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Abstract We investigate the Randić index of random binary trees under two
standard probability models: the one induced by random permutations and
the Catalan (uniform). In both cases the mean and variance are computed by
recurrence methods and shown to be asymptotically linear in the size of the
tree. The recursive nature of binary search trees lends itself in a natural way
to application of the contraction method, by which a limit distribution (for a
suitably normalized version of the index) is shown to be Gaussian. The Randić
index (suitably normalized) is also shown to be normally distributed in binary
Catalan trees, but the methodology we use for this derivation is singularity
analysis of formal generating functions.
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1 Introduction

For quite some time there has been rising interest in the field of computational
chemistry in topological indexes that capture the structural essence of com-
pounds; see for example Trinajstić (1992), who traces the history back to more
than 150 years, and mentions the existence of over 120 topological indexes.
Indexes focused on distances within the graph of the molecule include the
popular Wiener index, which is considered a measure for the spread of the
shape of the molecule. This index was introduced toward an understanding of
the boiling points of paraffin in Wiener (1947). Measures such as the Randić
(Randić, 1975), the Balaban (Balaban 1982, 1983), and the Zagreb (Gutman
and Trinajstić 1972) indexes are focused on combinations of degree sequences
of the molecular graph, with interpretations relating to the overall connectivity
of the molecule. Additional types of topological indexes bear on information
theory (see Bonchev and Trinajstić, 1983). Numerous papers in the chemistry
literature can be found on these topics. For examples of use in specific areas of
applied research, such as pharmacology and toxicology see Basak (1987) and
Kier and Hall (1976). For a textbook style presentation and discussion of the
broader context, we refer the reader to the books by Devillers and Balaban
(1999), Gutman and Polansky (1986), and Trinajstić (1992). For a view from
the other end, Harary (1969) is more specialized in graph theory, but makes
connections to chemistry.

We are interested in the distributional properties of chemical indexes in clas-
ses of random trees. Some handful of works have been written on the Wiener
index of a few classes of random trees including Christophi and Mahmoud
(2005), Devroye and Neininger (2004), Janson (2003), Janson and Chassaing
(2004), Mahmoud and Neininger (2002), Neininger (2002), and Panholzer and
Prodinger (2004). However, we are aware of only one investigation of the
Randić index in random trees by Clark and Moon (2000). Our aim in this note
is to add a contribution on the probabilistic behavior of the Randić index for
binary trees.

2 The Randić index of a binary tree

The degree of vertex v in a graph G = (V, E) with vertex set V and edge set
E is the number of edges that are incident with V. We shall denote the degree
of v by deg(v). The Randić index, also called the connectivity index, R(G) (with
parameter α) of a molecule with (undirected) graph G is the sum

R(G) =
∑

{u,v}∈E

(
deg(u) deg(v)

)α .

In other words, the Randić index is

∑

i,j

(ij)αMij,
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Fig. 1 The tree structure of a
Pentane molecule

where Mij is a count of the number of edges (bonds) extending between pairs of
vertices (atoms) with degrees (valance) i and j. The Randić index with param-
eter α = −1/2 has been the most popular in the chemistry literature (see for
example Estrada, 2002), but other variations have been discussed, too (see for
example Miličević and Nikolić, 2004).

Remark The case α = 0 is a trivially degenerate case in which R(G) = |E |. In a
tree of size n, the Randić index will always be n − 1. We exclude this choice in
the sequel.

Many chemical compounds have a tree-like structure. For example, The
entire family of alkanes (saturated hydrocarbons) have tree graphs. This family
has many compounds common in our daily life such as Methane (CH4), Ethane
(C2H6), Propane (C3H8), Butane(C4H10), which we use in fuels for heating,
cooking, transportation, and many industrial processes. Figure 1 illustrates the
tree structure of a Pentane (C5H12) molecule, a common commercially avail-
able liquid solvent, and an additive to automotive and aviation fuels.

Connections of chemistry to random binary trees have been noted, for exam-
ple in Quintas and Szymański (1992), where they studied molecules with a
binary tree structure, where nodes of valence 3 are saturated and the unsat-
urated nodes have affinity that is inversely proportional to their valance. The
technical name that Quintas and Szymański (1992) used for their tree model
is “recursive trees with bounded degrees,” but they do coincide with “binary
search trees” defined below (even though this is not mentioned explicitly in
that source).

A binary tree is a hierarchy of nodes. If the tree is not empty, it has one
distinguished node as its root, and each node has up to two substructures of
nodes (called subtrees) positionally distinguished by their orientation as left
and right. Thus, a binary tree is either empty, or has left and right subtrees that
are themselves recursively binary trees.

Several models of randomness are in common use on binary trees. Binary
search trees grown from the insertion of a random permutation are of para-
mount importance in sorting, searching and a myriad of other combinatorial
algorithms (see Knuth, 1998 or Mahmoud, 2000). As noted already, this model
is of relevance to chemistry (Quintas and Szymański, 1992). The Catalan prob-
ability model is a natural alternative in which all trees of a given size are equally
likely. The model is considered appropriate for formal languages and computer
algebra (see Kemp, 1984).

In this note we investigate the distribution of the Randić index of a random
binary tree under both the random permutation model and the Catalan model.
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The sequel is organized as follows. In Sect. 3 we discuss two sets of stochastic
recurrence equations for the Randić index of a binary tree: one collective and
one refined by conditioning on root degrees. These are recurrences on the trees
(as points in a sample space) and thus are valid regardless of the probability
model. They apply to the binary search trees as well as binary Catalan trees.
The point of departure is the splitting probabilities at the root. Section 4 is
dedicated to binary search trees. In these trees, each type of recurrence is more
suitable for a particular purpose. The recurrence refined by root degree is a
transparent tool for the computation of exact moments: The mean is taken up
in Sect. 4.1, and the variance is taken up in Sect. 4.2. However, it is the collective
recurrence that is directly amenable to the univariate contraction method, as
is demonstrated in Sect. 4.3. Section 5 is dedicated to Catalan trees, where the
methodology is the singularity analysis of formal moment generating functions.

