied to Bk. By
exploiting the invariance ofQk under orthogonal rotations,
we are able to derive the near-optimal partition Sk which
maximizes Qk. The best Sk which leads to the largest
modularity Q is then selected as the final partition. When
k= 1, i.e., only the first eigenvector is used, the proce-
dure is the same as that in [16,17] to divide the network
into two parts. In this sense, the proposed algorithm can
be regarded as a generalization of the method in [16,17].
When more eigenvectors are used, multiple communities
can be found simultaneously, and the number of commu-
nities is determined automatically.

Spectral representation of modularity. – Suppose
a network with N nodes and M links is given. Let
A(N ×N) be the adjacency matrix, and ki =

∑N
j=1Aij

the degree of node i. For an arbitrary partition G which
divides the network into K non-overlapped groups, the
modularity Q can be defined as [16]

Q=
1

2M

∑

ij

(Aij −Pij)δ(gi, gj), (1)

where gi is the community to which node i belongs,
Pij = kikj/2M resulted from the null model selected, and
δ(r, s) = 1, if r= s, and 0 otherwise. Given the partition
G, one can further define an associated partition matrix
S(N × k) = [s1, s2, · · · , sk],

Sij =

{

1, if node i belongs to community j,
0, otherwise.

(2)

Each column sk in S is an N -dimensional {0, 1} index
vector. Tr(STS) =N and STS =Diag(n1, n2, · · · , nK) is
a diagonal matrix, where nk is the size of group k. The
modularity Q can now be written as

Q=
1

2M
Tr(ST (A−P )S) =Tr(STBS), (3)

1The method proposed in [14] is different from the present
algorithm, where the network data is first projected and analyzed
using conventional clustering algorithms on the subspace spanned
by several leading eigenvectors. The results are then mapped back
to the original network to obtain the final partition.

where the important modularity matrix B = 1
2M (A−P ).

Since B is real symmetric, it can be written as B =
∑N
j=1 λjuju

T
j , where λ1 � λ2 � · · ·� λN are ordered eigen-

values of B. The eigenvectors U = [u1, u2, · · · , uN ] form
an orthonormal basis of an N -dimensional vector space,
therefore sk can be written as a linear combination of uj .

Let sk =
∑N
j=1 cjkuj , we have

Q=
N
∑

j=1

K
∑

k=1

λj(u
T
j sk)

2 =
N
∑

j=1

K
∑

k=1

λjc
2
jp. (4)

Equation (4) is the spectral representation of the modu-
larity Q. It clearly shows that the major contributions
to the modularity come from the projection of the index
vectors onto the subspace spanned by the leading eigen-
vectors. For a good partition achieving large Q, the index
vectors as columns in the partition matrix S necessarily
have large projections onto the leading eigenvectors with
positive eigenvalues.

Community detection algorithm using multiple

eigenvectors. –

Rank-k approximation of B. Using k leading eigenvec-
tors, a low-rank approximation of B can be constructed
by Bk =

∑k
j=1 λjuju

T
j , k≪N , which has a much simpler

structure. We can define the reduced modularity as

Qk =Tr(S
TBkS). (5)

Then Bk is the optimal rank-k approximation of B regard-
ing the modularity in the sense that the upper bound
of the reduced modularity is the maximum according to
eq. (4). The basic idea behind the proposed approach
is to find the optimal partition Sk maximizing Qk by
exploiting the structure simplicity of Bk. The best among
Sk, k= 1, 2, · · · ,K, which achieves the largest modularity
Q, is then selected as the final partition, i.e.,

Sk = argmaxαTr(S
T
αBkSα), and

Sm = argmaxk:{1,2,···,K}Tr(S
T
k BSk), (6)

where Sα is an arbitrary partition. The maximum achieved
modularity is Qm =Tr(S

T
mBSm).

