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Abstract
Suppression of vibration transmission from working machineries and other sources is
important for the normal operation of a wide range of engineering systems. Traditionally,
viscous dampers with approximately linear characteristics are often used to address the issue.
However, this solution can have the problem of not being able to reduce the vibration
transmission over the whole range of frequencies. In recent studies, the authors have revealed,
by both theoretical analysis and experimental test, that nonlinear damping can be applied to
resolve the problem. The present study is concerned with the exploitation of this beneficial
effect of nonlinear damping to the vibration control of a pitch plane suspension system. A
magneto-rheological (MR) damper based implementation of nonlinear damping is applied to
provide a novel solution to the pitch plane system vibration control problem. Simulation
studies are conducted to demonstrate the effectiveness of the MR damper implementation, and
the beneficial effect of nonlinear damping on the pitch plane suspension system vibration
control.

(Some figures may appear in colour only in the online journal)

1. Introduction

Vibration transmitted from working machinery and other
sources such as propulsion engines, diesel generators, air
compressors, and bumping roads, etc can cause problems in a
wide range of applications [1–5]. In order to address this issue,
viscous dampers with approximately linear characteristics
have been widely used as isolation devices to reduce the
adverse effect of vibration. However, this technique is
sometimes not very effective. It is well known that as the level
of linear viscous damping is increased in order to reduce the
force transmissibility over the resonant frequency region of
a vibrating system, the transmissibility over higher frequency
regions will be increased [6, 7]. This phenomenon produces
a dilemma associated with the design of linear viscously
damped vibration isolation systems.

In order to resolve the problem, the use of nonlinear
damping has been considered since 1970’s [8]. Recently,
the authors introduced a cubic nonlinear damping into
a single-degree of freedom (sdof) vibrating system and
theoretically proved that the cubic nonlinear damping can
reduce the force transmissibility over the system resonant
frequency region, whilst keeping the transmissibility over
other frequency regions almost unaffected [9]. The theoretical
conclusions were then verified by experimental tests on
a vibration isolation mount [10] where electrodynamic
shakers were used to actively implement a desired cubic
nonlinear damping characteristic. In a further study [11],
these conclusions have been extended to multi-degree of
freedom (mdof) lumped parameter systems. The results show
that a cubic nonlinear damping can reduce the system force
transmissibility around all resonant frequency regions but has
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almost no effect on the transmissibility over non-resonant
frequency regions. These studies demonstrate the benefits
and feasibility of exploitation of nonlinear damping to more
effectively address a wide range of vibration control problems.

The pitch plane suspension system is a physical model
of vehicle seat suspension systems. The system has been
widely used by researchers to study the behaviour of vehicles,
particularly off-road vehicles, where the vibration control
objective is to reduce the vertical force transmitted from the
unevenness of terrain, driving speed, loading, and driving
style, etc to the driver seat [12]. This transmitted force
cannot only reduce the working efficiency of drivers but also
has a significant impact on the drivers’ health, as it causes
stress to joint and spine and results in driver backache [12].
Traditionally, this problem was tackled using a passive
solution, e.g. placing an elastomeric rubber between the driver
seat and the frame of a vehicle. This is, however, not very
effective. It was found that drivers can still be subjected to
vibration levels that exceed the ISO exposure limits [13, 14].
To resolve this problem, considerable research studies have
been devoted to developing new methods capable of reducing
the force transmitted to the driver. These efforts have resulted
in the development of semi-active solutions, particularly MR
damper based techniques [15–17].

MR dampers are semi-active damping devices whose
damping characteristic can be changed by a control current.
The control current only changes the damping properties
of MR dampers; there is no energy input into vibrating
systems. However, the relationship between the MR damper
control current and damping force is nonlinear. This makes
the MR damper based vibration control a challenging task. To
overcome this problem, researchers have developed different
feedback control systems to address this issue. For example,
Chang and Zhou [18] used a neural network to emulate the
inverse dynamics of a MR damper, showing that the MR
damper can be commanded to achieve a desired control. In
another study, Zhou and Chang [19] developed an adaptive
fuzzy controller to minimize the difference between the
desired and the actual structural response where a MR damper
was used to implement the control action. Dyke et al [20]
proposed a clipped optimal control based on the acceleration
feedback where a MR damper was applied to realize the
desired optimal control. In most currently available MR
damper based vibration control techniques, including those
proposed for pitch plane suspension systems, the MR damper
was used like an actuator in a standard feedback control
system. In the system, the desired response is compared with
the actual response; the resulting error is fed into a controller
which generates a control signal that drives MR control
current to produce a corresponding MR damper resistance
force to compensate for the effect of vibrations from ambient
disturbances on the system.

Given the dissipative nature of MR damping devices, the
authors think that in many applications, a more effective use
of MR dampers would be to directly use them as dampers
rather than as actuators in a feedback control loop, and exploit
the MR damper control current to achieve a desired damping
characteristic. This idea has already been adopted in [21]

where a feedback control approach was proposed to shape the
force/velocity response of MR dampers as needed. However,
as far as we are aware, there was still no application of
a MR damper with a purposely shaped nonlinear damping
characteristic to literally achieve a desired vibration control.
This is probably because the beneficial effects of nonlinear
damping on vibration control have not been fully realized in
relevant areas.

