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Abstract—In this letter, we investigate the polarization coher-
ence tomography technique and propose a new function expansion
to reconstruct the vertical profile function. Instead of generating
profile in Fourier–Legendre series, we deduce orthogonal func-
tions on [−1, 1] by weight of z2, which can increase the highest
polynomial order and decrease the condition number of the in-
version matrix, indicating that the inversion in the new expansion
is more stable and less susceptible to noise. Finally, we apply the
technique to simulated dual-baseline data and Chinese X-band
single-baseline polarimetric synthetic aperture radar interferom-
etry data to demonstrate its validity and robustness.

Index Terms—Function expansion, polarization coherence to-
mography (PCT), vertical profile function.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) interfer-
ometry (POLinSAR) [1] is a new branch of radar interfer-

ometry which combines radar polarimetry and interferometry:
it allows locating scattering mechanisms as functions of height.
It has been proved that the known applications of POLinSAR
are forest height and biomass as well as emerging applications
in agriculture. New 3-D techniques have been developed along
with the multibaseline interferometric measurements. One of
the simplest new 3-D methods is polarization coherence to-
mography (PCT) proposed by Cloude in 2006 [2]. Assuming
that vegetation height and underlying surface topography have
been obtained, after normalizing the range of the integral of
the volume scattering complex coherence formulation, profile
coefficients of a specific polarization channel can be estimated
by constructing identity relations between complex coherence
and expansion function in Fourier–Legendre (F–L) orthogonal
polynomials. Then, the vertical profile function can be repre-
sented by the coefficients and F–L polynomials. Cloude [2] has
shown that, even for one baseline, the general shape of single-
layered volume can be calculated.

Tomography reduces to a solution of a set of linear equations
for the unknown coefficients using PCT technology. As for
single-baseline data, only two unknown coefficients can be
obtained in F–L series; that is to say, the highest order of
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polynomials is two, which limits the approximation resolution.
In order to achieve higher accuracy of the estimation, we must
employ multibaseline data, however, which is expensive and
difficult to obtain. While dual-baseline data can be used to
introduce another two F–L polynomials, their poor condition
that defines the stability of inversion and sensitivity to noise
confines the application. Therefore, whether we can reduce the
condition number (CN) of the inversion matrix is critical to
the final results and according to the dual-baseline scenario
in [3], a regularization technique has been proposed at the
cost of loss of precision. In addition, F–L polynomials are
orthogonal on [−1, 1] by weight of one. In practice, for various-
two-layer-model mixed-surface-plus-volume cases, neverthe-
less, scattering amplitude is stronger on the top of canopy,
corresponding to volume scattering, and near the ground, corre-
sponding to surface–canopy dihedral response. For the several
reasons above, we investigate the feasibility of reconstructing
the vertical profile function in a new orthogonal family in this
letter.

This letter is organized as follows. We first review the PCT
method proposed by Cloude [2]–[4] in Section II. Then, the
PCT with a new function expansion is proposed in Section III.
In Section IV, the validity of this expansion is demonstrated
using simulated data; furthermore, we evaluate the stability of
this approximation approach and compare it with the results
in the F–L series by Cloude in simulated and real scenarios.
Finally, some conclusions are given in Section V.

II. PCT IN F–L SERIES

The main observable in PCT is the complex interferometric
coherence

γ̃ = eikzz0

hv∫
0

f(z)eikzz dz

hv∫
0

f(z) dz

= eiϕ0

hv∫
0

f(z)eikzz dz

hv∫
0

f(z) dz

(1)

where z0 is the position of the bottom of the scattering layer,
ϕ0 is the topographic phase, and f(z) is the vertical structure
function.

This coherence depends on vertical structure variations in the
scene due, for example, to the presence of vegetation cover
[1]–[3], and we can use this dependence to devise a method
for 3-D imaging. To demonstrate this, Cloude defined a vertical
structure function f(z), which represents the vertical variation
of microwave scattering at a point in the 2-D radar image. The
reconstruction of the function f(z) from γ̃ at each point in
the image is then termed coherence tomography. To proceed,
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assuming that the function f(z) is bounded (by the underlying
surface and top of the vegetation layer, for example) and so can
be expanded efficiently in terms of a set of simpler functions,
the F–L series is shown in

f(z′)=
∑
n

anPn(z
′), an=

2n+1

2

1∫
−1

f(z′)Pn(z
′) dz′ (2)

where P (z) represents the standard Legendre polynomials,
with

P0(z) = 1 P1(z) = z P2(z) =
1

2
(3z2 − 1)

P3(z) =
1

2
(5z3 − 3z) P4(z) =

1

8
(35z4 − 30z2 + 3). (3)

It is shown that increasing the number of baselines leads to
more terms in the series and, hence, to a higher resolution.