Let K be the number of eigenvectors involved, and
define K scaled leading eigenvectors of B as vj =
√

λjuj , (j = 1, 2, · · · ,K, λj � 0). LetUK = [u1, u2, · · · , uK ],
VK = [v1, v2, · · · , vK ], DK =Diag(λ1, · · · , λK), we obtain

QK =Tr(S
TBKS) =Tr(S

TVKV
T
KS). (7)

Write the partition matrix S as

S =UC = [UK , UR][C
T
K , C

T
R ]
T =UKC

T
K +URC

T
R , (8)

we have V TKS =D
1/2
K U

T
KS =D

1/2
K C

T
K = C̃K , and therefore

QK = ‖C̃K‖
2
F , (9)

where ‖X‖F = (
∑

ij X
2
ij)
1/2 is the Frobenius norm of X.

The task is to find a partition SK that maximizes ‖C̃k‖F .
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When K = 1, the optimal partition S1 divides the
network into 2 groups. In this case, S1 can be easily
constructed from the corresponding signs of the compo-
nents of V1. Specifically, for i= 1 and 2, we have ski = 1,
if vki � 0, and 0 otherwise. This is exactly the conven-
tional spectral partitioning method except that the first
eigenvector of the modularity matrix B is used instead of
the second eigenvector of the graph Laplacian matrix L.
When this procedure is recursively applied on the resul-
tant groups, it leads us to the method studied in [16].
When K > 1, it is in general difficult to derive SK from
VK directly. However, if VK is in a special form (referred
to as the canonical form), SK can be constructed easily.

Canonical form. Let us define a matrix G(N ×K)
as in canonical form associated with optimal partition
SG(N × 2K), if in each row of G, there is one and only
one non-zero element. Thus, by proper rearrangement, we
are able to write G as

GT =

⎡

⎢

⎢

⎣

GT1 G
T
2 0 · · · · · · · · · 0

0 0 GT3 G
T
4 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 0 GT2K−1 G

T
2K

⎤

⎥

⎥

⎦

, (10)

where Gj(nj × 1) = [g
(j)
1 , g

(j)
2 , · · · , g

(j)
nj ]
T , and g

(j)
i > 0,

if j = 2k− 1, and g
(j)
i < 0, if j = 2k. Denote G̃(N × 2K)

a block diagonal matrix

G̃T =

⎡

⎢

⎢

⎣

GT1 0 · · · · · · 0
0 GT2 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · · · · 0 GT2K

⎤

⎥

⎥

⎦

, (11)

the associated optimal partitionSG(N × 2K) = [s1, s2, · · · ,
s2K ] can be determined as follows:

SGij =

{

1, if G̃ij �= 0,
0, otherwise.

(12)

Simply put, partition SG can be obtained by first
dividing the network into K groups according to the non-
zero elements in each row of GT , and then each group is
split into two smaller ones based on corresponding signs.
It is easy to verify that SG = argmaxα ‖G

TSα ‖
2
F . Thus,

if VK in eq. (7) is in canonical form, SK given by (12) is
the optimal partition which achieves the largest possible
QK for BK .

Orthonormal rotation. To obtain the desired partition
SK , we need first to construct some matrix in canonical
form to approximate VK in eq. (7). The key observa-
tion is that QK in eq. (7) (or (9)) is invariant under
orthogonal rotations. Geometrically, if each row of C̃K
is regarded as a vector in the K-dimensional space, QK
represents the sum of the squared lengths of these vectors,
which is invariant under orthonormal rotations of the
axes. Formally, QK = ‖C̃K‖

2
F = ‖V

T
KS‖

2
F = ‖R

TV TKS‖
2
F =

‖(VKR)
TS‖2F , where R(K ×K) is an arbitrary orthogonal

rotation. This suggests an efficient way to construct the
canonical matrix to approximate VK , i.e., we fist ortho-
normally transform VK to the desired form as close as

possible, and then the canonical matrix can be constructed
simply by keeping only elements with the largest absolute
value in each row and zeroing all others.
Given a non-ideal matrix, we hope to transform C

to C̃ by an orthonormal rotation, where C̃ has only
one large element and many zero (or near-zero) elements
in each row. This can be achieved by minimizing the
sum of squared cross terms

∑

i

∑

j C
2
ijC

2
ik, where i=

1, 2, · · · , N , and j, k= 1, 2, · · · ,K and j �= k. Since T =
∑

ij C
2
ij is invariant under an orthogonal rotation, so is

T 2. Therefore, minimizing the sum of squared cross terms
is equivalent to maximize