The present study is concerned with exploiting the
beneficial effects of nonlinear damping revealed in [9–11] to
conduct the vibration control of an experimental pitch plane
suspension system. An MR damper is used in the system to
realize a desired cubic nonlinear damping characteristic via
a feedback control of the MR damper resistance force. This
approach directly uses the MR damper as a damper rather than
an actuator in a feedback control loop to address a vibration
control issue, and provides a novel solution to a well-known
vibration control problem.

In this paper, the mathematical model of the experimental
pitch plane suspension system with fitted MR dampers is
first derived. The nonparametric model proposed by Song
et al in [22] is used to represent the MR dampers in the
model. A feedback control is then introduced to shape the
damping curve of the MR damper fitted under the cabin/seat
of the system to achieve a desired cubic nonlinear damping
characteristic. After that, the performance of the novel
MR damper based pitch plane suspension system vibration
control is investigated by simulation studies. These results
establish the principle and demonstrate the effectiveness of
the proposed novel solution to pitch plane suspension system
vibration control problems, and provide a necessary basis for
future experimental studies.

2. Modelling of a pitch plane suspension system with
fitted MR dampers

2.1. Pitch plane suspension system

The pitch plane suspension system considered in the present
study is shown in figure 1. This system comprises a stiff beam
of mass mt simulating a vehicle frame and a rigid body of
mass ms representing the cabin or seat of the vehicle. The
beam is supported by a MR damper and a parallel spring at
point Pf (front of the vehicle) and Pr (rear of the vehicle),
respectively. The stiffness coefficients of the front and rear
spring are denoted by kf and kr. The rigid body is suspended
at point Ps by a spring with stiffness ks in parallel with another
MR damper ds. The movement of the rigid body is restricted
to be perpendicular to the beam. This setup represents the
practical situation where MR dampers are fitted in the front
and rear suspension systems and underneath the driver seat of
a vehicle.

The system has three degrees of freedom (3dof),
which are the vertical displacement xt(t) of the beam’s
centre-of-gravity (Pg), the beam’s pitch (rotation) angle ϕ(t),
and the relative displacement δs(t) of the rigid body ms in
the direction perpendicular to the beam. When the system
is subjected to a kinetic type excitation wf(t) at the front
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Figure 1. A pitch plane suspension system with fitted MR dampers.

Figure 2. Free-body diagram of the pitch plane suspension system.

suspension, vertical displacements xf(t) and xr(t) are produced
at points Pf and Pr, transmitting a undesired force msẍs(t) to
the seat where

xs(t) = xt(t)+ ls sin(ϕ(t))+ δs(t) cos(ϕ(t)) (1)

represents the absolute displacement of mass ms.
Denote

δr(t) = xt(t)− lr sin(ϕ(t))− wr(t) = xt(t)− lr sin(ϕ(t)) (2)

δf(t) = xt(t)+ lf sin(ϕ(t))− wf(t)

= xt(t)+ lf sin(ϕ(t))− wf(t) (3)

and assume wr(t) = 0 in this study. Additionally, it is assumed
that the rolling frictions in the guiding mechanisms of the
beam’s centre-of-gravity and beam/body suspension-sets are
negligible.

Figure 2 shows the free-body diagram of the system,
where Rs and Rp denote the resultant reactions of the rigid
body and the beam’s centre-of-gravity guiding mechanism,
respectively.

By using the d’Alembert principle, the system dynamic
equations can be obtained as

0 = −mtẍt(t)− kfδf(t)− krδr(t)+ ksδs(t) cos(ϕ(t))− Fdf (t)

− Fdr(t)+ Fds(t) cos(ϕ(t))+ Rs sin(ϕ(t))− mtg

0 = −Jtϕ̈(t)− kflfδf(t) cos(ϕ(t))+ krlrδr(t) cos(ϕ(t))

− lfFdf (t) cos(ϕ(t))+ lrFdr(t) cos(ϕ(t))

+ kslsδs(t)+ lsFds(t)− (hs + δtr + δs(t))Rs

0 = −msẍs(t)− ksδs(t) cos(ϕ(t))− Fds(t) cos(ϕ(t))

− Rs sin(ϕ(t))− msg

0 = −msÿs(t)− ksδs(t) sin(ϕ(t))− Fds(t) sin(ϕ(t))

+ Rs cos(ϕ(t))

0 = −Jsϕ̈(t)+ Rsδtr

(4)

where

ys(t) = (hs + δs(t)) sin(ϕ(t))+ ls(1− cos(ϕ(t))) (5)

Fdf (t),Fdr(t) and Fds(t) represent the resistance forces
produced by the MR dampers df, dr and ds, respectively.

Considering the fact that the amplitude of the external
excitation wf(t) is small compared to the length of the
beam, it can be assumed that sin(ϕ(t)) = 0, cos(ϕ(t)) =
1 in equations (4) and (5), whereas sin(φ(t)) = φ(t)
and cos(ϕ(t)) = 1 in equations (1)–(3). Based on these
assumptions, equations (1)–(5) can be simplified as follows

mtẍt(t) = −kfδf(t)− krδr(t)+ ksδs(t)− Fdf − Fdr + Fds

Jrϕ̈(t) = −kflfδf(t)+ krlrδr(t)− lfFdf + lrFdr

+ kslsδs(t)+ lsFds

msẍs(t) = −ksδs(t)− Fds(t)

(6)

where

δf(t) = xt(t)+ lfφ(t)− wf(t) (7)

δr(t) = xt(t)− lrφ(t) (8)

δs(t) = xs(t)− xt(t)− lsφ(t) (9)

Jr = Jt + Js + msh
2
s . (10)

3
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Figure 3. The nonparametric model of MR dampers used in the present study.

