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Abstract

In this Letter, the frequency noise spectrum is analyzed in the experiment of the laser linewidth measurement. The power spectrum of three most
widely used laser linewidth measurement methods, i.e., the heterodyne measurement, the self-homodyne measurement and the self-heterodyne
measurement, are restudied both theoretically and experimentally. A scheme adopting an avalanche photodetector (APD) in the delayed self-
heterodyne (DSHT) method is proposed, and an indirect determined result is given.
Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.
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1. Introduction

With great interests in coherent optical communication,
optical precision metrology and high-resolution spectroscopy,
much effort is being done to develop semiconductor lasers with
narrow linewidth. Therefore, the linewidth measurements of the
semiconductor lasers becomes more and more important. So
far, some methods have been proposed and used for linewidth
determination of the diode lasers [1–4]. The theories used in
the laser linewidth measurement are closely related to those
in the laser spectrum, i.e., the well-known Schawlow–Townes
linewidth formula, which is later revised and generalized by
Henry and Fleming [5–7]. In the previous work [8], it is compli-
cated to get the photocurrent spectrum, and the result often in-
cludes DC part, which introduces the additional frequency mod-
ulation (FM) noise and thus broadens the spectrum linewidth of
the photocurrent [9]. Hence, a general analysis for FM noise
and further, an effective method for reducing the FM noise is
needed.
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In the following work of laser linewidth measurement,
three methods are adopted, they are, the beat of two lasers
(BTL), the delayed self-homodyne (DSHO) and the delayed
self-heterodyne (DSHT), the schematic setups of which are il-
lustrated in Fig. 1: two external cavity diode lasers (ECDL) with
the same Littrow structures are composed of a diode laser (λ =
852 nm, max power 500 mW), a collimating objective, a reflec-
tive grating and an output mirror. The external grating feedback
configuration of the Littrow structure is expected to narrow the
linewidth of the diode laser down to hundreds kilohertz scale.
The ECDL is prepared to operate in the single mode for the
convenience of measurement and analysis.

2. FM noise spectrum

The optical field in ECDL can be modeled as a quasi-
monochromatic field with random phase fluctuation and slowly
varying amplitude, i.e.,

(1)E(t) = E0
[
1 + Eδ(t)

]
ei[ω0t+φ(t)],

where ω0, Eδ(t) and φ(t) are, respectively, the central fre-
quency, the time dependent magnitude and the phase of the
field.
. All rights reserved.
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Fig. 1. Experiment setup of three linewidth measurement methods. (a)
beat of two lasers (BTL); (b) delayed self-homodyne (DSHO); (c) delayed
self-heterodyne (DSHT); ECDL: external cavity diode laser; ISO: optical iso-
lator; SAS: saturation–absorption spectrum; AOM: acousto-optic modulator;
APD: avalanche photo-detector.

Using Maxwell’s equations and carrier density [n(t)] func-
tion, motion equations of Eδ(t), φ(t) and n(t) are described as
(see Appendix A):

(2)Ėδ + ξr

η2
ṅ − ω0ξi

2η2
n = �i

2ω0E0
,

(3)φ̇ + ξi

η2
ṅ + ω0ξr

2η2
n = − �r

2ω0E0
,

(4)ṅ + n

τR

+ 2η2ω2
R

ω0ξi

Eδ = ϑ,

where η is the nonresonant index, ξr and ξi are the first order
coefficients of the Taylor expansions of the real and imagi-
nary parts of the refractive index, i.e., χr and χi , near steady
state n0, � (the subscript of �, r and i, indicates its real and
imaginary parts, respectively) and ϑ are the Langevin noise
terms due, respectively, to the spontaneous radiation and ther-
mal motion of carriers. Therefore, the frequency spectrum can
be calculated using Wiener–Khintchine theorem through auto-
correlation function 〈�ω(t + τ)�ω(t)〉 = 〈φ̇(t + τ)φ̇(t)〉:

Wf (ω) = G

4ω2
0E

2
0

+
[
Gα2ω4

R

4ω2
0E

2
0

+ ω2
0ξ

2
r G2ω

2

4

]

(5)/
[(

ω2 − ω2
R

)2 + ω2/τ 2
R

]
,

where G and G2 are the coefficients of the Langevin force rela-
tions, ωR is the frequency caused by the relaxation oscillation
(fluctuation) of the carrier density, and τR is the damping time
Fig. 2. Frequency noise spectrum Wf [Eq. (5)] at photon density p0 =
1 × 1014 cm−3 [15]. Wf = Wf 1 + Wf 2 + Wf 3, Wf 1: white noise, Wf 3:
1/f noise, Wf 2: residual spectrum.

(see Appendix B), and α = ξr/ξi is known as the linewidth en-
hancement factor.

It can be found, from Eq. (5), that the FM noise spectrum is
mainly composed of two parts: the white noise (Wf 1) caused by
the spontaneous emission, and the frequency spectrum (Wf 2)
centered in ωR originated from the relaxation oscillation. Be-
sides, according to experimental results, another low frequency
noise source Wf 3, known as 1/f noise, is add to Eq. (5), with
a constant factor K [10]. It will be seen in the following that
K is the measurement of the 1/f noise influence, and is an im-
portant parameter to determine the power spectrum linewidth.
Thus, the spectrum is now expressed with three parts:

(6)Wf (ω) = Wf 1 + Wf 2 + Wf 3,

(7)Wf 1 = W0 = G/4ω2
0E

2
0 ,

Wf 2 =
[
Gα2ω4

R

4ω2
0E

2
0

+ ω2
0ξ

2
r G2ω

2

4

]

(8)/
[(

ω2 − ω2
R

)2 + ω2/τ 2
R

]
,

(9)Wf 3 = K/|ω|.
The frequency spectrum Wf is plotted in Fig. 2, using para-

meters [see Appendices A and B, Eqs. (A.7), (A.11), (A.12),
(B.7), (B.9), for details] with the typical values of α2 = 30,
g = 0.5 × 1012 s−1, dg/dn = 10−6 cm3 s−1, τs = 1 ns, Vc =
V = 3 × 10−10 cm3, n0 = 1018 cm−3, ω0 = 2.2 × 1015 rad s−1

(852 nm), and Ecv = 1.6Evc [6].
It can be seen from Fig. 2 that Wf 1 and Wf 2 is mostly

flat before ωR (∼ several GHz). In the case of our DSHO and
DSHT measurement methods, the highest central frequency is
ωA (102.8 MHz) which satisfies ωA � ωR . Therefore, the con-
tribution of Wf 1 and Wf 2 is approximated as:

(10)Wf 0(ω)|ω�ωR
= Wf 1 + Wf 2 ≈ W0

(
1 + α2),

where W0 = Wf 1 is the original white noise term. In the follow-
ing, the analysis will be made based on the above assumption.
It then follows that the total FM noise spectrum is:

(11)Wf (ω) ≈ Wf 0 + Wf 3 = W0
(
1 + α2) + K

|ω| .
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3. Power spectrum

In the following, we show the experiment results of the
power spectrum using the spectrum analyzer. Due to different
optical field detected in different measurement setups of our ex-
periments, power densities are derived below according to three
methods mentioned above.

