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Hermitian dynamics in a class of pseudo-Hermitian networks

L. Jin and Z. Song*

School of Physics, Nankai University, Tianjin 300071, China
(Received 24 July 2011; published 19 October 2011)

We investigate a pseudo-Hermitian lattice system, which consists of a set of isomorphic pseudo-Hermitian
clusters coupled together in a Hermitian manner. We show that such non-Hermitian systems can act as Hermitian
systems. This is made possible by considering the dynamics of a state involving an identical eigenmode of each
isomorphic cluster. It still holds when multiple eigenmodes are involved and additional restrictions on the state
are imposed. This Hermitian dynamics is demonstrated for the case of an exactly solvable PT -symmetric ladder
system.
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I. INTRODUCTION

Hermitian quantum mechanics is a well-developed frame-
work because a Hermitian Hamiltonian leads to real spectrum
and unitary time evolution, which preserves the probabil-
ity normalization. However, a decade ago it was observed
that many non-Hermitian Hamiltonians possess real spectra
[1,2] and a pseudo-Hermitian Hamiltonian connects with its
equivalent Hermitian Hamiltonian via a similarity transfor-
mation [3,4]. Thus, quantum theory based on non-Hermitian
Hamiltonians was established [4–13]. This framework also
indicates the preservation of probability normalization if a
positive-definite inner product is employed to replace the
Dirac inner product. Nevertheless, the interpretation and
experimental measurement of such an inner product are not
clear, although the Dirac probability (Dirac inner product) can
be measured in a universal manner. The Dirac probability is of
central importance to most practical physical problems.

Parity and time-reversal symmetric (PT -symmetric) sys-
tems have attracted much attention because of recent experi-
mental investigations in PT -symmetric optical systems, ob-
servation of passive PT -symmetry breaking in passive optical
double-well structures [14], and observation of spontaneous
symmetry breaking together with power oscillations in optical
coupled systems [15]. Optics has advantages in detecting
evolution of wave functions and seems to be the most readily
applicable [16,17]. In the past two decades, general issues of
quantum effects in quantum systems have been successfully
investigated in the framework of quantum optics based on
the fact that paraxial propagation of light in optical guided
structures is governed by a Schrödinger-like equation [16].
The intensity observed in optical experiments corresponds to
the Dirac probability of an electrical field envelope. The Dirac
probability might not be preserved for generic systems even
when the non-Hermitian Hamiltonian is time independent.
Nevertheless, the violation of the conservation of Dirac proba-
bility in non-Hermitian system does not contradict the Copen-
hagen interpretation. The implications of a pseudo-Hermitian
system are still under consideration; peculiar features have
been observed such as double refraction and power oscillations
[18,19]. Realization of a PT -symmetric structure in the realm
of optics has been suggested [20], while nonreciprocal Bloch
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oscillation with no classical correspondence was also shown
in a PT -symmetric complex crystal [21].

We propose a class of non-Hermitian lattice systems in
this work: The system is composed of a set of isomorphic
pseudo-Hermitian clusters, which connect with each other
in a Hermitian way. We show that in such non-Hermitian
systems, Hermitian-like dynamics can be observed, such as
Dirac-probability-preserving time evolution. This is made
possible by considering the dynamics of a state involving the
superposition of an identical eigenmode of each isomorphic
cluster in the general case. In the case of additional orthogonal
modes, it still holds when multiple eigenmodes are involved.
This Hermitian dynamics, as well as the quasi-Hermitian
behavior, are specifically demonstrated for the case of an
exactly solvable pseudo-Hermitian system.

This paper is organized as follows. In Sec. II, we present
our model and its basic properties. Section III consists of an
exactly solvable example to illustrate our main idea. Section IV
is the summary and discussion.