Rewriting equations (6) in a matrix form and taking
equations equations (7)–(10) into account yield:

MẌ(t)+ KX(t) = RWin(t) (11)

where

X(t) = (xt(t), ϕ(t), xs(t))
T, (12)

Win(t) = (Fdf (t),Fdr(t),Fds(t), ẇf(t))
T (13)

M =

mt 0 0

0 Jr 0

0 0 ms

 (14)

K =

kf + kr + ks kflf − krlr + ksls −ks

kflf − krlr + ksls kfl
2
f + krl

2
r + k2

s l2s −ksls
−ks −ksls ks

 (15)

R =

−1 −1 1 kf

−lf lr ls kflf
0 0 −1 0

 . (16)

Equation (11) shows that the pitch plane suspension
system is a 3dof system whose mass and stiffness matrices
are defined by equations (14) and (15), respectively. Win(t)
is an external input vector to the system, which contains a
disturbance input ẇf(t), and the resistance forces Fdf (t), Fdr(t)
and Fds(t) from the three MR dampers.

2.2. Nonparametric model of MR dampers

Generally speaking, there are two methods for modelling MR
dampers. The first is the parametric modelling technique that
represents a MR damper using a series of linear and nonlinear
components such as springs and dampers with specific
parameters. The stress–strain relationship of the Bingham
viscoplastic described by Shames and Cozzarelli [23] is often
used to describe the MR damper behaviour. In this model, the
plastic viscosity is defined as the slope of measured shear
stress versus shear strain rate. In 1996, Spencer et al [24]
proposed an effective parametric model of MR dampers based
on an extension of the Bouc–Wen model, proposed in 1976
by Wen et al [25]. However, this model cannot easily be
solved numerically due to the stiffness of the equation used
to describe MR dampers. The second method is known as the
nonparametric modelling technique. This technique usually
uses an analytical expression to describe the characteristics
of a MR damper based on both experimental data and

MR damper physics. Hsu and Meyer [26] and McClamroch
and Gavin [27] used trigonometric functions to describe
the MR damper characteristics. However their model cannot
capture the saturation of MR dampers’ resistance force.
Recently, Song et al [22] proposed a simple nonparametric
model where the characteristics of a commercial MR damper
are represented by a series of continuous functions and
differential equations, which can be easily solved using
numerical simulation techniques. This nonparametric model
is as shown in figure 3 and is used, in this study, to represent
the dynamics of the MR dampers.

In figure 3, δ̇(t) is the relative velocity across an MR
damper. Sb(δ̇(t)) represents the static nonlinear characteristic
of the MR damper. The amplitude of the static characteristic is
a function of the MR damper current i(t) which is represented
by Amr(i(t)). F(t) is the output of the static nonlinear
characteristic. G(s, i(t)) is the transfer function of a linear
dynamic whose characteristic parameters also change with the
value of the control current i(t).

It can be clearly seen from figure 3 that the MR damper
model consists of a nonlinear static characteristic followed by
a linear dynamic. The linear dynamic represents the hysteresis
loop associated with MR damper physics, and the nonlinear
characteristic represents the MR damper nonlinearity.

To represent the nonlinear characteristic, Song et al [22]
used the following equations:

F(t) = Amr(i(t))Sb(δ̇(t)) (17)

where

Amr(i(t)) =
r∑

j=0

Aji
j(t) (18)

is a polynomial function of the MR damper control current
i(t), and Sb(δ̇(t)) is a function of the form:

Sb(δ̇(t)) = [(b0 + b1|δ̇(t)− V0|)
b2(δ̇(t)−V0)

− (b0 + b1|δ̇(t)− V0|)
−b2(δ̇(t)−V0)]

× [bb2(δ̇(t)−V0)
0 + b−b2(δ̇(t)−V0)

0 ]
−1 (19)

where b0 > 1, b1 > 0, b2 > 0 and V0 are all constants.
To describe the linear dynamics G(s, i(t)), Song et al [22]

used a first order linear system as described by:

ż(t)= − (e0 + e1i(t)+ e2i2(t))z(t)+ e3F(t) (20)

Fd(t) = (e0 + e1i(t)+ e2i2(t))z(t)+ e4F(t) (21)

4
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Figure 4. An illustration of conventional MR damper based vibration control.

Table 1. The estimated characteristic parameters of a commercial
MR damper.

Parameter Value Parameter Value Parameter Value

A0 164.8 e0 299.7733 b0 5.8646
A1 1316.5 e1 −210.320 b1 0.006
A2 1407.8 e2 566.0 b2 0.2536
A3 −1562.8 e3 1 V0 0.6248
A4 388.8 e4 0

where ej, j = 0, . . . , 4 are constants determined by the damper
characteristics.

Song et al [22] also showed that, using a mean square
error based optimization approach, the values of parameters
in equations (17)–(21) of a commercial MR damper can be
determined. Table 1 shows the parameter estimation results
Song et al [22] have obtained for a commercial MR damper.