The BTL method is illustrated in Fig. 1(a). The beat sig-
nal is detected directly by using a fast avalanche photo-detector
(APD, Hamamatsu5658, 50 kHz–1 GHz), and the power spec-
trum is analyzed by a spectrum analyzer (HP8568). The total
electric field is simply the sum of the two lasers, with two dif-
ferent center frequencies ω01 and ω02. Then, the detected pho-
tocurrent is given by Ib(t) = 2D0E01E02 cos[�ω0t + φ1(t) −
φ2(t)], where �ω0 = ω01 − ω02 = �λ · 2πc/λ2, and D0 is the
gain coefficient. Since we used the APD in the experiment,
only the AC component is included here. As what Wiener–
Khintchine theorem predicts, the spectral density of Ib(t) is
simply the Fourier transform of its autocorrelation function
RIb(τ ) = 〈Ib(t + τ)Ib(t)〉, i.e.,

(12)Sb(ω) = Sb0
1/τc

(1/τc)2 + (ω ± �ω0)2
,

where Sb0 = 4D2
0E2

01E
2
02 is a constant depending on the detec-

tor and the intensity of the laser beams, 1/τc = 1/τc1 + 1/τc2 is
the total coherence time. In deriving Eq. (12), 〈exp[i�φ(t)]〉 =
〈exp[− 1

2 〈�φ(t)2〉]〉 is used, where �φ(t) = φ1(t)−φ2(t) [11].
From Eq. (12), the linewidth of the photocurrent is simply the
sum of those of two independent lasers.

The center wavelength of ECDL is about 852 nm, �λ =
1 nm (�ω0 ≈ 2.6 THz), which is out of the band of APD.
Therefore, BTL method is not suitable in our experiment setup.
In deriving Eq. (12), it is reasonable for us to assume that
the AM noise is negligible because Eδ(t) is slowly varying
compared with the laser frequency, and that the spectral width
is caused mainly by the FM noise. This assumption is used
throughout this Letter.

DSHO configuration is shown in Fig. 1(b). The laser beam
is separated into two paths by a 50/50 beam splitter after fre-
quency stabilization. One of them is delayed by a 1.14 km
single mode fiber, and then beat with the other through a
50/50 beam splitter. The beat signal can be written as EO(t) =
E0 exp[i(ω0t + φ(t))] + E0 exp[i(ω0(t + τd) + φ(t + τd))],
where τd is the fiber caused delay time. It is easy to deduce the
photocurrent using I (t) = |E(t)|2, and further, the photocurrent
autocorrelation function and the spectrum (see Appendix C):

RI (τ) = I0 exp

[
− 4

π

∞∫
−∞

Wf (ω)

(13)× (1 − cosωτ)(1 − cosωτd)

ω2
dω

]
,

SIO(ω) = I0F
[
RI (τ)

] = I0F
[
RI0(τ ) × RI3(τ )

]
(14)= I0Sf 0 ∗ Sf 3,

where F denotes the Fourier transform, RI0 and RI3 are, re-
spectively, the autocorrelation functions corresponding to the
enhanced white noise induced power density Sf 0, the 1/f noise
induced power density Sf 3, and ∗ denotes the convolution. RI0
and RI3 can be obtained by substituting Wf 0 and Wf 3 into
Eq. (13), and using the relations:

(15)

∞∫
0

cos(ωτ)

ω3+θ
dω = �(−2 − θ)Re(iτ )2+θ ,

(16)

∞∫
0

1

ω3+θ
dω = lim

λ→0
λ2+θ�(−2 − θ),

which gives

(17)RI0(τ ) =
{

e−W0
(
1+α2)|τ |, |τ | < τd,

e−W0
(
1+α2)

τd , |τ | � τd,

Sf 0(ω) = 2W0(1 + α2)

[W0(1 + α2)]2 + ω2

×
{

1 − e−W0(1+α2)τd

(18)×
[

cosωτd + W0
(
1 + α2) sinωτd

ω

]}
,

RI3(τ ) = |τ + τd |−K|τ+τd |2/2π |τ − τd |−K|τ−τd |2/2π

(19)× |τ |Kτ 2/π |τd |Kτ 2
d /π ,

(20)Sf 3(ω) = F
[
RI3(τ )

]
.