The reconstruction of coherence tomography is inevitably
subject to the effect of noise, such as temporal decorrelation,
statistical fluctuations in coherence estimation, and coherence
bias with limited data samples. Therefore, the sensitivity to
noise is a key point that we should consider. In 2007, Cloude
improved the solution method by filtering the singular matrix
in the dual-baseline case [3] to obtain the stability by reducing
the precision of estimation.

III. PCT USING NEW FUNCTION EXPANSION

It can be noted in Cloude’s method [3] that the strong
scattering of the forest lies in the canopy and ground surface,
corresponding to volume scattering and ground–trunk dihedral
scattering mechanisms, respectively. In order to increase the
weights of the canopy and the ground–trunk scattering, after
converting the transformation range of the vertical height from
[0, hv] to [−1, 1], we introduce the orthogonal series by weight
of z2 for expansion, where z represents the vertical position.
Therefore, compared with F–L expansion by weight of one, the
simulated scattering profile structure in the new expansion is
more in line with physical mechanism.

In our method, the first few polynomials P ′(z) are shown as

P ′
0(z)=1 P ′

1(z)=z P ′
2(z)=

1

2
(5z2−3)

P ′
3(z)=

1

2
(7z3−5z) P ′

4(z)=
1

8
(63z4−70z2+15). (4)

To retrieve the vertical structure f(z) in the functions in (4),
we first normalize the range of the integral by a change of
variable z′ = (2z/hv)− 1; the results are shown in

hv∫
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f(z)eikzz dz =
hv

2
ei

kzhv
2
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g(z′)ei
kzhv

2 z′
dz′
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2
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Instead of expanding the function g(z′) directly into
Legendre polynomials [2], [3], we assume that g(z′)=q(z′)z′2.

Fig. 1. Plot of basis functions of two expansions.

Since the function g(z′) to be reconstructed is nonnegative,
the function q(z′) is also nonnegative, and then, we rescale
the range q(z′) = 1 + a(z′) so that a(z′) ≥ −1. Now, we can
replace the function a(z′) with the orthogonal series on [−1, 1]
as a(z′) =

∑
n anP

′
n(z

′). Then, the real polynomials used to
approximate can be written as Qn(z) = z2P ′

n(z), and

1∫
−1

P 2
n(z) dz >

1∫
−1

Q2
n(z) dz. (6)

That is, the squared integral of our new function is less than
that of the Legendre function. Fig. 1 shows the comparison of
basis functions between two expansions, and we can see that
our new function is more compact in the vertical direction. We
can conclude that the same variation of the profile coefficient is
less affected on the profile function expanded by our method,
i.e., the new expansion method has lower sensitivity.

By expanding series and collecting terms, γ̃ can be simpli-
fied as

γ̃−iϕ0e−ikv

= γ̃k =

1∫
−1

(1 + a0P
′
0(z

′) + a1P
′
1(z

′) + · · ·) z′2eikvz
′
dz′

1∫
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(1 + a0P ′
0(z

′)) z′2eikvz′dz′

=
(1 + a0)f0 + a1f1 + a2f2 + · · ·+ anfn

(1 + a0)

= f0 + a10f1 + a20f2 + · · ·+ an0fn (7)

where kv = hvkz/2. Note that the denominator value is sim-
plified for orthogonality of high-order polynomials so that it
becomes a constant. Then, we can normalize the unknown
coefficients by a zero-order term

an0 =
an

1 + a0
. (8)

The evaluation of each component involves the determina-
tion of the function fi; we give explicit forms of these functions
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up to four orders in
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It can be noted as in the original PCT formulation [2] that
the even index functions are real while odd functions are
purely imaginary, and the functions vary only with the single
parameter kv .