In this case, G(s, i(t)) can be obtained from equa-
tions (20) and (21) as:

G(s, i(t)) =
e0 + e1i(t)+ e2i(t)2

(s+ e0 + e1i(t)+ e2i(t)2)
(22)

Amr(i(t)) =
4∑

j=0

Aji
j(t) = (A0 + A1i(t)+ A2i2(t)

+ A3i3(t)+ A4i4(t)) (23)

and the nonparametric model of the MR damper, which
represents a dynamic relationship between the MR damper
damping force and the control current, can be simplified as:

Ḟd(t)+ e0Fd(t)

(
1+

e1

e0
i(t)+

e2

e0
i2(t)

)
= A0e0Sb(δ̇(t))

(
1+

e1

e0
i(t)+

e2

e0
i2(t)

)
×

(
1+

A1

A0
i(t)+

A2

A0
i2(t)+

A3

A0
i3(t)+

A4

A0
i4(t)

)
. (24)

In this study, equation (24) will be used to describe the
dynamics of the three MR dampers, df, ds, and dr. The
resistance force and control current of the three MR dampers

will be denoted by Fdf (t)if(t),Fds(t)is(t), and Fdr(t)ir(t),
respectively.

3. MR damper based implementation of nonlinear
damping for vibration control of the pitch plane
suspension system

For most currently available MR damper based vibration
control systems, MR dampers are used as actuators in a
feedback control loop to produce a resistance force to achieve
a desired vibrating system response. Figure 4 shows an
illustration of how this widely adopted approach is used to
suppress the transmission of vibration from a source on the top
to the supporting base of a single degree of freedom structural
system. In figure 4, Fin(t) and Fout(t) represent the vibration
input, and the system response: the net force from both the
spring and damper, respectively. x(t) is the displacement of
mass m. k represents the stiffness of the spring. i(t),V(t), and
F∗out(t) are the MR damper control current, MR damper power
amplifier input voltage, and the desired system force response,
respectively.

However, in the present study, the use of the MR dampers
follows a new approach which is totally different from the
conventional MR damper based vibration control in figure 4.
This approach is to use an MR damper as a viscous damper
rather than an actuator in a feedback control loop.

First, fixed control currents if0 and ir0 are applied to MR
dampers df and dr, respectively. Consequently, according to
the MR damper model equation (24), the resistance forces
Fdf (t) and Fdr(t) of the MR dampers can be obtained from
the solution to the differential equations

Ḟdf (t)+ e0Fdf (t)

(
1+

e1

e0
if0 +

e2

e0
i2f0

)
= A0e0Sb(δ̇f(t))

(
1+

e1

e0
if0 +

e2

e0
i2f0

)
×

(
1+

A1

A0
if0 +

A2

A0
i2f0 +

A3

A0
i3f0 +

A4

A0
i4f0

)
(25)
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Figure 5. An illustration of the new MR damper based vibration control. (a) The system configuration for the case of a sdof system. (b) The
equivalent structural system.

and

Ḟdr(t)+ e0Fdr(t)

(
1+

e1

e0
ir0 +

e2

e0
i2r0

)
= A0e0Sb(δ̇r(t))

(
1+

e1

e0
ir0 +

e2

e0
i2r0

)
×

(
1+

A1

A0
ir0 +

A2

A0
i2r0 +

A3

A0
i3r0 +

A4

A0
i4r0

)
(26)

respectively.
Secondly, a feedback control is introduced for the

resistance force of the MR damper ds to achieve the
desired nonlinear damping characteristic. This is a new MR
damper based vibration control method. Figure 5(a) shows an
illustration of how this new method can be used to address
the same vibration control problem in figure 4. Figure 5(b)
shows a vibrating system which is equivalent to the system in

figure 5(a) where fMR(t) is the MR damper resistance force
and f ∗ is a desired damping characteristic to be implemented.
Clearly, as illustrated in figure 5(b), the objective of the new
control is to make the MR damper behave like a viscous
damper with a desired damping characteristic f ∗(ẋ(t)). The
new method combines the feedback control with MR damper
physics so that a guaranteed stability and robustness for the
overall system can be readily achieved together with a desired
performance.

In this study, the new method is used in the multi-degree
of freedom pitch plane suspension system described in
section 2.1 and applied to an MR damper ds to implement a
cubic nonlinear damping characteristic. That is, to control the
MR damper resistance force to make the force approach to the
reference

F∗ds(t) = asδ̇
3
s (t). (27)

6
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Figure 6. The feedback control system for MR damper ds.

The objective is to exploit the beneficial effects of
nonlinear damping, which have been revealed in previous
studies [9–11], to conduct an effective semi-active vibration
control for the system. This is, as far as we are aware, a
totally new solution to the pitch plane suspension system
vibration control problem. For this purpose, the feedback
control system as shown in figure 6 is applied to control the
resistance force of the MR damper ds. From figure 6, it is
known that the control current is(t) for the MR damper ds is
determined by a PI control law as follows:

is(t) = Kc[KPēs(t)+ Kl

∫ t

0
ēs(t) dt] (28)

where Kc is the gain of the MR damper control circuit, Kp
and KI are the proportional and integration gains of the PI
controller,

ēs(t) = sgn(F∗ds(t))es(t) (29)

est = F∗ds(t)− Fds(t) (30)

where Fds(t) is the resistance force of the MR damper
ds which can be described using the MR damper model
equation (24) as

Ḟds(t)+ e0Fds(t)

(
1+

e1

e0
is(t)+

e2

e0
i2s (t)

)
= A0e0Sb(δ̇s(t))

(
1+

e1

e0
is(t)+

e2

e0
i2s (t)

)
×

(
1+

A1

A0
is(t)+

A2

A0
i2s (t)+

A3

A0
i3s (t)+

A4

A0
i4s (t)

)
. (31)

Equations (27)–(31) provide a comprehensive description
of the resistance force of MR damper ds.