3 Stochastic setup

We shall set up recurrence equations for the Randić index, valid for any binary
tree, regardless of its probability model. Let the random variable Rn be the
Randić index and Dn be the degree of the root of a random binary tree T of
size n. We employ a global decomposition at the root of T. When the left and
right subtrees are connected to the root of T, adjustments in their root degrees
need to be made. These adjustments depend on the structure (particularly the
distribution of degrees of nodes) of the first three levels in T. Take for example
the standard Randić index with parameter α = −1/2. Suppose we computed
the Randić indexes of the left and right subtrees, let us say they are respectively
R′ and R′′, and we would like now to compute it for T. If R′ = 0, the left subtree
is empty, and suppose the right subtree has root x, with two children, each of
degree 2 (i.e. each has one child). When we adjoin the left (empty) and right
subtrees to the root, we render the degree of x equal to 3, and the two children
of x are now connected to a degree–3 parent. The Randić index of T needs
adjustment by the new contribution of the root of T, and the two computed
indexes for the left and right subtrees also need to be adjusted. The two children
of x now contribute 2/

√
6, and no longer 1 as is their contribution to the index

for the right subtree. The connection to the root adds 1/
√

3. That is, the global
index is R′′ + 1/

√
3 + 2/

√
6 − 1. However, if the root of the left subtree has

degree 1, and the first two levels in the right subtree have the same degrees as
in the previous example, the adjoining of the left and right subtrees renders the
Randić index of T equal to R′′ + 3/

√
6 + 1/

√
2 − 1.

It is easier to work with a modified Randić index that does not get affected
by adjoining the subtrees, but rather only requires changes based on the degree
of the root. That is, a modification in which the contribution of the modified
index in each subtree enters the formula in a purely additive manner. Such a
modified index Yn is defined in exactly the same way as Rn, except that the
degree deg(r) of the root r of the whole tree is always enhanced to deg(r) + 1
in the computation with any pair of nodes involving the root. It is as if we



Randić index of random binary trees 323

Fig. 2 A binary tree labeled
with node degrees

are computing the usual Randić index for a tree where the root is connected
to an extra (incoming) fictitious edge that does not have a vertex at its other
end, thus accounting for an enhanced root degree, without introducing any new
pairs. Figure 2 illustrates the notion of the Randić index. In the figure, the nodes
are labeled by their degree. In the tree of Fig. 2, the standard Randić index (with
α = − 1

2 ) is

R11 = 6√
3

+ 2√
6

+ 2
3

.

Let us set up some notation to formulate our problem recursively. Let 1A
be the indicator of the event A, i.e., the function that assumes the value 1, if A
occurs, and is 0 otherwise. Let the size (number of nodes) of the left subtree be
Ln. The variable Rn(T) is the Randić index of a given binary tree T of size n.
As usual, we hide the sample point T in this (and in all similar notation).

For notions of probability, we use the notation L= to indicate exact equality

in distribution, and
D−→ is reserved for convergence in distribution. Likewise,

P−→ is reserved for convergence in probability. To use probabilistic copies from
the substructures, consistently any random variable pertaining to the left sub-
tree will carry a prime symbol, and any one pertaining to the right subtree will
carry double primes. These copies will receive notation such as the hat or tilde
to indicate that they are conditionally independent. For example, we may refer
to the Randić index of the left subtree by R′

Ln
, and that of the right subtree by

R̂′′
n−1−Ln

. Even though R′
Ln

and R̂′′
n−1−Ln

are dependent, through their depen-

dency on Ln, they are conditionally independent, that is R′
j

L= Rj and R̂′′
k

L= Rk,

and R′
j and R̂′′

k, are independent for all fixed values of j and k.
Set

In(k) = 1{1≤k≤n−2},
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and

Jn(k) = 1{Dn=k}.

For n ≥ 1, the indicators Jn(0), Jn(1), and Jn(2) are mutually exclusive in the
sense that

Jn(0)+ Jn(1)+ Jn(2) = 1.

The boundary values are Y0 = Y1 = 0, and so are R0 and R1 equal to 0;
therefore, J0(0), J0(1), and J0(2) must be identically equal to 0.

The left subtree has modified Randić index Y ′
Ln

, and that of the right sub-
tree is Y ′′

n−1−Ln
. When adjoined to a root (with a fictitious incoming edge) the

degrees of the two roots of the subtrees are upgraded by 1. So, if the roots
of the subtrees are r′ and r′′, respectively, the collective Randić index of the
whole tree is the sum of the two Randić indexes, upgraded by the amount
((deg(r)+1)(deg(r′)+1))α+ ((deg(r)+1)(deg(r′′)+1))α . So, we see that by con-
ditioning on the degree of the roots of the two subtrees we obtain the following
distributional recurrence, for Yn, for n ≥ 2,

Yn
L= Y ′

Ln
+ Ỹ ′′

n−1−Ln
+ (

3αIn(Ln)+ 2α(1 − In(Ln)
)

×
2∑

i=0

(i + 1)α
(

J′
Ln
(i)+ J′′

n−1−Ln
(i)

)
. (1)

This recurrence is in a form suitable for an application of the univariate con-
traction method, as we shall discuss later on in Sect. 4.3. Figure 3 shows the
decomposition of the tree of Fig. 2, into a root and two subtrees with modified
Randić index 3√

3
+ 1

3 each. In the figure the nodes are labeled by their degrees,
except the roots of the tree and the subtrees; instead these are labeled by the
enhanced degrees (including a fictitious incoming edge for each).

When we hook up the two subtrees to the root of the whole tree, we can sim-
ply assemble Rn from the modified Randić indexes of the left and right subtrees
with some extra adjustments (argued in a manner similar to the rationale for
the recurrence of Yn). It is given by the recurrence

Rn
L= Y ′

Ln
+ Ỹ ′′

n−1−Ln
+ (

2αIn(Ln)+ (1 − In(Ln)
)

×
2∑

i=0

(i + 1)α
(

J′
Ln
(i)+ J′′

n−1−Ln
(i)

)
, (2)

which is valid for n ≥ 2.
The recurrence for Rn includes dependent random variables on the right-

hand side. For example, Y ′
Ln

and J′
Ln
(i) are dependent. While this does not influ-

ence the mean computation, it introduces some inconvenience in the calculation
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Fig. 3 The decomposition of
the tree of Fig. 2, with
enhanced root degree for the
computation of the modified
Randić index

of higher moments. When the right-hand side of (1) is squared or raised to
higher powers, cross-products of dependent random variables like Y ′

Ln
J′

Ln
(2),

and Y ′′
n−1−Ln

J′′
n−1−Ln

(1) appear. Therefore, toward the moments, we work with
more convenient recurrences that are conditional refinements of (1)–(2), where
the conditioning is according to the root degree.