∑

ij C
4
ij . To get a good canonical

approximation of VK , we therefore consider the orthogonal
rotation which maximizes

F =
∑

ij

v4ij . (13)

The orthogonal rotation that maximizes eq. (13) is
known as the quartimax rotation [21,22], and is widely
used in factor analysis to get a simpler representation
of the factor structure. (The pseudo-code can be found
in [21].) Usually, the choice of K will greatly influence the
level of the obtained sparsity. When K is close to N , the
transformed matrix C̃ will approach the identity matrix.
In the problem of community identification however, it
is always the case that K≪N . Such a problem will not
occur.
According to the construction of Sm, up to 2K commu-

nities can be made by K leading eigenvectors. Since in
most practical situations, we only have a rough estimate
on the number of communities at best, we thus need to
scan a range of K to find out the best partition Sm which
leads to the largest Qm.

A refinement procedure. In some cases, the associ-
ated partition SK obtained by the procedure described
above consists of some very small groups. We find this
is mainly due to the complicated community structure of
the network where some nodes cannot be clearly classi-
fied. To get more reliable result, a refinement procedure
is applied. The procedure is very simple and works as
follows. After we obtain a partition, one node is picked
out and reassigned to the community which results in
the largest modularity value. The procedure is applied
to each node systematically or randomly, and repeated
until convergence is achieved. The procedure above is very
fast and a few iterations are sufficient to obtain converged
results. During the refinement procedure, the community
number can decrease. This happens if every node initially
in some group needs to be moved into other groups. We
found that artificial small communities will be success-
fully removed by this refinement procedure, which give
us larger modularity value and much better estimate of
the true community number. The refinement procedure
we applied is different from and much simpler than the
Kernighan-Lin algorithm [17,23]. In our procedure, the
order of each movement is not optimized, meaning that the
first moved node is not necessarily the one which leads to
the most significant increase of the modularity. This makes
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Table 1: Comparison of modularity values achieved by the
present algorithm and other previously published methods.
The cited Q values for different methods are those appeared
in the original papers. Q(nc) is the modularity obtained by
our algorithm. The number nc in the bracket is the community
number of the partition. The details of the tested networks can
be found in the cited papers.

Network GN [3] DA [12] EIG [17] GHL [24] Q(nc)

Karate club 0.401 0.4188 0.419 0.4198 0.4198(4)
Dolphin 0.52 0.5263(4)
Football 0.601 0.6044 0.6046(10)
Jazz 0.401 0.4452 0.442 0.4451(4)
Metabolic 0.403 0.4342 0.435 0.4363(10)

the procedure very fast (only O(N)). This refined proce-
dure when applied independently to network community
detection will not generate good results usually. Its high
effectiveness to remove superficial small groups as part of
the algorithm is largely dependent on the fact that we
already have a good partition obtained by the spectral
algorithm.

Test of the algorithm. –

Measures of performance. The performance of a
community detection algorithm is usually measured by the
similarity between the found partition and the real known
structure according to some quantitative criterion. A
widely adopted quantity to measure and compare perfor-
mances of different methods is the normalized mutual
information (NMI) [25,26]. NMI takes its maximum value
of 1 if partition A is identical to partition B, and
NMI= 0 if the two partitions are statistically independent.
However, as any community detection algorithm hinges on
certain benefit function implicitly or explicitly, for exam-
ple, the current algorithm is based on the modularity Q, a
good partition found by the algorithm may not have high
NMI value. Even though the global optimal partition was
found by the algorithm (for example, the maximum modu-
larity was achieved), the NMI may still be less than 1,
unless the real partition happens to realize the maximum
value of the benefit function, which is unlikely especially
for real networks. Thus, to fairly judge an algorithm, both
aspects need to be considered.