If we can calculate the unknown coefficients an0 by inverting
this relation, the function of relative scattering density can be
obtained as

ĝ(z′) = z′2(1 + a10P
′
1(z

′) + a20P
′
2(z

′) + · · ·+ an0P
′
n(z

′),
−1 ≤ z′ ≤ 1. (10)

We can also change the variable range to the interval [0, hv];
then, it is written as

f(z)=

(
2z

hv
−1

)2(
1+a10P

′
1

(
2z

hv
−1

)
+· · ·

+ an0P
′
n

(
2z
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−1

))
, 0≤z≤hv. (11)

Before estimation of the unknown parameters an0, we must
have a priori knowledge of topographic phase and vegetation
height. Many efficient algorithms have been proposed to re-
trieve these two parameters using POLinSAR data, and in this
letter, we employ a three-stage procedure [5]. Once we know
the real evaluation of height and topographic phase, relative
profile coefficients can be computed. As for single-baseline
data, two coefficients a10 and a20 can be shown in

a10 = Im(γ̃k)/f1 a20 = (Re(γ̃k)− f0) /f1. (12)

That is to say, the first three polynomials can be used to
approximate. As for dual-baseline data, another two higher
order polynomials will be added to improve approximation
resolution. Similarly, the linear formulation can be written as
shown in
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Fig. 2. (Left) L-band simulation of a 10-m vegetation layer above a rough
surface. (Right) Coherence of HV polarization (looks = 11).

where superscripts A and B relate to the two baselines used and
a[] represents the profile coefficients. We can denote (13) as

[F ]a = g (14)

the solution can be obtained as a = [F ]−1g. From the vector
a[], the normalized vertical structure function can be estimated
for a known layer depth kv .

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the new func-
tion expansion in the generation of coherence tomography,
we employ POLinSAR dual-baseline data simulated on the
basis of two-layer models by European-Space-Agency-released
POLSARPro. The SAR simulator is set using a 2-D point
spread function with 1.5-m azimuth and 1.06 ground range
resolution. The center frequency is 1.3 GHz (L-band) and at
45◦ angle of incidence from 3-km altitude. The first baseline is
configured 10 m horizontal and 1 m vertical, while the second
is 15 m horizontal and 5 m vertical. The forest is initialized
deciduous with a height of 10 m. Fig. 2 shows the simulated
Pauli decomposition image of the forest and the coherence of
HV polarization.

We use the three-stage method to estimate the height map of
the simulated POLinSAR forest data [5]. The estimated height
ranges from 5 to 15 m with a mean of 9.02 m, which is close
to the true height of 10 m. Then, we employ the estimated
forest height and topography phase to develop the vertical
structure. The vertical scattering function of one pixel P and
the tomography along range line AA′ in the HV polarization
channel estimated by three methods, namely, F–L expansion
[2], improved F–L expansion [3], and our method, are shown in
Figs. 3 and 4.

Now, we evaluate the new method in terms of approximation
precision and stability. Take the HV polarization channel, for
example, in the dual-baseline system configuration; the sim-
ulated vertical scattering intensity function generally has two
strong points. The first is the scattering center of the volume
scattering mechanism, located in the canopy, not the highest
point of the tree but a slightly lower part of the top. Because the
simulated vegetation type is broad-leaved forest, the most dense
leaves and branches are located not at the highest point but at
a slightly lower part of the top. The second strong point is the
ground–trunk dihedral scattering, which is slightly higher than
the ground but not the lowest point of the tree. Moreover, in the
HV polarization channel, the volume scattering is dominant; the
intensity of the volume scattering is higher than the intensity of
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Fig. 3. Profiles of the HV polarization channel at point P in Fig. 2 estimated
by three methods: F–L expansion [2], improved F–L expansion [3], and our
method.

Fig. 4. Polarimetric tomographic reconstructions of the HV polarization
channel along range line AA′ in Fig. 2 estimated by three methods: (a) F–L
expansion [2], (b) improved F–L expansion [3], and (c) our method. The white
dots indicate the strongest points.

the ground–trunk dihedral scattering. From Fig. 3, we can see
that both of the results estimated by the F–L method and our
method have two strong points, shown as blue dots and red solid
block, respectively, and the intensity of the volume scattering is
higher than the intensity of the ground–trunk dihedral scatter-
ing. Fig. 4(a) and (c) also shows the same results. However,
there is only one strong point corresponding to the volume
scattering mechanism in the green curve in Figs. 3 and 4(b),
similar to the result of the HV polarization channel in the single-
baseline case. The reason for this is that the improved F–L
method is to achieve high stability by reducing the simulation
accuracy [3].

Next, we analyze the stability of the three methods. As the
CN of the F–L expansion in the dual-baseline case is relatively
large, the stability is not high; many points in Fig. 4(a) cannot
be properly inversed because of the impact of coherence noise.
The locations of the simulated scattering centers of a row of
trees vary greatly, without continuity. In Fig. 4(b) and (c),
the scattering centers of a row of trees are relatively stable.
Moreover, comparing the variances of the profile coefficients
of the three methods, shown in Table I, we can draw that
the variances of the profile coefficients of our method are the
minimum among the three methods; that is to say, it is the least
sensitive to noise.

