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1. Introduction

In this paper, we consider the following nonlinearly dispersive wave equation of Camassa-Holm equation type (see [1,2])
U — Uyye + WUy + 3ULy = P(2UxLUxx + Ully), (1)

where o is real number, 7 is a physical parameter. This equation has recently been investigated with regard to singularity
formation by Yin [2]. He also presented the existence of smooth solitary wave for certain values of the parameters w and 7.
For y = 1, Eq. (1) is well known as the Camassa-Holm equation which is first found by Fokas and Fuchssteiner [3], and later
rediscovered as a water wave model by Camassa et al. [4,5].

When w =0, Eq. (1) is reduced to a model equation for mechanical vibrations in a compressible elastic rod, as being
derived by Dai and Huo [6,7], where the range of the parameter 7 is roughly from —29.5 to 3.4. In 2000, Constantin and
Strauss [8] proved that the solitary waves of Eq. (1) were orbitally stable for @ = 0,7 # 1. In 2004, Liu and Chen considered
the Eq. (1) for w = 0, they employed both bifurcation method and numerical simulation to investigate bounded travelling
waves in a general compressible hyper-elastic rod (see [9]). In 2006, Lenells [10] also studied the Eq. (1) when w = 0, and
discussed the weak travelling wave solutions, but the author did not give the expression of exact travelling wave solutions.
For w = y = 0, the equation is well known as the BBM equation [11], which is a model for surface waves in a channel. In
2004, the dynamic stability of solitary wave solutions of (1) was considered by Henrik Kalisch (see [1] and the references
cited therein). Meanwhile, Li et al. refined Johnson’s implementation of Constantin’s method for obtaining a multiple-sol-
iton solution of the Eq. (1) while y = 1 (see [12]). However, the loop soliton solution and periodic loop soliton solution of
Eq. (1) have not been investigated. In this paper, by using the integral bifurcation method [13-15], we will try to obtain the
loop soliton solution and periodic loop soliton solution, solitary wave solution and solitary cusp wave solution, smooth
periodic wave solution and non-smooth periodic wave solution of (1), and also discuss their dynamic characters and
relations.
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2. Loop soliton solution, solitary cusp wave solution, solitary wave solutions and periodic wave solutions for Eq. (1)

Let u(x,t) = ¢(¢) = ¢(x — ct), where constant c is wave velocity. Under this transformation, Eq. (1) can be reduced to the
following ODE,
—Co; +Cees + WP: +3dd: = V(2¢:0:: + PPese)- 2)

Integrating (2) once, we have

3 1

(0)*5)¢+C¢55+§4’2 *"/[¢¢gg+j(¢5)2} =8 3)
where g is an integral constant. Clearly, (3) is equivalent to the following two-dimensional system:

dy_, dy —g+(@-0¢+3¢’ — 1 )

¢ 7 de Vo —c '
We notice that the function dy/d¢ is not continuous when ¢ = ¢/y in Eq. (4). So, we make a transformation

dé = (y¢ - cydt. (5)
Under this transformation, Eq. (5) can be reduced to

d¢ A dy o 3, 1 5

E—(N)—C)M E——g+(CU—C)¢’+§¢ LA (6)

where 7 is a parametric variable. From Eq. (4), it is easy to know that y has no definition when ¢ = ¢, = < In other words, on

such straight line ¢ = ¢,, ‘é—‘é’ is nonexistent. It is for this reason that some of the solutions of Eq. (1) have the phenomenon of
non-smooth or singular characters such as blow up phenomenon, possessing vertical tangent line etc.

Systems (4) and (6) have the same first integral as follows:
—2g¢ + (0 —c)¢* + ¢*> +h
Yo —c¢ 7

where h is an integral constant. Eq. (7) can be rewritten as

y =

Vbt + (@ -0y — g + 28y — (@ - O)d¢? + (hy + 2cg)¢ — he

y== 79 —c ®
Substituting Eq. (8) into the first expression in Eq. (6), we have

UO)' — + [ — 0py  c6? + 1287~ (@~ lg” + (y + 29— ?

=) =7 7= ld® +[-28) — (@ — ©)clp? + (hy + 2cg)¢ — hc. (9)

Under some parametric conditions, Eq. (9) can be reduced to two well known auxiliary equations which were given in Refs.
[16-19]. Using these references’ results, we can obtain loop soliton solutions and periodic loop soliton solutions of Eq. (1).
First, we discuss periodic solutions of Eq. (1), see the next discussion.