Let R(i)n denote Rn | {deg(r) = i}, that is, Rn conditioned on the event that the
size-n binary tree has a root with i children. The conditioned random variables
Y(0)

n , Y(1)
n , Y(2)

n are defined analogously.
Then, for all n ≥ 1, Rn and Yn are given by:

Rn =
2∑

i=0

Jn(i)R(i)n ,

and

Yn =
2∑

i=0

Jn(i)Y(i)
n .

The conditioned random variable R(i)n and Y(i)
n , with 0 ≤ i ≤ 2, satisfy the

distributional recurrences

R(1)n
L=

2∑

i=0

J′
Sn
(i)

((
Y(i)

n−1

)′ + (i + 1)α
)
, for n ≥ 2,
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R(2)n
L=

2∑

i=0

J′
Sn
(i)

((
Ŷ(i)

Sn

)′ + 2α(i + 1)α
)

+
2∑

i=0

J′′
n−1−Sn

(i)
((

Ỹ(i)
n−1−Sn

)′′ + 2α(i + 1)α
)
, for n ≥ 3,

Y(1)
n

L=
2∑

i=0

J′
Sn
(i)

((
Y(i)

n−1

)′ + 2α(i + 1)α
)
, for n ≥ 2,

Y(2)
n

L=
2∑

i=0

J′
Sn
(i)

((
Ŷ(i)

Sn

)′ + 3α(i + 1)α
)

+
2∑

i=0

J′′
n−1−Sn

((
Ỹ(i)

n−1−Sn

)′′ + 3α(i + 1)α
)
, for n ≥ 3,

with boundary values

R(0)n = Y(0)
n = 0, for n ≥ 1,

R(1)1 = Y(1)
1 = R(2)1 = Y(2)

1 = R(2)2 = Y(2)
2 = 0;

here Sn denotes Ln | Ln ∈ {1, . . . , n − 2}, i.e. the size of the left subtree condi-
tioned on the event that we do not have an extremal case of a root of degree 1.

4 The Randić index of random binary search trees

A binary search tree is constructed from the permutation (π1, . . . ,πn) of the set
{1, 2, . . . , n} by a standard search algorithm. The first element of the permuta-
tion is inserted in an empty tree, a root node is allocated for it. A subsequent
element πj (with j ≥ 2) is guided to the left subtree if πj < π1, otherwise it is
taken into the right subtree. In the recipient subtree πj is treated recursively by
the same insertion algorithm, until it is inserted in an empty subtree, at which
point a node is allocated for it and adjoined appropriately as a left (right) child
if its label is less than (at least as much as) the label of the last node on the
search path.

In the probability model induced by random permutations we assume that
the tree is built from permutations of {1, . . . , n}, where a uniform probability
is imposed on the permutations rather than on the trees. When all n! permuta-
tions are uniformly random, occurring equally likely, binary search trees are not
equally likely. Several permutations give rise to the same tree, favoring shorter
balanced trees to tall linear shapes (see, Mahmoud, 1992). Henceforth the term
random binary search tree will refer to a binary search tree built from a random
permutation.
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For n ≥ 2, the random permutations induce the distribution:

P(Dn = i) =
⎧
⎨

⎩

0, i = 0;
2
n , i = 1;
1 − 2

n , i = 2,

whereas for n = 1 one has P(D1 = 0) = 1. Under the random permutation
model Ln is uniformly distributed on the set {0, 1, . . . , n − 1}. For only aesthetic
reasons, we refer to Ln as Un until the end of this section, to reflect this prob-
abilistic structure in binary search trees. The random variable Sn = Ln | Ln ∈
{1, . . . , n − 2} is uniformly distributed on {1, . . . , n − 2}.

4.1 The expectation

From the above stochastic recurrences we get the following recurrence for the
expected values of Yn:

E(Yn) = 2
n

E
(

Y(1)
n

)
+

(
1 − 2

n

)
E

(
Y(2)

n

)
, for n ≥ 2, (3)

with

E(Y(1)
n ) =

(
E

(
Y(0)

n−1

)
+ 2α

)
1{n=2} +

[
2

n − 1

(
E

(
Y(1)

n−1

)
+ 4α

)

+
(

1 − 2
n − 1

) (
E

(
Y(2)

n−1

)
+ 6α

) ]
1{n≥3}, for n ≥ 2, (4)

E(Y(2)
n ) = 2

n − 2

(
E

(
Y(0)

1

)
+ 3α

)
+ 2

n − 2

n−2∑

k=2

2
k

(
E

(
Y(1)

k

)
+ 6α

)

+ 2
n − 2

n−2∑

k=2

(
1 − 2

k

) (
E

(
Y(2)

k

)
+ 9α

)
, for n ≥ 3. (5)

In what follows the sth harmonic number is denoted by Hs; that is,

Hs =
s∑

j=1

1
j

.

Plugging in the recurrences for E(Y(1)
n ) and E(Y(2)

n ) in (3) leads to the recurrence
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E(Yn) = 2
n

n−2∑

k=1

E(Yk)+ 4
n(n − 1)

4α + 2
n

(
1 − 2

n − 1

)
6α + 2

n
3α

+ 4
n

(
Hn−2 − 1

)
6α + 2

n

(
n − 1 − 2Hn−2

)
9α , for n ≥ 3, (6)

with boundary values Y1 = 0, Y2 = 2α .
This is a “Quicksort”-like recurrence, which has been treated in various

works (see Hwang and Neininger, 2002; Kirschenhofer and Prodinger, 1998;
Kirschenhofer et al., 1997; Panholzer, 2003; Panholzer and Prodinger, 1998;
Prodinger, 1995). We only outline here the strategy: One begins by differencing
(n − 1)E(Yn−1) from n E(Yn). We have a recurrence of the form

E(Yn) = E(Yn−1)+ ξ(n),

where the so-called toll function ξ(n) collects all the nonrecursive terms. So, a
solution in the form of a sum of ξ(j) for j running from a suitable initial value up
to n is imminently available. What takes considerable effort is the cleaning up
to reduce these sums into simple closed form expressions in terms of standard
functions. This latter step is facilitated by some heavy use of a computer algebra
system, but still requires substantial nontrivial human guidance. In the sequel
we shall suppress some steps, where the computation is too lengthy but remains
straightforward.