To substantiate our conclusion, we turn to mathematical
demonstration. From the matrix inversion formula [F ]a = g,
we find that the stability of inversion is attributed to the CN
of matrix [F ]. In the single-baseline case, CN = −(1/f2); the

TABLE I
STANDARD DEVIATIONS OF THE PROFILE COEFFICIENTS FOR THE

HV POLARIZATION CHANNEL IN THE THREE METHODS

detailed analysis was shown in the literature [2]. In terms of
F–L expansion

CNFL−S = − 1

f2
= − k2v

3 cos kv − (3− k2v)
sinkv

kv

(15)

and in terms of our expansion, CN can be written as

CNNew−S

= − 1

3 sinkv

kv
+ 21 coskv

k2
v

− 81 sinkv

k3
v

− 180 coskv

k4
v

+ 180 sinkv

k5
v

.

(16)

In the dual-baseline case, matrices [F ] of the F–L expansion
and the improved F–L expansion do not change [3]; we discuss
the F–L expansion in the dual-baseline case in this letter. By
defining the CN of matrix F , we can obtain

CND = ‖F‖2 ∗ ‖F−1‖2

=
√

λmax(F ∗ FT) ∗
√
λmax

(
F−1 ∗ (F−1)T

)
(17)

where F−1 is the inverse matrix of F , FT is the transposed
matrix of F , and λmax is the maximum eigenvalue of F .
Moreover, in the dual-baseline case, the F matrix changes with
kv; in general, we assume that the kv value of the second
baseline is unchanged.

Fig. 5 plots the two functions versus the normalized
wavenumber in the singe- and dual-baseline cases. In our ex-
periment, for dual-baseline tomography, we assume that the kv
value of the first baseline changes between [0, 1]; the kv value
of the second is one. We can see that, in both single- and dual-
baseline cases, the values of CN in the approximation method
of this letter are less than those in the F–L expansion by Cloude
[2], [3]. That is to say, this inversion is better conditioned,
and the system is less sensitive to errors for single- and dual-
baseline data.

Moreover, we apply it to a real scenario using Chinese
airborne X-band POLinSAR single-baseline data. The
Chinese POLinSAR flight took place on January 8, 2010.
They are the first dual-antenna polarimetric data in China.
The instrument developed by East China Research Institute
of Electronic Engineering, China Electronics Technology
Group Corporation, collected quad-polarization images at
X-band. The incidence angle was about 50◦. The resolution of a
pixel is 1 m.
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Fig. 5. Variations of CN with two expansions. (Top) Single baseline and
(bottom) dual baseline (the kv of the second baseline is one; the kv of the
first baseline changes between [0, 1]).

Fig. 6. High-resolution X-band POLinSAR data. RGB representation of the
Pauli basis (HH + VV HV HH − VV).

The test site is located in Lingshui Li Minority Autonomous
County with a geographical position at 18◦22′–18◦47′ north and
109◦45′–110◦08′ east, Hainan province, China. In our test site,
the forest is mainly temperate and broad-leaved, and the forest
height mainly ranges from 10 to 20 m. The test area which
we choose is composed of orchards, bare fields, sparse forests,
vegetable patches, and buildings. Moreover, the study area is
flat; the reference tree height data are collected by ground test.
The Pauli decomposition is shown in Fig. 6.

HH polarization channel is used to generate the estimation
of the vertical structure of the forest in the F–L expansion and
the new expansion, respectively, as shown in Fig. 7. Moreover,
the calculated mean and variance of a10 in the F–L expansion
are −0.92 and 0.72, respectively, while those of a10 in our
method are −0.51 and 0.40, respectively. It is concluded that
a10 in the new series exhibits less volatility, and therefore, the
consequences possess better condition.

Fig. 7. Images of a10 in (top) the F–L expansion and (bottom) our new
expansion.

V. CONCLUSION

In this letter, we have introduced a new function expansion
for PCT and validated it using POLSARPro-simulated single-
baseline and Chinese airborne X-band POLinSAR data.

In the F–L expansion proposed by Cloude, it provides two
complex coherences on the dual-baseline case; four coefficients
can be estimated, and the highest polynomial order used to
approximate is four. In the new expansion, the highest order
is six, and the results can exhibit the internal fine structure. In
addition, due to better conditioning of the matrix inversion, the
profile coefficients are less susceptible to noise, which is always
present in SAR interference processing.

Further analysis is to be required to investigate multibaseline
applications in the new expansion. Moreover, we do not take
the effects of the number of looks and the frequency change
into account, which both affect the final results.
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