Tests on real networks. The algorithm is tested
on various real networks. In table 1, we present the
results for the modularity achieved by our algorithm
compared to those obtained by other methods. It can
be seen that the multiple-eigenvector–based algorithm
works very well on these networks. One particularly
interesting real example is the network of American
college football teams [3], which clearly demonstrates
the power of the proposed algorithm and the difficulty
discussed above when evaluating the performance of a
community detection algorithm by real networks. This
network is a map of the schedule of Division I games
for the 2000 season where 115 nodes represent the teams

Table 2: Confusion matrix of community assignment of the
network of American college football teams. The names of
conferences are listed in the leftmost column. (The conference
of IA Independence cannot be regarded as a community as
discussed in the text.) In the table, columns a–j represent the
communities found by the algorithm. Each found community
consist of teams from one or more conferences as indicated by
the numbers in the corresponding column

a b c d e f g h i j

Atlantic Coast 9 9
Big East 8 8
Big 10 11 11
Big 12 12 12
Conference USA 1 9 10
IA Independents 2 2 1 5
Mid American 13 13
Mountain West 8 8
Pac 10 10 10
SEC 12 12
Sunbelt 3 4 7
Western Athletic 1 8 1 10

10 11 12 10 16 9 9 15 9 14 115

and 616 edges represent games between the two teams
they connect. All teams are organized into 12 conferences
each of which contains about 8–12 teams. Since games
are usually more frequent between members of the same
conference than between members of different conferences,
most conferences can be regarded as communities2. When
using the conferences as “true partition”, the modularity
is Q0 = 0.554 and NMI= 1.
Table 2 shows the detailed results, where, except for

the conferences of “IA Independents” and “Sunbelt”,
all other conferences are identified as communities with
high accuracy. The modularity achieved by this parti-
tion is Q= 0.605 and NMI= 0.88. Since the nodes of
the “Sunbelt” conference are assigned into community
e and j by the algorithm, it seems that a better parti-
tion (regarding to the true conference structure) could
be constructed by moving all 7 nodes belonging to the
“Sunbelt” conference from community e and j and assign-
ing them to a new community k (now there are 11 commu-
nities totally). Unfortunately, the resultant modularity
value is only Q′ = 0.587 (but NMI increases to 0.93). Thus,
a partition with lower modularity value is a better choice
if measured by a known community structure (or NMI).
This raises a problem in evaluating a community detection
algorithm based on modularity Q using real networks as
discussed above.

2However there are a few of them, for example, the conference
of IA Independence, whose teams played more or nearly as many
games against teams in other conferences than or as those in their
own conference. So the conferences are not completely coincident
with communities found based on the topological information of the
network.
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Fig. 1: (Colour on-line) Test results of the algorithm on the GN and LFR benchmarks. (a) Test results on 4-group GN
benchmarks. (b) Test results on “Small” LFR benchmarks. (c) Test results on “Big” LFR benchmarks. Other parameters
for (b) and (c): the average degree is 20, the maximum degree is 50, the exponent of the degree distribution is −2, and
that of the community size distribution is −1. The size of the network is 1000. Each point on the curves corresponds to
an average over 100 realizations. The performances of the simulated annealing and Infomap algorithm are also depicted for
comparison [25].

Tests on benchmark networks. To evaluate and
compare the performances of community detection
algorithms more fairly, we resort to artificially generated
benchmark networks. In this paper, benchmark networks
generated by the stochastic block model [3,27] and the
LFR model [28] are used to test the proposed algorithm.
The stochastic model is described by two independent
parameters pin and pout, which determine the connection
probability between nodes in the same group and across
different groups. The most popular example is the four-
blocks network proposed in [3] (GN benchmark), where
the network consist of 128 nodes, each with expected
degree 16. The whole network is divided into four groups
of 32. The LFR model is much more complicated. It
generalizes the GN benchmark by introducing power
law distributions for the degree and community size. An
important difference between the GN and LFR model
is that in the latter case, the connection probabilities of
intra- and inter-group (corresponding to pin and pout) are
no longer independent. A new parameter, the mixing ratio
µ which expresses the ratio between the external degree of
a node with respect to its community and the total degree
of the node, is usually used to build and characterize the
community structure. The LFR benchmark presents a
more flexible test to various algorithms.
A comprehensive comparative study of the perfor-

mances of various community detection algorithms on
these two types of benchmark networks has been done
in [25]. In our simulations, we use exactly the same para-
meter sets for both benchmarks as in [25]. The perfor-
mance is also measured by NMI as in [25], which make it
possible to compare directly the proposed algorithm with
other methods without reproducing all results.
The test results of the proposed algorithm on GN