II. HAMILTONIAN AND BASIC PROPERTIES

A general tight-binding network is constructed topologi-
cally by the sites and the various connections between them.
As a simplified model, it captures the essential features of many
discrete systems. It is a nice testing ground for the study of the
non-Hermitian quantum mechanics because of its analytical
and numerical tractability. Much effort has been devoted in
recent years to the pseudo-Hermitian lattice system [22–34].
The Hamiltonian of the concerned tight-binding network reads
as follows:

H =
N∑

α=1

Hα +
∑
α<β

Hαβ, (1)

Hα = λα

Nd∑
i,j=1

Jij a
†
α,iaα,j , (2)

Hαβ = καβ

Nd∑
l=1

a
†
α,laβ,l + H.c., (3)

which consists of N isomorphic clusters Hα , with each cluster
having a dimension Nd . The label α denotes the αth subgraph
of N clusters, and a

†
α,i (aα,i) is the boson or fermion creation
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FIG. 1. Schematic illustration of the concerned networks. (a) A
lattice consists of three five-site isomorphic clusters, where the
different sizes indicate the factor λα . The dotted lines denote the
similarity-mapping Hermitian structure couplings across the clusters.
(b) A concrete example is a two-legged ladder. Each rung is a
non-Hermitian cluster. (c) Equivalent two-band model Eq. (24). Here
the double-headed arrow denotes the quasicanonical commutation
relations between the eigenmodes σ = ± for the same cluster.

(annihilation) operator at the ith site in the αth cluster. The
cluster Hα is defined by the distribution of the hopping
integrals {λαJij } where λα is real. The set of clusters are
isomorphic because they have the same eigenfunctions and
spectral structures. Note that terms

∑
α<β Hαβ are self-adjoint

since Hαβ = H
†
αβ , which describes the Hermitian connection

between clusters. Such couplings are similarity mapping,
which is crucial for the conclusion of this paper. The total
Hamiltonian H is not Hermitian when the matrix Jij is not
Hermitian. Figure 1(a) shows a schematic example.

In this paper, we consider the case of Hα being pseudo-
Hermitian; that is, Hα is non-Hermitian but has an entirely
real spectrum. H is also pseudo-Hermitian in the case of
real λα , possessing the common exceptional point as Hα . In
general, a pseudo-Hermitian Hamiltonian does not guarantee
the preservation of Dirac probability. The Dirac norm of an
evolved wave packet ceases to preserve Dirac probability as
long as it touches the region of on-site imaginary potentials
[35]. In the following, we show that because the pseudo-
Hermitian clusters are combined together in a Hermitian way,
quantum states exist that preserve Dirac probability, even if
their profiles cover the imaginary potentials.

We start with the eigen problem of the Hamiltonian Hα .
In single-particle invariant subspace, following the well-
established pseudo-Hermitian quantum mechanics [11–13],
we always have

Hαāα,σ |vac〉 = λαεσ āα,σ |vac〉 (4)

and

H †
αa†

α,σ |vac〉 = λαεσ a†
α,σ |vac〉, (5)

where α ∈ [1,N ] and σ ∈ [1,Nd ], and the operators āα,σ and
aα,σ have the form

āα,σ =
∑

l

flσ a
†
α,l, aα,σ =

∑
l

g∗
lσ aα,l, (6)

where ∑
σ

g∗
lσ fl′σ = δll′ ,

∑
l

g∗
lσ flσ ′ = δσσ ′ . (7)

Note that {flσ }, {glσ }, and {εσ } are independent of α. Then
the operators āα,σ and aα,σ are canonical conjugate pairs,
satisfying

[aα,σ ,āα′,σ ′]± = δαα′δσσ ′, (8)

[aα,σ ,aα′,σ ′]± = [āα,σ ,āα′,σ ′]± = 0, (9)

where [·,·]± denotes the the commutator and anticommutator.
Accordingly, the original Hamiltonian can be rewritten as the
form

H =
∑
α,σ

λαεσ āα,σ aα,σ +
∑

α<β,σ

(καβāα,σ aβ,σ + κ∗
αβ āβ,σ aα,σ ),

(10)

which has the following subtle features: (i) The ma-
trix representation of H with respect to the biorthog-
onal basis {〈vac|aα,σ ,āα,σ |vac 〉} is Hermitian; that is,
〈vac|aα,σ H āα′,σ ′ |vac〉 = (〈vac|aα′,σ ′Hāα,σ |vac〉)∗. (ii) Al-
though it is a non-Hermitian operator (i.e., H �= H †), straight-
forward algebra shows that

[aα,σ ,a
†
α′,σ ′]± ∝ δαα′ , [aα,σ ,aα′,σ ′]± = 0, (11)

which indicates that although nonorthogonality of the eigen-
states is an inherent feature of non-Hermitian systems, aα,σ

and a
†
α′,σ ′ obey quasicanonical commutation relations as a

result of the Hermitian connection structure between clusters.
This results in a new type of particle statistics, which is
rarely observed in Hermitian systems and thus becomes highly
relevant in the presence of non-Hermitian terms.