It is worth pointing out that the PI control law
for the control current of MR damper ds described by
equations (28)–(30) is different from a standard PI controller
in that a sign function of the reference input has to be applied
to the error signal before a standard PI control law can be
applied. This is because of the physical relationship between
the MR damper resistance force and control current. A more
detailed explanation of the necessity of introducing this sign
function is provided in the appendix.

Considering the dynamic behaviours of MR dampers
df, dr, and ds, described by equations (25), (26) and (27)–(31),
it is known that under the above described new approach to the
MR damper based vibration control, in the steady state of the
pitch plane suspension system,

Fds(t) ≈ asδ̇
3(t) (32)

Fdf (t) ≈ afδ̇f(t) (33)

Fdr(t) ≈ arδ̇r(t) (34)

where af and ar are the equivalent linear damping
characteristic parameters achieved by applying a fixed control
current to MR dampers df and dr, respectively. Note
that equations (33) and (34) are a considerably simplified
representation of MR dampers df and dr. The simplification
is made to relate the currently studied pitch plane suspension
system to the nonlinearly damped mdof systems that have
been investigated in [11].

For this purpose, substituting equations (32)–(34) into

Win(t) = (Fdf (t),Fdr(t),Fds(t), ẇf(t))
T

for Fds(t),Fdf (t),Fdr(t), respectively, in equation (11) yields,
after some manipulations, an overall description for the pitch
plane suspension system as

MẌ(t)+ CẊ(t)+ KX(t)+ Dasδ̇
3
s (t) = RUU(t) (35)

where

U(t) = (wf(t), ẇf(t), ẅf(t))
T (36)

C =

af + ar aflf − arlr 0

aflf − arlr afl
2
f
+ arl

2
r 0

0 0 0

 (37)

D = [−1 −ls 1]T (38)

RU =

kf af 0

kflf aflf 0

0 0 0

 . (39)

Clearly, in this case, the pitch suspension system
can be approximated by a 3dof system with a cubic
nonlinear damping characteristic. Therefore, it is expected

7
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Table 2. The mass and geometrical parameters of the pitch
suspension system used in the simulation studies.

Parameter Designation Value

Distance (Pg, Pf) lf 0.700 m
Distance (Pg, Pr) lr 0.700 m
Distance (Pg, Ps) ls 0.525 m
Mean distance (Pgs, Ps) hs 0.430 m
Length of the beam L 1.500 m
Height of the beam a 0.044 m
Width of the beam b 0.147 m
Mass of the beam (including
masses of the elements
permanently connected with
the beam)

mt 102.13 kg

Moment of inertia of the
beam (including the elements
permanently connected with
the beam) with regard to its
pitch axis passing through Pg

Jt 19.14 kg m−2

Front (rear) suspension-set
spring stiffness

kf (kr) 35 861 N m−1

Mass of the body suspended
above the beam

ms 35.09 kg

Moment of inertia of the
body with regard to its pitch
axis passing through Pgs

Js 0.23 kg m−2

Body suspension-set spring
stiffness

ks 14 434 N m−1

that the beneficial effects of nonlinear viscous damping on
vibration suppression that have been revealed in the previous
studies [9–11] would be achieved by the MR damper based
implementation of nonlinear damping in the system.

4. Simulation studies

In this section, the effectiveness of the MR damper based
implementation of nonlinear damping and the benefits of this
new approach for the pitch plane suspension system vibration
control are demonstrated by numerical simulation studies. In
the studies, equation (11) is used to generate the dynamic
response of the pitch plane suspension system. The resistance
forces Fdf (t),Fdr(t), and Fds(t) of MR dampers df, dr and
ds are determined by equations (25), (26) and (28)–(31),
respectively. The mass and geometrical parameters of the
pitch suspension system used for the studies are listed in
table 2.

4.1. The effectiveness of the MR damper based
implementation of nonlinear damping

In order to demonstrate the effectiveness of using the feedback
control shown in figure 6 to achieve a desired nonlinear
damping characteristic, a sinusoidal displacement excitation
wf(t) with amplitude 70 mm is applied to the pitch plane
suspension system model equation (11). The desired nonlinear
damping characteristic for MR damper ds is defined by
equation (27) with as = 220 N (s m−1)3, that is,

F∗ds(t) = 220δ̇3
s (t). (40)

Figure 7. A comparison between the desired and actual resistance
forces of MR damper ds when the pitch plane suspension system is
excited by a 2.5 Hz sinusoidal input. Solid (red): actual force;
dashed (blue): desired force.

Figure 8. A comparison between the desired and actual resistance
forces of MR damper ds when the pitch plane suspension system is
excited at a 15 Hz sinusoidal input. Solid (red): actual force; dashed
(blue): desired force.

Two cases were investigated by simulating the pitch
plane suspension system where the driving frequencies of the
sinusoidal excitation wf(t) are 2.5 Hz and 15 Hz, respectively.
For MR dampers df and dr, the control current was fixed
at ir0 = if0 = 0.25 A. The PI controller parameters in the
control system for MR damper ds were determined as KP =

1.3 × 10−3 and KI = 2 in this study. Figures 7 and 8 show
a comparison between the desired and actual resistance force
of MR damper ds in the 2.5 Hz and 15 Hz external excitation
cases, respectively.