Using the distributional equations (1)–(2) one can show the following rela-
tion between E(Rn) and E(Yn):

E(Rn) = E(Yn)+ 4
n(n − 1)

(
2α − 4α)+ 2

n

(
1 − 2

n − 1

)(
3α − 6α

)

+ 2
n

(
2α − 3α

) + 4
n

(
Hn−2 − 1

)(
4α − 6α

)

+ 2
n

(
n − 1 − 2Hn−2

)(
6α − 9α

)
, for n ≥ 3,

with boundary values R1 = 0, R2 = 1. Solving this Quicksort-like recurrence
by the strategy outlined above leads to the following explicit formulas:

E(Rn) = (3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α + 5 · 9α)
18

n

+3 · 2α + 3 · 3α + 2 · 4α + 41 · 6α − 67 · 9α

18

+4(4α − 2 · 6α + 9α)
n

Hn−2 + 2(2α − 2 · 4α − 6α + 2 · 9α)
n

+4(3 · 2α − 3 · 3α − 2 · 4α + 6α + 9α)
3n(n − 1)

, for n ≥ 3,
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and

E(Yn) = (3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α + 5 · 9α)
18

n

+3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α − 31 · 9α

18
+ 2(9α − 6α)

n

+4(4α − 2 · 6α + 9α)
3n(n − 1)

, for n ≥ 3.

If our interest is only in average values, we could have solved the recur-
rence (6), without necessarily going via the recurrence system (4)–(5) for
E(Y(1)

n ) and E(Y(2)
n ). However, the refined formulas for the latter two variables

are helpful in variance computations.
In the following we use the abbreviation fn := E(Y(1)

n ), and gn := E(Y(2)
n ).

Subsequently, we have to study also the following system of recurrences:

fn = 2
n − 1

fn−1 +
(

1 − 2
n − 1

)
gn−1 + an, n ≥ 3,

gn = 2
n − 2

n−2∑

k=2

2
k

fk + 2
n − 2

n−2∑

k=2

(
1 − 2

k

)
gk + bn, n ≥ 3,

where an and bn are given by:

an = 2
n − 1

4α +
(

1 − 2
n − 1

)
6α ,

bn = 2
n − 2

3α + 2
n − 2

6α
n−2∑

k=2

2
k

+ 2
n − 2

9α
n−2∑

k=2

(
1 − 2

k

)
.

Despite the fact that this system of recurrences is no longer the well-studied
Quicksort-recurrence, we can reduce it to that by eliminating gn. One obtains

fn = 2
n − 1

n−1∑

k=3

fk + an +
(

1 − 2
n − 1

)
bn−1 − 2

n − 1

n−2∑

k=3

ak, n ≥ 4.

This gives the solution

fn = n

(
f4

4
+

n∑

k=5

sk

)
, n ≥ 5,

with

sn := (n − 1)an − (n − 2)an−1

n(n − 1)
+ (n − 3)bn−1 − (n − 4)bn−2

n(n − 1)
− 2an−2

n(n − 1)
,
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and boundary values f4 = 2
3 2α + 2

3 3α + 4
3 4α + 1

3 6α , f3 = 2α + 4α , f2 = 2α , f1 = 0.
We further get

gn = n
n − 2

(
fn+1 − 2

n
fn − an+1

)
, n ≥ 4,

which yields the solution

gn = n
n − 2

(
(n + 1)sn+1 − an+1 + (n − 1)

(
f4

4
+

n∑

k=5

sk

))
, n ≥ 4,

with boundary values g4 = 2α + 3α + 6α , g3 = 2 · 3α , g2 = 0, g1 = 0.
Plugging in the values of an and bn leads after simplification to the following

explicit formulas:

E(Y(1)
n ) = (3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α + 5 · 9α)n

18
+ 6α − 2 · 9α

+2(4α − 2 · 6α + 9α)
n − 1

+ 4(4α − 2 · 6α + 9α)
3(n − 1)(n − 2)

, n ≥ 4,

E(Y(2)
n ) = (3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α + 5 · 9α)n

18

+3 · 2α + 3 · 3α + 2 4α + 5 · 6α − 31 · 9α

18

+3 · 2α + 3 · 3α + 2 · 4α − 31 · 6α + 23 · 9α

9(n − 2)

−8(4α − 2 · 6α + 9α)
3(n − 2)α

, n ≥ 4.

4.2 The variance

Upon squaring the stochastic recurrences (1) then taking expectations, we
obtain the following recurrence for the second moment of Yn:

E(Y2
n) = 2

n
E

((
Y(1)

n

)2
)

+
(

1 − 2
n

)
E

((
Y(2)

n

)2
)

, for n ≥ 2, (7)

with

E
((

Y(1)
n

)2
)

= 2
n − 1

E
((

Y(1)
n−1

)2
)

+
(

1 − 2
n − 1

)
E

((
Y(2)

n−1

)2
)

+ 2
n − 1

(
2 · 4αE

(
Y(1)

n−1

)
+ 42α

)

+
(

1 − 2
n − 1

) (
2 · 6αE

(
Y(2)

n−1

)
+ 62α

)
, for n ≥ 3, (8)
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E
((

Y(2)
n

)2
)

= 2
n − 2

n−2∑

k=2

2
k

E
((

Y(1)
k

)2
)

+ 2
n − 2

n−2∑

k=2

(
1 − 2

k

)
E

((
Y(2)

k

)2
)

+ 2
n − 2

32α + 2
n − 2

n−2∑

k=2

2
k

(
2 · 6αE

(
Y(1)

k

)
+ 62α

)

+ 2
n − 2

n−2∑

k=2

(
1 − 2

k

) (
2 · 9αE

(
Y(2)

k

)
+ 92α

)

+ 4
n − 2

3α
(

2
n − 2

(
E

(
Y(1)

n−2

)
+ 6α

)

+
(

1 − 2
n − 2

) (
E

(
Y(2)

n−2

)
+ 9α

))

+ 2
n − 2

n−3∑

k=2

(
2
k

(
E

(
Y(1)

k

)
+ 6α

)
+

(
1 − 2

k

) (
E

(
Y(2)

k

)
+ 9α

))

×
(

2
n − 1 − k

(
E

(
Y(1)

n−1−k

)
+ 6α

)