Consider an arbitrary state in the form

|
σ (0)〉 =
∑

α

cαāα,σ |vac〉, (12)

as the initial state, where
∑

α |cα|2 = 1 and in which only the
eigenmode σ of each cluster is involved. At instant t , we have

|
σ (t)〉 =
∑

α

cαe−iH t āα,σ |vac〉. (13)

In the framework of metric operator theory, H acts as a
Hermitian system, obeying unitary time evolution in the
positive-definite inner product [4]. However, to date the
physical meaning of the positive-definite inner product is
unclear, while the Dirac probability can be measured in a
universal manner. For example, Dirac probability of wave
electric field corresponds to the light intensity in optics
and is simple to detect in experiments [16]; therefore, the
Dirac norm is of central importance. The aim of this paper
is to show that, in contrast to the nonclassical dynamical
behavior [18,21], the unitary Dirac probability dynamics can
be observed in the pseudo-Hermitian system. By inserting∑

β,σ ′ āβ,σ ′ |vac〉〈vac|aβ,σ ′ = 1 into Eq. (13), we have

|
σ (t)〉 =
∑
α,β

cαāβ,σ |vac〉〈vac|aβ,σ e−iH t āα,σ |vac〉

=
∑
α,β

cαUβαāβ,σ |vac〉, (14)
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where

Uβα = 〈vac|aβ,σ e−iH t āα,σ |vac〉 (15)

is the propagator in the framework of biorthogonal basis and
satisfies ∑

γ

UγαU ∗
γβ = δαβ, (16)

because of feature (i) of H . Accordingly, the Dirac norm has
the form

||
σ (t)〉|2 = [|
σ (t)〉]†|
σ (t)〉

=
( ∑

α′,β ′
c∗
α′U

∗
β ′α′ 〈vac|ā†

β ′,σ

)(∑
α,β

cαUβαāβ,σ |vac〉
)

=
∑

α

|cα|2�σ = �σ , (17)

where the relation Eq. (16) is applied and the α-independent
factor �σ can be obtained from

〈vac|ā†
α,σ āβ,σ |vac〉 = �σδαβ. (18)

It follows that although |
σ (t)〉 is not the eigenstate of the
entire network system, the time evolution is Dirac norm-
conserving. This is a direct consequence of the quasicanonical
commutation relations. The result presented here for the
evolution of an arbitrary state involving an identical isomor-
phic cluster eigenmode provides a new way to connect the
pseudo-Hermitian and Hermitian systems.

It is worth mentioning that this probability-preserving
evolution can also occur for a state involving multiple eigen-
modes. This is because states whose parts belong to different
eigenmodes are orthogonal in terms of Dirac inner product and
hence preserve the Dirac probability. For instance, for a state
involving two eigenmodes σ1 and σ2, its parts on σ1 and σ2 are
spatially separated local states with respect to the coordinate
space α. Then the two parts of the state are orthogonal in
terms of Dirac inner product, and the evolution of such a
state is probability preserving because of the quasicanonical
commutation relations. We demonstrate this point explicitly
via the following illustrative example.

III. PSEUDO-HERMITIAN LADDER

Now we investigate a concrete example to demonstrate the
application of the previous result. We consider a system of
a two-legged ladder [Fig. 1(b)], consisting of N dimers as
pseudo-Hermitian clusters. The Hamiltonian reads

HLadd =
N∑

α=1

Hα +
N∑

α=1

Hα,α+1, (19)

Hα = −J (a†
α,1aα,2 + H.c.) + iγ (nα,1 − nα,2), (20)

Hα,α+1 = −κ

2∑
=1

(a†
α,aα+1, + H.c.), (21)

where nα, = a
†
α,aα, is the particle number operator and the

operators obey the periodic boundary condition a
†
N+1, = a

†
1,,

with  = 1, 2. κ (J ) is the hopping integral along legs (rungs)
and γ denotes the norm of the imaginary onsite potential.