It can be observed from figures 7 and 8 that the actual
forces track the desired results very well in the two different
driving frequency cases. On the other hand, figures 9 and
10 show that the MR damper control current in the two
excitation cases is all in the range of [−0.3 A, 0.3 A], which
is within the normal operating range of [−2 A, 2 A] of
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Figure 9. Current is supplied to MR damper ds when the pitch
plane suspension system is excited by a 2.5 Hz sinusoidal input.

Figure 10. Current is supplied to MR damper ds when the pitch
plane suspension system is excited by a 15 Hz sinusoidal input.

MR damper currents. These results clearly demonstrate the
effectiveness of the MR damper based implementation of
nonlinear damping.

4.2. The beneficial effects of nonlinear damping on the pitch
plane suspension system vibration control

As has been mentioned above, in the pitch plane suspension
system considered in this study, MR dampers df and dr are
used to approximately implement two linear dampers and MR
damper ds is used to implement a cubic nonlinear damping
characteristic. The main objective of the simulation studies
is to demonstrate the beneficial effects of a cubic nonlinear
damping implemented by using MR damper ds on the pitch
plane suspension system vibration control.

For this purpose, a sinusoidal displacement excitation
wf(t) with amplitude 70 mm was applied to the pitch plane
suspension system model equation (11) to generate the
acceleration response ẍs(t) of the passenger seat/cabin to the
sinusoidal input at each of the following discrete frequencies

2, 2.5, 3, 4, 4.6, 5, 6, 6.28, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 Hz.

Figure 11. Acceleration transmissibility of the pitch plane
suspension system under three different fittings of MR dampers.
Solid (red): MR damper fitting (a); dashed (blue): MR damper
fitting (b); circle (brown): MR damper fitting (c).

From the system responses and corresponding input
excitations, the acceleration transmissibility as defined by

T(j�) =

∣∣∣∣ (j�)2Xs(j�)

(j�)2Wf(j�)

∣∣∣∣ = ∣∣∣∣ Xs(j�)
Wf(j�)

∣∣∣∣ (41)

and the acceleration RMS transmissibility as defined by

TRMS(�) =

√∫ tfin
0 [(ẍs(t, �))]2 dt√∫ tfin
0 [(ẅf(t, �))]2 dt

(42)

can be evaluated. In equations (41) and (42), Xs(j�) and
Wf(j�) are the Fourier spectra of xs(t) and wf(t) at frequency
�, respectively; tfin denotes the total simulation time; and
ẍs(t, �) and ẅf(t, �) represent the time history of ẍs(t) and
ẅf(t) in the case when wf(t) is a sinusoidal excitation with
frequency �.

In the simulation studies, T(j�) was first evaluated over
the above range of discrete frequencies under the following
three different fittings of MR dampers in the system:

(a) only MR damper ds is fitted in the system, but its control
current is set to is(t) = 0.

(b) MR dampers df, dr, and ds are all fitted in the system, but
the control currents for the three MR dampers are all set
to zero, that is, if(t) = ir(t) = is(t) = 0.

(c) MR dampers df, dr, and ds are all fitted in the system,
the control currents for the MR dampers df and dr are
set to if(t) = ir(t) = 0.25 A but the control current for
MR damper ds is set to is = 0. The results are shown
in figure 11, which show the system’s vibration isolation
performance in three different cases where MR damper
ds has not been used to implement a desired linear or
nonlinear damping characteristic. From the results, it can
be found that, under MR damper fitting (a), the pitch plane
suspension system behaves like a typical 3dof system
with its frequency response having three resonant peaks

9
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at frequencies 2.5 Hz, 4.6 Hz and 6.28 Hz, respectively.
However, under MR damper fitting (b) where, compared
with MR damper fitting (a), two more MR dampers are
fitted into the system, the resonant peaks are reduced by
the inherent damping effects of the MR dampers, although
zero control current is applied to the MR dampers.
Moreover, it can be observed that under MR damper
fitting (c) where a fixed control current is applied to MR
dampers df and dr, a more significant damping effect is
produced such that the second and third resonant peaks of
the system become almost invisible.

Secondly, a desired cubic nonlinear damping and its
equivalent linear damping were implemented by MR
damper ds, using the damping force feedback control
system in figure 6 to demonstrate the beneficial effects
of nonlinear damping on the system vibration control.
By equivalent linear damping, we mean that the linear
damping can achieve the same reduction of the first
resonant peak as can be achieved by a desired cubic
nonlinear damping. Two cases were investigated which
are:

(d) only MR damper ds is fitted in the system to implement a
desired cubic nonlinear damping and its equivalent linear
damping, respectively.

(e) MR damper ds is used to implement a desired cubic
nonlinear damping and its equivalent linear damping,
respectively, and MR dampers df, and dr are fitted in
the system with control currents set to be if(t) = ir(t) =
0.25 A.

In both cases, the MR damping force controller
parameters are the same as used in section 4.1.

In case (d), the desired nonlinear and its equivalent linear
damping characteristics were specified to be

F∗ds(t) = 1100δ̇3
s (t) (43)

and

F∗ds(t) = 1150δ̇s, (44)

respectively. The two damping characteristics are equivalent
in the sense that they can both reduce the first resonant peak
of the system to about the same level. Figure 12 shows a
comparison of the system acceleration transmissibility under
the following three situations in case (d):

• no desired damping is implemented by MR damper ds
(is=0);

• desired nonlinear damping (43) is implemented by ds; and

• equivalent linear damping (44) is implemented by ds.