+
(

1 − 2
n − 1 − k

)(
E

(
Y(2)

n−1−k

)
+ 9α

) )
, (9)

which is valid for n ≥ 4. Combining the recurrences the system (8)–(9) leads
again to a Quicksort-like recurrence in (7) for the required second moment:

E
(

Y2
n

)
= 2

n

n−1∑

k=1

E
(

Y2
k

)
+ tn, for n ≥ 4,

with toll function

tn = 2
n

(
2

n − 1

(
2 · 4αE

(
Y(1)

n−1

)
+42α

)
+

(
1 − 2

n − 1

) (
2 · 6αE

(
Y(2)

n−1

)
+62α

))

+ 2
n

32α + 2
n

n−2∑

k=2

2
k

(
2 · 6αE

(
Y(1)

k

)
+ 62α

)

+ 2
n

n−2∑

k=2

(
1 − 2

k

)(
2 · 9αE

(
Y(2)

k

)
+ 92α

)

+ 2
n

2 · 3α
(

E (Yn−2)+ 2
n − 2

6α +
(

1 − 2
n − 2

)
9α

)
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+ 2
n

n−3∑

k=2

(
E(Yk)+ 2

k
6α +

(
1 − 2

k

)
9α

)

+
(

E
(
Yn−1−k

) + 2
n − 1 − k

6α +
(

1 − 2
n − 1 − k

)
9α

)
.

Subsequently, we obtain the solution

E
(

Y2
n

)
= (n + 1)

n∑

k=7

qk + n + 1
7

E
(

Y2
6

)
, for n ≥ 6,

with

qn := ntn − (n − 1)tn−1

n(n + 1)
.

The stochastic recursions (1)–(2) also lead to a relation between the second
moments of Rn and Yn:

E
(

R2
n

)
= E

(
Y2

n

)
+ sn, for n ≥ 4,

with a rather lengthy function sn.
Plugging in the boundary values and the already computed formulas for the

expectation of Yn, Y(1)
n and Y(2)

n , we obtain the following result (the lengthy
explicit expression for the variance is relegated to appendix A).

Proposition 1 The expectation and variance of the Randić index Rn of a ran-
domly grown binary search tree of size n are asymptotically (as n → ∞) given
by

E(Rn) = µα n + O(1),

Var(Rn) = σ 2
α n + O(1),

where

µα := 3 · 2α + 3 · 3α + 2 · 4α + 5 · 6α + 5 · 9α

18
,

and

σ 2
α := 1

283, 500

(
15525 · 4α + 27173 · 81α − 35160 · 18α + 35948 · 16α

−54902 · 54α + 40725 · 9α − 43650 · 6α + 3420 · 8α

+31890 · 27α + 13833 · 36α − 25350 · 12α − 9452 · 24α
)

.
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In view of the small O(n) variance, a concentration law is a natural corollary.

Corollary 1 For a nondegenerate Randić index,

Rn

n
P−→ µα , as n → ∞.

Proof By Chebyshev’s inequality, for any fixed ε > 0, we have

P
(∣∣∣Rn − E[Rn]

∣∣∣ > εE[Rn]
)

≤ Var[Rn]
ε2E2[Rn] .

The orders of magnitude of the mean and variance in Proposition 1 yield

P
(∣∣∣∣

Rn

E[Rn] − 1
∣∣∣∣ > ε

)
= O

(
1
n

)
.

We thus have

Rn

E[Rn]
P−→ 1,

which can subsequently be adjusted with the aid of the convergence E[Rn]/
n → µα . �	

4.3 Asymptotic normality

In principle, one can continue pumping higher moments by the methods utilized
for the mean and variance, and appeal to the method of recursive moments (see
Chern et al., 2002). However, the explosive complexity is forbidding; we saw
that the variance Var[Rn] is given by a formula that is a page long (in the small
font), and the formulas get bigger for every higher moment (compare the exact
formulas for the mean and variance)!

The contraction method provides a shortcut. The method was crafted by
Rösler (1991) to deal with the distribution of Quicksort. Rachev and Rüschen-
dorf (1995) added several extensions. Recently general contraction theorems
and multivariate extensions were added by Neininger (2001), Neininger and
Rüschendorf (2004), and Rösler (2001). Rösler and Rüschendorf (2001) pro-
vide a lucid survey. What makes the contraction method appealing for an appli-
cation like the one we have at hand is that now we have in our possession several
general theorems that greatly reduce the effort in applying it.

Our starting recurrence (1) can be written in the form

Yn = Y ′
Un

+ Y ′′
n−1−Un

+ h(n),
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where h(n) is a toll function given by

h(n) = (
3αIn(Un)+ 2α(1 − In(Un)

) 2∑

i=0

(i + 1)α
(
J′

Un
(i)+ J′′

n−1−Un
(i)

)
.

The function h(n) is clearly O(1); an obvious easy uniform bound is obtained
when all the indicators and their complements are replaced by 1, namely

0 ≤ h(n) ≤ 2(2α + 3α)(1 + 2α + 3α).

So, h(n)/
√

n = O(1/
√

n ) → 0.
The rates of growth of the mean and variance in Proposition 1 comport

with the rates required for an application of Corollary 5.2 in Neininger and
Rüschendorf (2004), who mention that their method has the underlying theme
that “Two moments and a recurrence may be the clues” for normality, a method
championed by Pittel (1999). The latter method is based on approximative
assimilation by normal distributions. So, the latter method may be used as an
alternative.

Taking f (n) = g(n) = n in Corollary 5.2 of Neininger and Rüschendorf
(2004), we see that Un/g(n) converges in L3 to U, a standard Uniform (0, 1)
random variable, and (n − Un − 1)/g(n) converges in L3 to 1 − U; all the other
terms resulting from normalizing the toll function vanish in L3, as is required
for the convergence

Rn − µα n√
n

D−→ N
(

0, σ 2
α

)
.

Further, Rn and Yn have he same asymptotic behavior, yielding the main result
of this note.

Theorem 1 In a randomly grown binary search tree of size n a nondegenerate
Randić index Rn has a Gaussian limit:

Rn − µα n√
n

D−→ N
(

0, σ 2
α

)
,

where µα and whenever σ 2
α 
= 0 are specified in Proposition 1.