Note that the ladder is a PT -symmetric Hamiltonian, where
P is the parity and T denotes time reversal. The simple
structure of this model makes it an ideal testing ground for
a more profound understanding of the Hermitian dynamics in
a pseudo-Hermitian system. When we take the transformations

āα,σ = 1√
2 cos θ

(eiσθ/2a
†
α,1 − σe−iσ θ/2a

†
α,2), (22)

aα,σ = 1√
2 cos θ

(eiσθ/2aα,1 − σe−iσ θ/2aα,2), (23)

where (α ∈ [1,N ], σ = ±), which are obtained from the
solution of the dimer (a general solution of Nd -dimension
cluster is shown in Ref. [36]), the ladder Hamiltonian can be
written as

HLadd =
N∑

α=1,σ=±
(−κāα,σ aα+1,σ − κāα+1,σ aα,σ + σ�āα,σ aα,σ ).

(24)

which is illustrated in Fig. 1(c). Here � =
√

J 2 − γ 2 and
sin θ = γ /J , θ ∈ [0,π/2]. The biorthogonal structure of the
solution for a dimer admits the following canonical commuta-
tion relations: Eq. (8) and

[ā†
α,σ ,āα′,σ ]± = [aα,σ ,a†

α,σ ]± = sec θδαα′ , (25)

[ā†
α,−σ ,āα′,σ ]± = [aα,σ ,a

†
α,−σ ]± = iσ tan θδαα′ . (26)

Obviously, the Hamiltonian in Eq. (24) represents a two-
band model, which has an interesting feature compared to
a Hermitian two-band model: Although there are no interband
transitions, the two bands are not independent. It is due
to the pseudo-Hermiticity of the clusters, which allows
[aα,σ ,āα,−σ ]± = 0 but [aα,σ ,a

†
α,−σ ]± �= 0. This characteristic

is further demonstrated through the following quasicanonical
commutation relations Eq. (33) and the time evolution for
various Gaussian wave packets. Figure 1(c) schematically
illustrates such an equivalent two-band structure. Nevertheless,
Hamiltonian Eq. (24) can be diagonalized as a Hermitian one;
that is, we have

HLadd =
∑

k,σ=±
εk,σ āk,σ ak,σ , (27)

εk,± = −2κ cos k ± �, (28)

and by using the linear transformations,

āk,σ = 1√
N

N∑
j=1

eikj āj,σ , (29)

ak,σ = 1√
N

N∑
j=1

e−ikj aj,σ , (30)

where k = 2nπ/N , n ∈ [1,N ]. The linearity of the transfor-
mations allows

[ak,σ ,āk′,σ ′]± = δkk′δσσ ′, (31)

[āk,σ ,āk′,σ ′]± = [ak,σ ,ak′,σ ′]± = 0. (32)
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However, when dealing with the Dirac inner product, the
quasicanonical commutation relations

[ā†
k,σ ,āk′,σ ]± = [ak,σ ,a

†
k′,σ ]± = sec θδkk′, (33a)

[ā†
k,−σ ,āk′,σ ]± = [ak,σ ,a

†
k′,−σ ]± = iσ tan θδkk′, (33b)

will be taken into account. Such quasicanonical commutation
relations reflect the subtle features of the system: When dealing
with different k, ak,σ and a

†
k′,σ ′ act as canonical conjugate pairs

and the system displays Hermitian behavior.
We can gain some insight regarding the role of the

quasicanonical statistics. Such a model displays dynamics
similar to those of a Hermitian ladder. We start our inves-
tigation from the quantum dynamics of various initial wave
packets. In the situation of a Hermitian ladder, any two wave
packets propagate independently and the total probability is
preserving.

Consider an arbitrary state involving both upper and lower
bands:

|
(0)〉 =
∑

k,σ=±
fk,σ āk,σ |vac〉. (34)

With
∑

k,σ=± |fk,σ |2 = 1, we have

||
(t)〉|2 =
∑
k,σ

|fk,σ |2〈vac|[ā†
k,σ ,āk,σ ]±|vac〉

+
∑
k,σ

f ∗
k,−σ fk,σ e−i2σ�t 〈vac|[ā†

k,−σ ,āk,σ ]±|vac〉

= sec θ + i tan θ
∑
k,σ

σf ∗
k,−σ fk,σ e−iσ2π(t/TD), (35)

where TD = π/� denotes the period of the oscillation. The
first term gives the contribution from single band, while the
second term captures the influence of the non-Hermiticity.
For vanishing θ , we recover the unitary evolution in a
Hermitian system. Evidently, ||
(t)〉|2 = sec θ for a state with
f ∗