From the comparison, the advantage of the desired
nonlinear damping equation (43) over the equivalent linear
damping equation (44) can be clearly observed. Basically,
compared with the case of introduction of an equivalent linear
damping, a significantly reduced acceleration transmissibility
can be achieved over the isolation frequency range by the
desired nonlinear damping.

Figure 12. Comparison of the system acceleration transmissibility
in case (d). Red solid: no implementation of desired damping by
MR damper ds; green crossed: implementation of desired nonlinear
damping (43) by ds; blue dashed: implementation of equivalent
linear damping (44) by ds.

In case (e), the desired nonlinear and its equivalent linear
damping characteristics are first specified to be

F∗ds(t) = 160δ̇3
s (t) (45)

and

F∗ds(t) = 460δ̇3
s (t), (46)

respectively. The comparison of the system acceleration
transmissibility under the following three situations:

• no desired damping is implemented by MR damper ds
(is = 0);
• desired nonlinear damping (45) is implemented by ds; and
• equivalent linear damping (46) is implemented by ds.

was made; the results are shown in figure 13.
Then, the desired nonlinear and its equivalent linear

damping characteristics are specified to be

F∗ds(t) = 220δ̇3
s (t) (47)

and

F∗ds(t) = 526δ̇3
s (t), (48)

respectively, to compare the system acceleration transmissi-
bility under the following three situations:

• no desired damping is implemented by MR damper ds
(is = 0);
• desired nonlinear damping (47) is implemented by ds; and
• equivalent linear damping (48) is implemented by ds.

The results are shown in figure 14.
From the results in figures 13 and 14, the same beneficial

effects of nonlinear damping on the system vibration isolation
as shown in figure 12 can be clearly observed. That is,
although a similar vibration control level can be reached over
the resonant frequency range by both a desired cubic nonlinear

10
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Figure 13. Comparison of the system acceleration transmissibility
in case (e) under the first choice of the desired nonlinear and its
equivalent linear damping characteristics. Red solid: no
implementation of desired damping by MR damper ds; blue dashed:
implementation of desired nonlinear damping (45) by ds; brown
circle: implementation of equivalent linear damping (46) by ds.
Black square: implementation of an equivalent on/off skyhook
control where ie = 0.2 A.

Figure 14. Comparison of the system acceleration transmissibility
in case (e) under the second choice of the desired nonlinear and its
equivalent linear damping characteristics. Red solid: no
implementation of desired damping by MR damper ds; green star:
implementation of desired cubic nonlinear damping (47) by ds; pink
square: implementation of equivalent linear damping (48) by ds.
black circle: implementation of an equivalent on/off skyhook
control where ie = 0.24 A.

damping and its equivalent linear damping, much better
vibration isolation can be obtained by the nonlinear damping
over isolation frequency ranges. In addition, a comparison of
the results in figures 13 and 14 indicates that although the
increase of nonlinear damping or its equivalent linear damping
can all improve the system vibration control performance
over the resonant frequency region, nonlinear damping can
always achieve a better overall vibration control performance.
This is because over isolation frequency ranges the system

Figure 15. Comparison of the system RMS acceleration
transmissibility in case (d). Red solid: no implementation of desired
damping by MR damper ds; green crossed: implementation of
desired nonlinear damping (43) by ds; blue dashed: implementation
of equivalent linear damping (44) by ds.

acceleration transmissibility under nonlinear damping is
always less than the transmissibility under linear damping.

The conclusions reached from analysis of the results in
figures 12–14 are all consistent with the theoretical analyses
in the previous studies for both single and multi-degree
of freedom systems. Therefore, the beneficial effects of
nonlinear damping on the vibration control of the pitch
plane suspension system has been demonstrated by the above
simulation studies.

It is worth pointing out that the acceleration transmis-
sibility used to evaluate the performance of the pitch plane
suspension as shown in figures 12–14 is, rigorously speaking,
a concept of linear systems where a sinusoidal input at
a frequency will produce a sinusoidal output at the same
frequency. However, the introduction of nonlinear damping
and the inherent nonlinear property of MR dampers imply
that the response of the pitch plane suspension system to
a single frequency sinusoidal input may contain more than
one frequency component. Considering this, the acceleration
RMS transmissibility (42) was also evaluated for each of the
cases analysed above. The objective is to perform a more
comprehensive analysis to confirm the conclusions that have
been reached above using the acceleration transmissibility
concept. The acceleration RMS transmissibility concept
takes the system response to a sinusoidal input over all
possible output frequencies into account so as to be able to
accommodate the possible impacts of harmonics etc on the
analysis results.

The acceleration RMS transmissibility analysis results
are shown in figures 15–17, which correspond to the
acceleration transmissibility results in figures 12–14. From
the acceleration RMS transmissibility analyses, it is obvious
that the same conclusions regarding the beneficial effects
of nonlinear damping on the system vibration control
can be reached. The similarity between the acceleration
transmissibility and its corresponding acceleration RMS

11
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Figure 16. Comparison of the system RMS acceleration
transmissibility in case (e) under the first choice of the desired
nonlinear and its equivalent linear damping characteristics. Red
solid: no implementation of desired damping by MR damper ds;
blue dashed: implementation of desired nonlinear damping (45) by
ds; brown star: implementation of equivalent linear damping (46) by
ds; black square: implementation of an equivalent on/off skyhook
control with ie = 0.2 A.

transmissibility indicates that the harmonics in the system
response that can be induced by system nonlinearities
basically have no significant effect on the vibration isolation
performance of the pitch plane suspension system.