5 The Randić index of random binary Catalan trees

In the Catalan probability model all binary trees of size n are considered equally
likely. It is so called because when research started on binary trees, it was natural
to assume a uniform model, and binary trees are counted by Catalan numbers:
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The number Bn of binary trees of size n is given by the Catalan number

Bn = 1
n + 1

(
2n
n

)
,

see Knuth (1998).
The uniform distribution in the Catalan model induces the distribution

P(Dn = i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 0,
2Bn−1

Bn
, i = 1,

1 − 2Bn−1

Bn
, i = 2,

for the root degree, for n ≥ 2, whereas for n = 1 one has P(D1 = 0) = 1. We
thus have for n ≥ 3:

P(Ln = k | Dn = 2) = BkBn−1−k

Bn − 2Bn−1
, for 1 ≤ k ≤ n − 2.

We are going to study the moment generating functions E
(
eYns

)
, and the

refinements E
(
eY(1)

n s
)

and E
(
eY(2)

n s
)
. Defining the functions

φn(s) := Bn E
(
eYns), ψn(s) := Bn E

(
eRns),

φ(1)n (s) := 2Bn−1 E
(
eY(1)

n s), ψ(1)n (s) := 2Bn−1 E
(
eR(1)n s),

φ(2)n (s) := (Bn − 2Bn−1)E
(
eY(2)

n s), ψ(2)n (s) := (Bn − 2Bn−1)E
(
eR(2)n s).

the basic stochastic recurrences (1) can be translated into to the following
recurrences for the moment generating functions:

φn(s) = φ(1)n (s)+ φ(2)n (s),

φ(1)n (s) = 2e4αsφ
(1)
n−1(s)+ 2e6αsφ

(2)
n−1(s), n ≥ 3,

φ(2)n (s) = 2e3αs
(

e6αsφ
(1)
n−2(s)+ e9αsφ

(2)
n−2(s)

)

+
n−3∑

k=2

(
e6αsφ

(1)
k (s)+ e9αsφ

(2)
k (s)

) (
e6αsφ

(1)
n−1−k(s)

+e9αsφ
(2)
n−1−k(s)

)
, n ≥ 4,
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ψn(s) = ψ(1)n (s)+ ψ(2)n (s),

ψ(1)n (s) = 2e2αsφ
(1)
n−1(s)+ 2e3αsφ

(2)
n−1(s), n ≥ 3,

ψ(2)n (s) = 2e2αs
(

e4αsφ
(1)
n−2(s)+ e6αsφ

(2)
n−2(s)

)

+
n−3∑

k=2

(
e4αsφ

(1)
k (s)+ e6αsφ

(2)
k (s)

) (
e4αsφ

(1)
n−1−k(s)

+e6αsφ
(2)
n−1−k(s)

)
, n ≥ 4.

To solve this recurrences we introduce the following generating functions:

F(z, s) :=
∑

n≥2

φnzn, G(z, s) :=
∑

n≥2

ψnzn,

F1(z, s) :=
∑

n≥2

φ(1)n zn, G1(z, s) :=
∑

n≥2

ψ(1)n zn,

F2(z, s) :=
∑

n≥2

φ(2)n zn, G2(z, s) :=
∑

n≥2

ψ(2)n zn.

Together with the boundary values this leads to the following system of
functional equations:

F(z, s) = F1(z, s)+ F2(z, s),

F1(z, s) = 2z
(
e4αsF1(z, s)+ e6αsF2(z, s)

) + 2e2αsz2,

F2(z, s) = z
(
e6αsF1(z, s)+ e9αsF2(z, s)

)2 + 2z2e3αs(e6αsF1(z, s)

+e9αsF2(z, s)
) + e2·3αsz3,

G(z, s) = G1(z, s)+ G2(z, s),

G1(z, s) = 2z
(
e2αsF1(z, s)+ e3αsF2(z, s)

) + 2esz2,

G2(z, s) = z
(
e4αsF1(z, s)+ e6αsF2(z, s)

)2 + 2z2e2αs(e4αsF1(z, s)

+e6αsF2(z, s)
) + e2·2αsz3.

This system of functional equations can be reduced to a single quadratic equa-
tion for the required generating function G(z, s) by successively eliminating the
other functions. Solving this quadratic equation (with the aid of a computer
algebra system) leads to a lengthy expression, which has the form:

G(z, s) = H(z, s)− K(z, s)
√

B(z, s),



Randić index of random binary trees 337

where the functions H(z, s) and K(z, s) are given as follows:

H(z, s) := C(z, s)
N(z, s)

, K(z, s) := A(z, s)
N(z, s)

,

N(z, s) := 2z
(

e2·9αs + 4z
(

e(2·6α+9α)s − e(4
α+2·9α)s)

+4z2
(

e2(4α+9α)s − 2e(4
α+2·6α+9α)s + e4·6αs

) )2

,

C(z, s) :=
7∑

k=0

ck(s)z
k, A(z, s) :=

4∑

k=0

ak(s)z
k.

The very lengthy functions ak(s) and ck(s) are given in Appendix B.
It follows that the functions H(z, s) and K(z, s) are analytic in a circle in the

complex z plane, with radius |z| ≤ 1
4 + ε for s in a neighborhood of 0, i. e. for

|s| ≤ δ, with some δ, ε > 0.
For the asymptotic behavior of the coefficients of G(z, s), and thus of the

distribution of Rn, only B(z, s) is of relevance, which is given here:

B(z, s) = 1 − 4ze4αs + 4z2
(

e2·4αs − e(3
α+9α)s

)

+8z3
(

2e(3
α+4α+9α)s − e(3

α+2·6α)s − e(2
α+6α+9α)s

)

+16z4
(

e(2
α+4α+6α+9α)s + e(3

α+4α+2·6α)s − e(3
α+2·4α+9α)s − e(2

α+3·6α)s) .

The dominant singularity z = ρ(s) of G(z, s) can be found in a neighborhood
of s = 0 by solving the equation

B(z, s) = 0

for z. When B(ρ(s), s) = 0, an algebraic singularity manifests itself. For s = 0
we obtain ρ(0) = 1

4 .
Expanding G(z, s) around the dominant singularity z = ρ(s) gives uniformly

around s = 0:

G(z, s) = C(s)
[
1 + O

(
z − ρ(s)

)] − A(s)
√

1 − z
ρ(s)

[
1 + O

(
z − ρ(s)

)]
,

with the functions A(s) and C(s) defined by:

C(s) := H
(
ρ(s), s

)
,

A(s) := K
(
ρ(s), s

)
√

−ρ(s) ∂
∂z

B(z, s)

∣∣∣∣
z=ρ(s)

.
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Extracting coefficients gives:

[zn]G(z, s) = A(s)
n− 3

2

2
√
π

(
1
ρ(s)

)n (
1 + O

(
1
n

))
.