k,−σ fk,σ = 0, which involves only a single mode. Note,
however, that mathematically speaking the time-dependent
terms can vanish even in the case of f ∗

k,−σ fk,σ �= 0, for
example, additional orthogonality of the wave packet with
multiple eigenmodes. To demonstrate this, we study the
evolution of initial wave packets of the form

|�(NA,NB,φA,φB,0)〉
= 1√

�

∑
k

[e−(k−φA)2/(2ρ2)e−i(k−φA)NAāk,+

+ e−(k−φB )2/(2ρ2)e−i(k−φB )NB āk,−]|vac〉, (36)

which is the superposition of wave packets A and B,
where � = 2

∑
k e−(k−φA)2/ρ2 = 2

∑
k e−(k−φB )2/ρ2

. The time
evolution of a wave packet is a powerful tool for understanding
the dynamical property of Hermitian quantum systems [37].
Recently, the propagation of wave packets in discrete systems
has been utilized as a flying qubit for quantum state transfer
[38–42]. In the Hermitian case, an initially Gaussian state stays
Gaussian as it propagates for a long time, especially for the
case of |φA,B | = π/2 [43].

For a sufficient broad wave packet (ρ 
 1), we have � ≈
ρN/

√
π . Equation (36) can also be expressed in the coordinate

space spanned by {a†
α,1|vac〉, a

†
α,2|vac〉} as

|�(NA,NB,φA,φB,0)〉

≈
√

ρ

4
√

π cos θ

N∑
α=1

[
e−ρ2(j−NA)2/2eiφAj

× (eiθ/2a
†
α,1 − e−iθ/2a

†
α,2) + e−ρ2(j−NB )2/2eiφBj

× (e−iθ/2a
†
α,1 + eiθ/2a

†
α,2)

]|vac〉, (37)

which involves both eigenmodes (σ = ±) and is actually
composed of four wave packets with centers at NAth and NB th
sites of legs 1 and 2 with velocities φA and φB , respectively. To
investigate the dynamics of the Dirac norm, by substituting

fk,+ = 1√
�

e−(k−φA)2/(2ρ2)e−i(k−φA)NA, (38a)

fk,− = 1√
�

e−(k−φB )2/(2ρ2)e−i(k−φB )NB (38b)

into Eq. (35), we have

||�(NA,NB,φA,φB,t)〉|2
= sec θ + e−(φA−φB )2/(4ρ2)e−ρ2(NB−NA)2/4

× sin(2πt/TD − ϕAB) tan θ, ( 39)

where ϕAB = (NA + NB)(φA − φB)/2. We note that if the
two wave packets of Eq. (36) are well separated in k or α

space initially (wave packets orthogonal in k or α space), the
weighted exponential factor becomes zero and the probability
is always conserved in the evolution, even if they meet each
other in the coordinate space α. This indicates that for states
having additional orthogonal modes, Hermitian-like behavior
still holds even if multiple eigenmodes are involved.

To show more detailed propagation behavior, we study the
profile of P(j,t) ( = 1,2), where

P(j,t) = |〈vac|aj,|�(NA,NB,φA,φB,t)〉|2. (40)

It is a convenient way to investigate the dynamical properties
from two typical cases: (a) φA = −φB = π/2, |NA − NB | �
2
√

ln 2/ρ, and (b) φA = φB = π/2, NA = NB . In case (a), the
situation corresponds to two counterpropagating wave packets,
with the evolved wave function

|�(NA,NB,π/2, − π/2,t)〉
= 1√

�

∑
k

[
e−i�t e−(k−π/2)2/(2ρ2)e−i(k−π/2)(NA+2κt)āk,+

+ ei�te−(k+π/2)2/(2ρ2)e−i(k+π/2)(NB−2κt)āk,−
]|vac〉

= |� ′(NA + 2κt,NB − 2κt,π/2, − π/2,0)〉, (41)

where the approximation of Taylor expansions for cos k around
±π/2 are used for two wave packets and |� ′〉 represents
the superposition of two wave packets as state |�〉 but with
different overall phases. It shows that the evolved state is still
the independent nonspreading wave packets. Similarly, the
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FIG. 2. (Color online) The Dirac probabilities P1(j,t) (black dashed line) and P2(j,t) (red solid line) of a particle, initially located in
the state |�(NA,NB,φA,φB,0)〉 for a system with N = 400, γ = 0.05,J = 0.10,κ = 1.00, and ρ = 0.05. We obtain θ = π/6 and the time t

is in units of TD ≈ 36.276 κ−1. We plot Eq. (40) for two cases with (a) φA = −φB = π/2, NA = 100, NB = 300 and (b) φA = φB = π/2,
NA = NB = 150. The shapes of all the curves are in agreement with the analysis in the text.