benchmarks are shown in fig. 1(a). According to the results
in [25], within the pool of analyzed methods, the best one
for GN benchmark is the method of exhaustive modularity
optimization via simulated annealing [10,11] and one of the
best following ones is the Infomap algorithm [29]. It can be

seen clearly from fig. 1(a), the algorithm proposed here has
excellent performance and only slightly worse than that of
the simulated annealing approach (cf., fig. 1 in [25]) which
requires much more computing resources, and outperforms
all the others especially when µ is relatively large (0.4–0.5).
Figures 1(b) and (c) illustrate the test results for the

LFR benchmark. Two different ranges for the community
sizes —“Small” and “Big”— are tested. In the “Small”
category, the size of community is between 10 and 50 nodes
and in the case of “Big”, communities have between 20 and
100 nodes. Again, the algorithm shows very good perfor-
mance, comparable to the best Infomap algorithm [16] and
RN algorithm [15] reported (cf., fig. 2 in [25]), and clearly
outperforms all the others. When µ is in the range 0.6–0.7,
the performance of the present algorithm is even edged
better than the Infomap.
The overall trend of performance with the changing of

µ is similar to the other methods. For small values of µ,
the communities are well separated and easily detected.
The modularity values achieved by the found partition
are almost the same as those of the true partition,
and NMI is 1 (or very close to 1). When µ increases,
the communities become entangled and harder to be
identified. Interestingly, with µ increasing further, the
algorithm actually starts to find partitions with larger
modularity values than the true partition, even though the
NMIs continue to decrease as the found partitions become
irrelevant with the real one. This happens even when the
community structure is still considered to be there (e.g.,
µ< 0.75 for GN benchmark).
Therefore, the sharp decrease of performance measured

by NMI is largely caused by the limitation of the modu-
larity Q to describe a weak community structure, as well
as the property of NMI. Although related results are
not reported in the literature, we believe that a similar
phenomenon also exists in other modularity-based meth-
ods. Such intrinsic difficulty can only be resolved by apply-
ing new quantities which can describe the network commu-
nity structure more accurately and more consistently.
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One important problem when applying modularity is
the “resolution limit” [30,31], in which the maximal
modularity partition will fail to reveal small intuitive
modular structures due to the coexistence of large-scale
communities. Interesting algorithms have been proposed
in [32,33] to mitigate the resolution problem by hierarchi-
cally screening the modular structure at different scales.
The present algorithm aims to obtain the maximal modu-
larity partition, and therefore has this resolution prob-
lem. We test our algorithm on a realization of the multi-
scale benchmark network (400-13-13) used in [33]. The
algorithm generates a 4-groups partition, with 2 small
cliques hidden in one group. The modularity is Q= 0.0836
and NMI= 0.1109, and the hidden multi-scale partition
cannot be correctly revealed. However, since using the true
partition, the modularity is only Q= 0.0154, this kind of
result is not surprising since the algorithm is designed
to find the maximal modularity partition. As discussed
above, in such situations, modularity is no longer a suit-
able measure to describe a meaningful multi-scale struc-
ture. More subtle quantities, for example, the modified
modularity with adjustable parameter proposed in [32,33],
should be used.

Summary. – In this paper, we have developed a spec-
tral algorithm to identify the communities in a network
based on modularity Q. We introduced the reduced modu-
larity and the associated canonical form. By exploiting the
rotational invariance of the reduced modularity, we use
the quartimax rotation to transform the scaled eigenvec-
tor matrix to the desired form and use it to construct a
near-optimal partition for a low-rank approximation of the
modularity matrix. The set of the derived partitions makes
up the set of candidates, from which the final optimal
partition can be selected and refined. This novel approach
generalizes the conventional spectral community detection
algorithms where usually only one eigenvector is involved,
and therefore achieves better results because more spec-
tral information is utilized. The algorithm has been tested
on various real-world and computer-generated benchmark
networks and achieves excellent results. While it is difficult
if not impossible to fairly rank various community detec-
tion algorithms without a rigorous definition of what a
community is, the test results on the GN and LFR bench-
mark show that the proposed algorithm stands among the
best ones known.
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