The DSHO method seems to be a good method in theory, but
it can be observed from the experiment that some additional
low frequency noises, which are introduced by mechanical de-
vices, detector and analyzer, are included. The zero input ana-
lyzer’s spectrum has a sharp pulse centered in zero frequency
with several kilohertz width. Hence, the power spectrum is
buried in the low frequency noise near zero point. Therefore,
the DSHT method is proposed, in order to avoid these kinds of
noises. The experiment setup is illustrated in Fig. 1(c) by em-
ploying an acousto-optic modulator (AOM) which operates at
ωA = 102.8 MHz in the short arm of the DSHO setup. The laser
field then becomes EE(t) = E0 exp{i[(ω0 + Ω)t + φ(t)]} +
E0 exp[i(ω0(t + τd) + φ(t + τd))], therefore, the shifted pho-
tocurrent autocorrelation function and the spectrum are:

(21)RI (τ) = I0 cos(ωAτ)RI0(τ )RI3(τ ),

SE(ω) = I0F
[
RI (τ)

]
(22)= I0F

[
cos(ωAτ)RI0(τ ) × RI3(τ )

]
.

4. Results and conclusion

The BTL method spectrum [i.e., Sb , Eq. (12)], the analytical
Fourier transform of RI0 [i.e., Sf 0, Eq. (18), white noise], the
fast Fourier transform of RI3 [i.e., Sf 3, Eq. (20), 1/f noise],
and the fast Fourier transform of RI [i.e., total spectrum SIO ,
Eq. (14)] are plotted in Figs. 3-5, respectively. In Fig. 3, com-
pared with Sb(ω), Sf 0 has an exponential decay term, which is
due to the self-correlation of the laser field. It indicates that the
power spectrum of the enhanced white noise induced spectrum
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Fig. 3. Power spectrum Sf 0 introduced by white noise alone [Eq. (18)]. Solid
lines show two cases for τc = 0.64 µs, 3.2 µs. The fiber delay time is fixed at
5.5 µs. Dashed lines are the BTL method spectrum Sb [Eq. (12)] with the same
parameters. It shows that when τc gets bigger, the difference between Sf 0 and
Sb gets bigger, and further, the oscillation of Sf 0 gets more evident.

Fig. 4. Power spectrum introduced by 1/f noise alone (i.e., Sf 3). Solid
lines are the fast Fourier transform of RI3 [Eq. (19)], with different factors
K = 3 × 1012 Hz2, 0.5 × 1012 Hz2. Dashed and dotted lines are, respectively,
Gaussian and Lorentzian lineshapes with the same 3 dB linewidth as Sf 3.

Fig. 5. Total power spectrum SIO in DSHO method, which is the convolution
of Sf 0 (Fig. 3) and Sf 3 (Fig. 4) using Eq. (14). Parameters are: τc = 0.64 µs,

K = 3 × 1012 Hz2. It can be seen that after the convolution the total spectrum
gets flat in high frequency region.

becomes strictly Lorentzian as the delay time increases. This
can be explained as the decorrelation of the laser field after long
distance delay. Fig. 4 shows a numerical plot of Sf 3, which is
the 1/f noise. Careful analysis in expression of RI3 found its
Gaussian approximation in low frequency region. The dashed
Gaussian lineshapes in Fig. 4 are plotted with the same FWHM
(full width half maximum) according to Sf 3. Then, considering
both white noise and 1/f noise, in general noise analysis, their
convolution is numerically presented in Fig. 5. It is obvious that
Fig. 6. Fit of experimental DSHT power spectrum using indirect method.
The dashed line is the numerical approximation of power spectrum SE

[i.e., Eq. (22)]. Parameters used to fit the data are: τc = 0.26 µs,
K = 0.16 × 1012 Hz2. The inset figure is the fit function Eq. (22). Upper:
τc = 0.64 µs, K = 3 × 1012 Hz2, middle: τc = 0.64 µs, K = 0.16 × 1012 Hz2,
low: τc = 0.26 µs, K = 0.16 × 1012 Hz2. τc and K determine the wings and
the center part of the lineshape.

the 1/f noise broadens the power spectrum SIO through the
convolution of Sf 0 and Sf 3.