We now have [zn]G(z, s) = Bn E
(
eRns

)
; by using the well known asymptotic

expansion of the Catalan numbers,

Bn = n− 3
2√
π

4n
(

1 + O
(

1
n

))
,

we obtain the following expansion for the moment generating function of Rn,
which holds uniformly around s = 0:

E
(

eRns
)

= A(s)
2

(
1

4ρ(s)

)n (
1 + O

(
1
n

))

= en(− log ρ(s)−log 4)+log A(s)−log 2
(

1 + O
(

1
n

))
.

Now an immediate application of the quasi-power theorem (see Hwang,
1998) leads to a central limit theorem for Rn (provided that U′′(0) 
= 0), where
the expectation and the variance are asymptotically given by

E(Rn) = U′(0)n + O(1),

Var(Rn) = U′′(0)n + O(1).

Here the function U(s) is the function

U(s) = − log ρ(s)− log 4,

where ρ(s) is determined by the right branch solution of B(ρ(s), s) = 0.
To compute the constants we use

µα := U′(0) = −ρ
′(0)
ρ(0)

, σ 2
α := U′′(0) = (ρ′(0))2 − ρ(0)ρ′′(0)

(ρ(0))2
,

and differentiate the equation B(ρ(s), s) = 0 once then twice with respect to s,
then evaluate at s = 0. This finally leads to

µα = 1
8

2α + 1
8

3α + 1
4

4α + 3
8

6α + 1
8

9α , (10)

σ 2
α = 3

64
4α − 3

32
6α − 1

16
8α + 7

64
9α − 5

32
12α + 5

16
16α − 3

16
24α

− 1
64

36α + 3
32

27α − 5
32

54α + 7
64

81α . (11)
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Theorem 2 In a random binary Catalan tree of size n a nondegenerate Randić
index Rn has a Gaussian limit:

Rn − µα n√
n

D−→ N
(

0, σ 2
α

)
,

where µα and whenever σ 2
α 
= 0 are specified in (10)–(11) .

The structure of the mean and variance of the Randić index in random binary
Catalan trees is similar to that in the binary search tree case (only the coeffi-
cients of linearity are different). So, one also gets a concentration law here, too
(cf. Corollary 1), only differing in the specification of µα .

From the explicit formula for G(z, s) one can easily obtain an explicit result
for E(Rn), which is for the sake of completeness given here:

E(Rn) = 2α + 3α + 2 · 4α + 3 · 6α + 9α

8
n

+5 · 2α + 2 · 3α + 4 · 4α − 9 · 6α − 10 · 9α

8

+15(3 · 2α − 3α − 2 · 4α − 7 · 6α + 7 · 9α)
16(2n − 1)

+105(2α − 3α − 2 · 4α + 3 · 6α − 9α)
16(2n − 1)(2n − 3)

, n ≥ 3,

with boundary conditions E(R2) = 1, and E(R1) = 0.
The asymptotic result for the expectation appears as a special instance of

the simply generated tree model already in Clark and Moon (2000). However,
their approach does not seem easily extendible to a distributional analysis of
Rn. We also remark that the enunciation that Var(Rn) ∼ cαn

3
2 in Clark and

Moon (2000) turns out to be incorrect.

Appendix A: The explicit expression for Var(Rn)

The exact variance of the Randić index of a random binary search tree is given
by the exact formula

Var(Rn) = n
283500

(
15525 · 4α + 27173 · 81α − 35160 · 18α + 35948 · 16α − 54902 · 54α + 40725 · 9α

−43650 · 6α + 3420 · 8α + 31890 · 27α + 13833 · 36α − 25350 · 12α − 9452 · 24α
)

− 169
1890

12α

− 27451
141750

54α + 8987
70875

16α + 19
1575

8α + 23
420

4α − 97
630

6α + 27173
283500

81α + 1537
31500

36α − 586
4725

18α
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+ 181
1260

9α + 1063
9450

27α − 2363
70875

24α − 4
135n(n − 1)

(
6270 · 12α − 2924 · 54α + 5261 · 16α − 3420 · 8α

+495 · 4α − 540 · 6α + 86 · 81α + 10401 · 36α − 3180 · 18α + 45 · 9α + 330 · 27α − 12824 · 24α
)

+ 4

15n2

(
585 · 12α − 331 · 54α + 379 · 16α − 275 · 8α + 45 · 4α − 60 · 6α + 14 · 81α + 1044 · 36α

−285 · 18α + 5 · 27α − 1121 · 24α
)

− 16

45n2 (n − 1)2

(
360 · 12α − 272 · 54α + 158 · 16α − 150 · 8α

+45 · 4α − 90 · 6α + 53 · 81α + 543 · 36α − 270 · 18α + 45 · 9α + 60 · 27α − 482 · 24α
)

− 8
225n(n − 1)(n − 2)(n − 3)

(
2775 · 12α − 8173 · 54α + 2902 · 16α − 945 · 8α + 1777 · 81α

+13917 · 36α − 2715 · 18α + 885 · 27α − 10423 · 24α
)

− 16

n4

(−4 · 54α + 16α + 81α − 4 · 24α + 6 · 36α
)

+ 128

5n2 (n − 1)2 (n − 2)2

(
− 4 · 54α + 16α + 81α − 4 · 24α + 6 · 36α

)

+ 2
9n

(
− 62 · 12α − 391 · 54α + 18 · 16α + 20 · 8α + 3 · 4α − 3 · 6α + 125 · 81α + 407 · 36α + 34 · 18α

+3 · 9α + 2 · 27α − 156 · 24α
)

+ 16

n2

(
4 · 54α − 16α − 81α − 6 · 36α + 4 · 24α

)
H2

n

−256 · −4 · 54α + 16α + 81α − 4 · 24α + 6 · 36α

5n2 (n − 1)2 (n − 2)2 (n − 3)2
− 8

15n (n − 1) (n − 2)

(
180 · 12α − 427 · 54α

+193 · 16α − 65 · 8α + 83 · 81α + 798 · 36α − 165 · 18α + 50 · 27α − 647 · 24α
)