Many MR damper based control methods are available
for vehicle suspension systems. Among these, the on/off
skyhook control is one of the most widely used techniques
(Cebon et al [28], Simon and Ahmadian [29]). In order to
compare the performances of the new nonlinear damping
approach and the on/off skyhook control, the on/off skyhook
control was applied to the pitch plane control system in all the
cases of simulation studies considered above, where the MR
damper control current was determined as follows

is =

{
ie if ẋs(ẋs − ẋf) ≥ 0

0 if ẋs(ẋs − ẋ) < 0

Here ie is the MR damper current, which on/off skyhook
control uses to achieve the same vibration suppression as
can be achieved by an equivalent linear damper at the first
resonance frequency. The results are also shown in figures
13, 14, 16, and 17. From all the results in figures 13, 14
and 16, 17, it can be clearly observed that, although the
on/off skyhook control performs better than the equivalent
linear viscous damping over the isolation frequency range,
the performance of the on/off skyhook control is much worse
than that which can be achieved by an equivalent nonlinear
damping over the same frequency range. This demonstrates
that the nonlinear damping provides better vibration isolation
performances for the pitch plane suspension system. It should
be noted that if is > ie is used when ẋs(ẋs − ẋf) ≥ 0 in the
on/off skyhook control, then compared to the case of is = ie,
the system performance will become better over a resonant
frequency range but worse over an isolation frequency range.

Figure 17. Comparison of the system RMS acceleration
transmissibility in case (e) under the second choice of the desired
nonlinear and its equivalent linear damping characteristics. Red
solid: no implementation of desired damping by MR damper ds;
green star: implementation of desired nonlinear damping (47) by ds;
pink square: implementation of equivalent linear damping (48) by
ds; black circle: implementation of an equivalent on/off skyhook
control with ie = 0.24 A.

It should also be emphasized that in the above simulation
studies, all the desired nonlinear damping characteristics were
not directly used in the system but implemented using MR
damper ds and an associated feedback control system as
shown in figure 6. Consequently, it is the effectiveness of this
MR damper based implementation of nonlinear damping that
ensures that the beneficial effects of nonlinear damping on
the vibration control of the pitch plane suspension system can
literally be realized.

Finally it is worth mentioning that although only
sinusoidal excitations are considered in the present study, the
nonlinear damping approach can also achieve better vibration
control performance in more general loading conditions. The
idea is to use a new concept called output frequency response
function (OFRF) (Lang et al [30]) to design the nonlinear
damping under the considered loading conditions to achieve
a required performance. More details can be found in a recent
study by Guo and Lang [31].

5. Conclusions

In previous studies, the authors have theoretically proved
that the introduction of a cubic nonlinear viscous damping
into single and multi-degree of freedom systems can produce
the ideal vibration isolation such that the system force
transmissibility over resonant frequency regions is modified,
but the transmissibility over the isolation frequency regions
remains unaffected. In the present study, this beneficial
effect of cubic nonlinear viscous damping has been exploited
to provide a novel solution to the vibration control of a
pitch suspension system. An MR damper has been fitted
under the seat/cabin of the pitch plane suspension system;
A feedback control is applied to shape the MR damper
force/velocity characteristic as a cubic function to implement
the desired cubic nonlinear damping characteristic. In contrast
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Figure A.1. An illustration of why a sign block is needed for the
MR damper PI controller.

to the conventional way of using MR dampers, this study
uses MR dampers as dampers rather than actuators in
a feedback control loop. Simulation studies have been
conducted. The results demonstrate both the effectiveness of
the MR damper based implementation of nonlinear damping,
and the beneficial effects of nonlinear damping on the pitch
plane suspension system vibration control. Based on these,
experimental studies on the pitch plane suspension system
will be conducted and the results will be reported in a
future publication. In the experimental studies, the same
setup of an experimental pitch plane suspension system as
described in Sapinski and Rosol [32] will be used, and the new
nonlinear damping approach will be applied to demonstrate its
performance under different experimental conditions.

Acknowledgments

The authors gratefully acknowledge the support of the Royal
Society and Engineering and Physical Science Research
Council, UK for this work.

Appendix. An explanation of why a sign block is
needed for the MR damper PI controller

In order to explain why a sign block is needed for the MR
damper PI controller as shown in figure 6, consider two
scenarios, which are illustrated figure A.1.

In scenario 1, the relative velocity across MR damper ds
is δ̇a > 0. The difference between the desired and actual MR
damper resistance forces, i.e. control error e(t) = F∗a−Fa < 0.
In this case, the output of the sign block is 1, ē(t) = e(t) =
F∗a − Fa < 0. Consequently, the PI controller will reduce
the MR damper control current from i1 to i2 so that the MR
damper resistance force Fa can approach the desired result F∗a .

In scenario 2, the relative velocity across MR damper
ds is δ̇b < 0. But, the control error e(t) = F∗b − Fb > 0 . In
this case, the output of the sign block is −1, ē(t) = −e(t) =
−F∗b + Fb < 0 . Consequently, the PI controller will again
reduce the MR damper control current from i1 to i2 so that
the MR damper resistance force Fb can approach the desired
result F∗b . Clearly, in this scenario, without the sign block, the
situation will be just the opposite.
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