Therefore, when τd 
 τc , Sf 0 becomes the Lorentzian line-
shape. On the other hand, Sf 3 tends to be a Gaussian lineshape
in low frequency band (Fig. 4). A convolution of them leads
to a Voigt lineshape in SE(ω) [Eq. (22)]. Furthermore, careful
analysis indicates that Sf 0(ω), Sf 3(ω), SIO(ω) and SE(ω) are
functions of ω with independent parameters τd , τc (linewidth),
K and the output power. In our DSHT method, τd ≈ 5.5 µs
and the output power is 20 mW. The numerical simulations are
made to fit the experimental data while changing the other two
parameters τc and K . Therefore, the laser linewidth can be de-
termined indirectly under short fiber delay. The indirect data fit
method is applied and the results are shown in Fig. 6, with pa-
rameters τc = 1/π�f = 1/[πS0(1 + α2)] = 0.26 µs, 0.64 µs,
K = 0.16 × 1012 Hz2, 3 × 1012 Hz2, which show that the laser
linewidth is about 200 kHz. The result shows a good match with
theory given above. It is found that τc controls the wings and K

controls the center of the lineshape.
The noise levels of the three methods are different: for BTL,

the noise originates from two independent lasers and so the total
noise is simply the sum of that of the two lasers. For DSHO,
only one laser is used, the noise from the lasers is around one
half of that of BTL. However, zero point noise exists in the
background of the photocurrent due to the spectrum analyzer.
For DSHT, the advantages of DSHO are kept while the low
frequency noises are kept outside of the beat frequency and so,
the noise is the least among the three methods (Fig. 6).

In conclusion, we derive formula to determine the linewidth
of the semiconductor lasers, which has the advantages of clar-
ity and feasibility for the experiment. The frequency noise is
analyzed in detail. Further, an improvement in the detection
has been made and an indirect approach of photocurrent spec-
trum is obtained. Using the theory and methods proposed in this
Letter, the experiment is conducted, and the experiment results
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coincide with those given by theories. But still, there are some
problems to be explored, such as the sidemodes influence, the
fiber dispersion, etc., [12,13]. Since our laser runs in CW single
mode and the fiber is around 1 km long, these influence can be
ignored. Provided that these problems are solved, the measure-
ment of the laser linewidth would be easier and more accurate.
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Appendix A. Motion equations

We start from Maxwell’s equations:

(A.1)∇ × �E(�r, t) = −μ∂t
�H(�r, t),

∇ × �H(�r, t) = σ �E(�r, t) + ∂t

[
ε �E(�r, t)

(A.2)+ �P (�r, t)] + ∂t �s(�r, t),
where μ is the magnetic permeability, σ is the medium con-
ductivity, ε = ε0η

2 is the nonresonant dielectric constant and
η is the nonresonant medium index, �P(�r, t) and �s(�r, t) are the
induced polarization caused by the stimulated and the sponta-
neous transitions, respectively. We treat �s(�r, t) as a fluctuation
noise due to the random phase of the spontaneous emission. The
polarization can be written as �P(�r, t) = ε0χ(n) �P (�r, t), where
χ = χr + iχi , is the susceptibility on the medium, and is depen-
dent of the carrier density n.

Using the expansions as follows:

(A.3)�E(�r, t) = ΣnEn(t)�en(�r),
(A.4)�P(�r, t) = ΣnPn(t)�en(�r),
(A.5)�s(�r, t) = Σnsn(t)�en(�r),

one yields

d2

dt2

[(
1 + χ(n)

η2

)
En

]
+ 1

τp

d

dt
En + ω2

nEn

(A.6)= − 1

ε0

d2

dt2
sn = �eiω0t ,

where τp = ε0/σ is the photon lifetime, ωn is the resonant fre-
quency of the nth mode, ω0 is the laser frequency, � is the

slowly varying term of d2

dt2 sn(t), which is treated as a Langevin
noise source due to classical result [14] and “white” nature of
the spontaneous emission.