evolved wave function for case (b) has the form

|�(NA,NA,π/2,π/2,t)〉
= 1√

�

∑
k

[
e−(k−π/2)2/(2ρ2)e−i(k−π/2)(NA+2κt)

× (āk,+e−i�t + āk,−ei�t )
]|vac〉. (42)

It has more clear profile in the coordinate space , that is,

|�(NA,NA,π/2,π/2,t)〉

≈
∑
=1,2

g(t)
N∑

j=1

e−ρ2[j−(NA+2κt)]2/2eijπ/2a
†
j,|vac〉, (43)

where

g(t) =
√

ρ√
π cos θ

×
{

cos(πt/TD − θ/2),  = 1

i sin(πt/TD + θ/2),  = 2
.

(44)

Obviously, it represents two breathing shape-invariant wave
packets propagating along two legs of the ladder with the
breathing period TD. Furthermore, the Dirac norm P s

 =∑
j P(j,t) ( = 1,2) and P s

T = P s
1 + P s

2 can be obtained as
the form

P s
1 = cos2(πt/TD − θ/2)/ cos θ, (45)

P s
2 = sin2(πt/TD + θ/2)/ cos θ, (46)

P s
T = sec θ + tan θ sin(2πt/TD). (47)

As mentioned in the introduction, the profile of the evolved
wave function P(j,t) can be observed in experiments. In
practice, the quantum-optical analogy has been employed to
visualize the dynamics in the non-Hermitian system [18–20].
In this context, the light intensity corresponds to P(j,t) (for
a review, see [16]) and the profile corresponds to the light
intensity distribution along its propagation direction.

It follows that a manifestation of the non-Hermitian nature
of HLadd is represented by the relative phase θ between the
breathing oscillations of the two legs, which also leads to the
time-dependent Dirac probability. The profiles of the evolved
wave functions and the Dirac norms are plotted in Figs. 2
and 3. We can see that in case (a) the evolved wave packets
propagate independently and the Dirac norms are preserved.
It indicates that although the Hamiltonian is non-Hermitian,
due to the quasicanonical commutation relations, which are
a direct consequence of the Hermitian connection structure

FIG. 3. (Color online) The Dirac norms P s
1 (t), P s

2 (t) (blue dotted
line), and P s

T(t) (black dashed line) for the case of φA = −φB = π/2
[as in Fig. 2(a)]. The Dirac norms P s

1 (t) (red triangle), P s
2 (t) (green

square), and P s
T(t) (black circle) for the case of φA = φB = π/2

[as in Fig. 2(b)]. All the parameters are the same as in Fig. 2. The
phase difference θ = π/6 and also the quasicanonical commutation
relations (sec θ ≈ 1.155) are indicated. The shapes of all the curves
are in agreement with the analysis in the text.
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between clusters, it acts as a Hermitian ladder for some initial
state. In contrast, the dynamics of case (b) differs drastically
from the Hermitian case and the Dirac norms are no longer
preserved. Further, the phase difference between the breathing
oscillations on the two legs can also be observed in case (b).

IV. SUMMARY AND DISCUSSION

In summary, within the context of a class of non-Hermitian
lattice systems, which consist of a set of isomorphic pseudo-
Hermitian clusters combined in a Hermitian manner, we
show that Hermitian-like dynamics could be observed in
non-Hermitian systems, including the property that the time
evolution preserves Dirac probability. We investigate a con-
crete network, a PT -symmetric ladder, composed of many

pseudo-Hermitian dimers, and show that it acts as a Hermitian
system in the following sense: Besides the reality of the
spectrum and probability preservation, the propagation of
certain wave packets exhibits the same behavior as that in
a Hermitian ladder. Our finding indicates that the spectrum as
well as the Dirac-probability-preserving dynamics can occur
in a system that violates the axiom of Hermiticity. This paves
the way for the development of descriptions of quantum
systems.
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