2.1. When c = % and h = — 22 Eq. (9) can be reduced to

P+

dg\? 4 2
ar =P¢* +Q¢° +R, (10)
- — _1Cglragy2gre?) p _ 2gye?
where P=7,Q = - R=00

211. f 0<y<1 and m=y1-7y w=-y-1, g:% (or m=y1-7y wo=+y+1, g:”’z’;), then P=1-m?Q =
2m? — 1,R = —m?. In this case, Eq. (10) has a exact solution

¢ =nc(T,m). (11)

Substituting Eq. (11) into Eq. (5) and integrating it, we obtain a periodic solution of parametric type of Eq. (1) as follows:
¢ = nc(t,m),

{Cv —cT + \/117 In l—mzs;llg(r:[r,nn)];rdn(‘c.m) ) (12)

Similarly, under other conditions, we also obtain many periodic solutions of parametric type of Eq. (1) as follows:

212.If0<y<landm=j, 0=-y-1,g=5 (orm =), 0=y+1,g=5 0rm :ﬂ,w:i\/%(wrl),g:%), then
P=m? Q = —(1+m?),R = 1. In this case, Eq. (1) has a periodic solution,

$=sn(t,m), &=—ct +% In|dn(t, m) — men(t, m)|. (13)
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or

Y ln‘l—s—msn(r,m)‘ (14)

¢=cd(t,m), &=-cT+ m dn(t, m)

213.f -1<y<0and m==J, 0 ==y -1, g=51 (or my = /=7, o =y+1,g =51 or my = /=7, ® = £, /Iy + 1),
g=1).then P=-m?Q =2m? - 1,R=1-m?. In this case, Eq. (1) has a periodic solution,

7
m
214. If -1<y<0and m=/y+1, o=-y-1, g:—zlv (or my=+/v+1, o=7+1, g:—ziy), then P=m?-1,Q =
2 —m? R = —1. In this case, Eq. (1) has a periodic solution,
¢ =nd(t,m),
= —CT + = arctan

¢ =cn(t,m), ¢=—ct+ - arccos(dn(t,m)). (15)

1-m2sn(t,m)—cn(t,m) (16)

1-m2sn(t,m)+cn(t,m) *

Among the above periodic solutions, solutions (13) is a peculiar solutions, because the profiles of this solution have four
kinds of wave-form including two kinds of periodic loop waves, periodic cusp wave and smooth periodic wave when the
parameters vary. As an example, when @ vary, the profiles of (13) are shown in Fig. 1a-d while g=1,7=09,7t ¢
[-33.2,28.2]:

Second, we discuss soliton-like solutions of Eq. (1), see the next.
2.2. When h =0, g =0, Eq. (9) can be reduced to

d 2
(&) —Ad+Bo" 70" a7)
T
where A = c(c — w), B= ((w —c)y —c). Denote 4 = B*> —4yA = (wy — ¢y +¢)>. As in Ref. [20], using the results of Refs.
[18,19], we obtain kinds of exact solutions of parametric type of Eq. (1).

F1

0.5 r0.5

(a) overlapped periodic loop soliton (b) periodic loop soliton

1 1

- g _

(¢) periodic cusp wave

smooth periodic wave

Fig. 1. (a)  =0.38; (b) w =0.7; (c) = 1.9; and (d) w = 4.
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2.2.1.When A > 0, y > 0 or y < 0, we obtain six kinds of soliton-like solutions as follows:

—ABsech? (V—ﬁr)
p=——""—""—+, (A>0,7>0)
BLyA(Hetanh(“Tﬁr)) (18)
¢=—ct—2€e/ytanh’ [\/T’—A (1 + € tanh (‘@‘L’))} :
ABcsch? (ﬁr)
=—2/ - (A>0, 0
BZ*”/'A(]+€ coth (@1)) ( >9y> ) (19)
¢=—ct-2ey/ytanh”’ [@ (1 + ecoth (@‘c))} :
sech(vAt
d) = 6\2?—353&?\/%‘() ? (A > 0’ r< O)
(20)
&= —c1 — 26,/ arctan <2ﬁ tanh (% \/AT)),
A sech? (VA7)
¢= B+2¢1/7A tanh (3VAt)’ (A>0,y>0) 21)
¢=—ct—Jln ’B + 2€,/7A tanh (%\/Er) ‘,
B Acsch? (4vAr)
¢= B+2¢1/7A coth (3v/AT) , (A>0,7>0) (22)
E=—cT-€/7In ‘B + 2€4/7A coth (% ﬂr) ‘,
_ 4Aexp(eVAr)
N [exp(eﬂr)—8}2—4y/\7 A>0,7>0) 23)

h,] exp (eVAt)-B
24/7A

¢=—cT—-2/jtan ,
We find that the solution (20) has three kinds of wave-form including smooth solitary wave, non-smooth solitary cusp wave
and loop soliton when the parameter ) vary, their profiles are shown in Fig. 2a-c whene=-1,c=1,w = -1,7 € [-5,5]. In
solution (20), the value y = —< is one point of bifurcation. When y > -¢, the wave-form of (20) is a smooth solitary wave.