In addition, the carrier density n can be depicted by rate
equation as

(A.7)ṅ + g(n)p + n

τs

= R + ϑ,

where g(n) = ω0χi/η
2 is the gain, p = ε0η

2|E|2/2h̄ω0 is the
photon density, τs is the spontaneous lifetime, R is the pumping
rate and ϑ is the noise term treated as Langevin noise.
Considering single mode case and substituting E(t) [Eq. (1)]
into Eqs. (A.6) and (A.7) yields:

(A.8)Ėδ + ξr

η2
ṅ − ω0ξi

2η2
n = �i

2ω0E0
,

(A.9)φ̇ + ξi

η2
ṅ + ω0ξr

2η2
n = − �r

2ω0E0
,

(A.10)ṅ + n

τR

+ 2η2ω2
R

ω0ξi

Eδ = ϑ,

(A.11)ω2
R = ε0ω0χi(n0)ξiE

2
0

2h̄η2
= g(n0)

dg

dn

∣∣∣∣
n0

p0,

(A.12)
1

τR

= 1

τs

+ ε0ξiE
2
0

2h̄
= 1

τs

+ dg

dn

∣∣∣∣
n0

p0,

where ξr and ξi are the first order coefficients of Taylor expan-
sions of χr and χi near steady state n0. Ëδ , φ̈, Ėδφ̇ and n̈ are
neglected compared with the laser frequency ω0.

Appendix B. Langevin force coefficients

Langevin force relationships:

(B.1)
〈
�i(t + τ)�i(t)

〉 = 〈
�r(t + τ)�r(t)

〉 = Gδ(τ),

(B.2)
〈
�i(t + τ)�r(t)

〉 = 〈
�r(t + τ)ϑ(t)

〉 = 0,

(B.3)
〈
�i(t + τ)ϑ(t)

〉 = G1δ(τ ),

(B.4)
〈
ϑ(t + τ)ϑ(t)

〉 = G2δ(τ ),

where δ(τ ) is the Dirac-delta function, G,G1,G2 are the nor-
malized coefficients.

The Langevin forces �i and ϑ are [15]:

(B.5)�i(t) = 2h̄ω3
0

ε0V E0
Σnanδ(t − tn),

(B.6)ϑ(t) = 1

Vc

Σnbnδ(t − tn),

where V and Vc are the mode volume and the carriers volume,
an and bn are 1 or −1 corresponding to accident emission or
absorption. Therefore,

(B.7)G = 4h̄ω3
0Ecv

ε0V
,

(B.8)G1 = −ω0E0

Vc

(Ecv + Evc),

(B.9)G2 = p0V

V 2
c

(Ecv + Evc) + n0

Vcτs

,

where Ecvp0 and Evcp0 are the stimulated emission and ab-
sorption rates per unit volume, respectively.

Appendix C. Lineshape formula in DSHO method

The electric field in DSHO method is:

EO(t) = E0 exp
[
i
(
ω0t + φ(t)

)]
(C.1)+ E0 exp

[
i
(
ω0(t + τd) + φ(t + τd)

)]
.
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Therefore, the autocorrelation function of photocurrent is

(C.2)R(τ) = 〈
EO(t + τ)E∗

O(t + τ)EO(t)E∗
O(t)

〉
,

(C.3)= I0 exp

[
−1

2

〈[
�φ(t + τd, τ ) − �φ(t, τ )

]2〉]
.

Using the relation

(C.4)
〈
φ2(τ )

〉 = 1

π

∞∫
−∞

Wf (ω)
1 − cos(ωτ)

ω2
dω,

one can obtain

RI (τ) = I0 exp

[
− 4

π

∞∫
−∞

Wf (ω)

(C.5)× (1 − cosωτ)(1 − cosωτd)

ω2
dω

]
.
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