+ 16

3n3

(
12 · 12α − 37 · 54α + 4 · 16α − 3 · 8α + 10 · 81α + 48 · 36α − 15 · 18α + 6 · 27α − 25 · 24α

)

+
[

4
9n

(
3 · 12α + 41 · 54α + 7 · 16α − 3 · 8α − 14 · 81α − 33 · 36α + 3 · 18α − 3 · 27α − 24α

)

− 16
3n(n − 1)

(
− 18 · 12α + 34 · 54α − 13 · 16α+6 · 8α−7 · 81α − 60 · 36α + 18 · 18α − 6 · 27α+46 · 24α

)

−64 · 4 · 54α − 16α − 81α − 6 · 36α + 4 · 24α

3n (n − 1) (n − 2)
+ 128 · 4 · 54α − 16α − 81α − 6 · 36α + 4 · 24α

15n (n − 1) (n − 2) (n − 3)

+ 16

3n2

(
− 12 · 12α + 25 · 24α + 3 · 8α + 15 · 18α − 48 · 36α − 6 · 27α − 10 · 81α − 4 · 16α + 37 · 54α

)

−32 · 4 · 54α − 16α − 81α − 6 · 36α + 4 · 24α

n3

]
Hn − 32

3n(n − 1)(n − 2)(n − 3)(n − 4)

(
2 · 16α − 5 · 54α

−8α + 27α − 7 · 24α + 3 · 12α + 9 · 36α + 81α − 3 · 18α
)

.

Appendix B: The functions ak(s) and ck(s)

The functions ak(s), k = 0, . . . , 4, and ck(s), k = 0, . . . , 7, that appear in the
intermediate steps of the calculations for the Catalan trees are listed here:

a0(s) = e2·6αs,

a1(s) = 2 es(3α+2·9α) − 2 es(2·6α+4α),

a2(s) = −12 es(3α+2·9α+4α) + 6 es(3α+2·6α+9α) + 6 es(2α+6α+2·9α),
a3(s) = 20 es(3·6α+2α+9α) − 20 es(2α+6α+4α+2·9α) − 28 es(9α+3α+4α+2·6α)

+ 4 es(3α+4·6α) + 24 · es(3α+2·9α+2·4α),
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a4(s) = 32 es(2·4α+3α+2·6α+9α) + 16 es(2α+5·6α) − 32 es(4α+3·6α+2α+9α)

+ 16 es(2α+6α+2·4α+2·9α) − 16 es(3α+3·4α+2·9α) − 16 es(3α+4α+4·6α),
c0(s) = e2·6αs,

c1(s) = 2 es(3α+2·9α) − 4 es(2·6α+4α),

c2(s) = 4 e2 s(6α+4α) + 6 es(2α+6α+2·9α) − 16 es(3α+2·9α+4α) + 4 es(3α+2·6α+9α),

c3(s) = −32 es(9α+3α+4α+2·6α) − 32 es(2α+6α+4α+2·9α) + 4 es(1+4·9α)

− 4 es(2·3α+3·9α) + 16 es(3·6α+2α+9α) + 48 es(3α+2·9α+2·4α),
c4(s) = 10 e2 s(2α+2·9α) + 80 es(2·4α+3α+2·6α+9α) − 20 es(6α+3α+2α+3·9α)

+56 es(2α+6α+2·4α+2·9α) − 64 es(4α+3·6α+2α+9α) − 64 es(3α+3·4α+2·9α)
− 32 es(1+4·9α+4α) + 32 es(2·3α+3·9α+4α) + 32 es(1+3·9α+2·6α)
− 22 e2 s(3α+6α+9α) − 16 es(3α+4α+4·6α) + 8 es(2α+5·6α),

c5(s) = −32 es(2α+6α+3·4α+2·9α) + 136 es(2·3α+2·6α+2·9α+4α) + 64 es(2·4α+3·6α+2α+9α)

−64 es(3·4α+9α+3α+2·6α) − 112 es(2α+3α+3·6α+2·9α) + 112 es(2α+6α+3·9α+3α+4α)

−192 es(1+3·9α+4α+2·6α) − 96 es(2·3α+3·9α+2·4α) + 96 es(1+4·9α+2·4α)

−56 e
s
(

21+α+4·9α+4α
)

+ 96 es(1+2·9α+4·6α) − 32 es(2α+5·6α+4α) + 32 e
s
(

3α+41+α+2·9α
)

+32 es(3α+2·4α+4·6α) + 56 e
s
(

21+α+3·9α+2·6α
)

− 40 es(2·3α+4·6α+9α),

c6(s) = −208 es(2α+3α+5·6α+9α) − 208 e
s
(

21+α+3·9α+4α+2·6α
)

+ 176 es(2·3α+4·6α+9α+4α)

−208 es(2α+6α+3·9α+3α+2·4α) + 416 es(2α+3α+3·6α+2·9α+4α) − 384 es(1+2·9α+4α+4·6α)

+ 128 e
s
(

1+61+α+9α
)

+ 104 e2 s(9α+2α+2·6α) + 128 es(3·9α+2·3α+3·4α)
−128 es(1+4·9α+3·4α) + 104 e2 s(2α+2·9α+4α) − 24 e2 s(3α+3·6α)
−280 e2 s(3α+6α+9α+4α) + 384 es(1+3·9α+2·4α+2·6α),

c7(s) = −64 e
s
(

21+α+4·9α+3·4α
)

− 64 e
s
(

3·9α+2·3α+41+α)

−128 es(2α+3α+7·6α) + 64 e
s
(

61+α+2·3α+4α
)

+64 e
s
(

21+α+61+α+9α
)

+64 e
s
(

1+4·9α+22+2α
)

+64 es(1+8·6α) + 192 e
s
(

21+α+3·9α+2·6α+2·4α
)

−256 es(1+3·9α+3·4α+2·6α) − 192 es(9α+2·3α+2·4α+4·6α) − 192 e
s
(

2·9α+21+α+4·6α+4α
)

+128 es(2α+6α+3·9α+3α+3·4α) + 384 es(1+2·9α+2·4α+4·6α) + 192 es(2·9α+2·3α+3·4α+2·6α)

−256 e
s
(

1+9α+4α+61+α)

− 384 es(2α+3α+3·6α+2·9α+2·4α) + 384 es(2α+3α+5·6α+9α+4α).
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