w—Cc w—c’
When y = &, the wave-form of (20) is a non-smooth solitary cusp wave. When y < %, the wave-form of (20) is a smooth
loop soliton. The similar phenomenon can be shown in Ref. [20], this is a very interesting mathematical and physical phe-
nomenon that one solution admits multi-waves (see Figs. 1 and 2).

2.2.2. When A > 0, 4 = 0, we obtain two kinds of parametric solutions as follows:

¢ =—4(1+ctanh (}VAT)), (A>0,4=0)

f:_(c+g)r—%ln‘cosh (%\/KT)’, -

9 =—4(1+ecoth (3vAr)), (A>0,4=0)

é:—(c—i—%)r—%ln‘sinhe\/ﬁ )‘ 22

2 4 T2
(a) smooth solitary wave (b) non-smooth solitary cusp wave (c) loop soliton

Fig. 2. (a) y = —0.35; (b) y = —0.90909091; and (c) y = —1.5.
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20+ 20+
15 15
10 104
5 5
-1 —8 -6 -4 —20 2 4 6 8 10 —10 -8 -6 -4 -—2 U 2 4 6 8 10
(a) kink wave (b) anti-kink wave
4 6 8 10 12 14 16
120 04— : : ‘ ‘ ‘ ‘
L 100 —20)
80 —40]
L60 —60]
40 —380{
F20 —100)
6 12 12 —0 —8 6 4 2 0 —120
(c) kink-like wave (d) anti-kink-like wave

Fig. 3. (@) c=1.9, y=0.09,w0 =-1921,e=1,-3<1<15; (b) c=19, y=009 w=-1921,e=-1, -3<71<1.5; (c) c=-0.8,7y=5w=-0.64,
e=-1,-2<1<35;and (d)c=-08,y=5,w=-064,e=1,-2<1<35.

400 1.4
2004
0

—4.5 —4 —3.5 —. —2.5 —2

—2004

0.4

—400) 0.2

—4 —2 0 2 4
(a) singular wave (b) cusp wave

Fig. 4. (3)c=1,w=1,y=-125,e=1,7€[-0.6,0.6], view = [-5.. — 2,-500..500]; and (b) c = -3, w = -3,y = -2,7 € [-3,3].

The solution (24) admits a kink and an anti-kink waves which are shown in Fig. 3a and b for some given parameters. And
solution (25) admits a kink-like and an anti-kink-like waves which are shown in Fig. 3c and d for some given parameters.
2.2.3. When A = 0 or B = 0, we obtain four kinds of soliton-like solutions as follows:

b= —gsech(e\/ﬁr), (A>0,B=0,y < 0)
¢ = —ct - 2€,/—7 arctan (exp (6\/E 1)),
(;5:#374?, (A=0,y>0)
¢=—ct—2/jtanh”’ <2—% r)),

(26)

(27)
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4A exp (F\//i 'z:)

¢ = exp (26VAT)-4)A° (A>0,B=0,7<0)

(28)
{=—c1-26/=7 arctan%y
=
‘i’:#ﬁ@» (A=0,y<0)
(29)

&= —ct—2,/=7 arctan (%7_,7:»7

The solution (28) is a singular travelling wave for the given parameters, whose profile is shown in Fig. 4a. The (29) is a
cusp wave for the given parameters, whose profile is shown in Fig. 4b.

3. Conclusion

In this work, using the integral bifurcation method, we study a nonlinearly dispersive wave equation of Camassa-Holm
equation type. Loop soliton solution and periodic loop soliton solution, solitary wave solution and solitary cusp wave solu-
tion, smooth periodic wave solution and non-smooth periodic wave solution of this equation are obtained. The solutions
have been verified to be the solutions of Eq. (1). We find that some of these solutions which are obtained in this paper have
an interesting phenomenon that one solution admits multi-waves (see Figs. 1 and 2). This is a very interesting mathematical
and physical phenomenon.
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