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Abstract In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO)
to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman
problem. The proposed heuristic is composed of two phases. In the first phase the ACO technique is adopted to establish an
archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited. The second phase
is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome.
The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up
the convergence. The proposed method is called “Puzzle-Based Genetic Algorithm” or “p-ACGA”. We demonstrate that
p-ACGA performs very well on all TSPLIB problems, which have been solved to optimality by other researchers. The
proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and
exploit the search space by taking advantage of the artificial chromosomes.
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1 Introduction

The traveling salesman problem (TSP), which has
been extensively studied by numerous researchers, is
known as an NP-hard problem in combinatorial opti-
mization problems (COPs)[1]. It can be stated as fol-
lows: Given n cities and the geographical distance be-
tween pairs of cities, the task is to find the shortest
closed tour in which each city is visited exactly once.
More formally, given n cities, the TSP requires a search
for a permutation, using a cost matrix D = [dij ] to
minimize the path length, where dij denotes the cost of
traveling from city i to city j.

f(π, d) =
n−1∑

i=0

dπi,π(i+1) + dπn,π0 , (1)

where πi denotes the city at the i-th location in the
tour.

TSPs can be grouped into different classes based on
the properties of the cost matrix. The TSP is symmet-
ric if dij = dji, ∀i, j, asymmetric otherwise; if the nodes
lie in a metric space, i.e., distances satisfy the triangle
inequality, a problem called the metric TSP is present.
Assuming that a city i is marked by its position (xi, yi)

in the plane, and the cost matrix D contains the Eu-
clidean distance between the i-th and j-th cities, the
function is defined as follows:

dij =
√

(xi − xj)2 + (yi − yj)2. (2)

Then, the TSP is both symmetric and metric. The most
direct solution would be to try all permutations and see
which one has the smallest cost path through all the
nodes. The running time for this approach lies within
a polynomial factor of O(n!), the factorial of the num-
ber of cities, so this solution becomes impractical even
for only 50 cities. The TSP was identified by Garey
et al.[2] to be NP-hard. Many exact and approxima-
tion algorithms have been developed for solving TSPs.
TSP has attracted the interest of the genetic algorithm
(GA) community[3-4] because it is a typical combina-
torial optimization problem with wide application in a
variety of areas such as vehicle routing, robot control,
crystallography, computer wiring, and scheduling.

Recently, GAs have been successfully applied to a
wide range of problems including multimodal func-
tion optimization, machine learning, COPs as well as
the evolution of complex structures such as neural
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networks. An overview of GAs and their implementa-
tion in various fields is given by [5]. The advantage of
applying GAs to hard combinatorial optimization prob-
lems lies in the ability to search the solution space in
a broader way than the heuristic methods based upon
neighborhood search techniques. Nevertheless, GAs are
also frequently faced with a problem of stagnating in a
local but not global optimum. This premature con-
vergence of GAs occurs when the population of a GA
reaches such a suboptimal state that the genetic ope-
rators can no longer produce offspring with a better
performance than their parents.

In this research, we introduce a new heuristic using
the concept of ant colony optimization (ACO) to ex-
tract patterns from the chromosomes generated by pre-
vious generations for solving the generalized traveling
salesman problem. The proposed heuristic is composed
of two phases. In the first blocks mining phase, the
ACO technique has been adopted to establish a set of
non-overlapping block archive and the remaining cities
(nodes) to be visited in set S. The second phase is a
block recombination phase where the set of blocks and
the rest of the cities are combined to form an artifi-
cial chromosome. The generated artificial chromosomes
(ACs) then will be injected into the standard genetic
algorithm (SGA) process to speed up the convergence.
The proposed method is called “Puzzle-based GA” or
“p-ACGA”.

The paper is organized as follows. In Section 2, the
literature regarding GA and TSP is surveyed. In Sec-
tion 3, the framework and working principle of p-ACGA
are introduced. Detailed information for block min-
ing by ACO and block recombination is also provided.
Section 4 shows the experimental results and the com-
parisons of p-ACGA with other algorithms. Section 5
concludes the paper and outlines the areas for future
research.

2 Literature Review on GA Approach for TSP

The traveling salesman problem is a classical prob-
lem of combinatorial optimization in the area of Opera-
tions Research. There are several practical uses for
this problem, such as vehicle routing[6] and drilling
problems[7]. TSP has been extensively used as a com-
parison basis in order to improve different optimiza-
tion techniques, such as genetic algorithms[8], simu-
lated annealing[9], tabu search[10], local search[11], ant
colony[12], and neural networks[13].

On the other hand, common, problem-independent
heuristics like simulated annealing (SA)[14] and
GAs[15-17] deliver poor performance on large TSP
instances[18]. They require high execution time for solu-
tions whose quality is often not comparable with those

achieved in much less time by their domain-specific lo-
cal search counterparts. Therefore, a large number of
approaches have been developed for solving TSPs. A
very promising direction is the genetic algorithm com-
bined with problem specific operators which is named
as a memetic algorithm (MA)[19]. MAs adopt the strat-
egy of encoding the population and the genetic opera-
tions, so as to direct the individuals’ heuristic study
and searching direction. The technique does not ensure
an optimal solution, however it usually gives good ap-
proximations in a reasonable amount of time.

To further improve the GAs for TSPs, many ap-
proaches have been proposed. Among these ap-
proaches, designing TSPs-specific operators, incor-
porating domain-specific local searches, and keeping
population diversity are considered as promising strate-
gies. Designing TSPs-specified crossovers, such as
cycle crossover[20], edge recombination crossover[21],
maximally preserving crossover[22], edge assembly
crossover[23] and inver-over operators[24], could improve
the performances of GAs for solving TSPs. Incor-
porating domain-specific local search techniques into
GAs[25-27] possess both the global optimality of the GAs
as well as the convergence of the local search. A new
hybrid algorithm was described in [28] that exploits a
compact genetic algorithm in order to generate high-
quality tours, which are then refined by means of the
Lin-Kernighan (LK) local search. The approach showed
that keeping population diversity is useful to avoid pre-
mature convergences.

Several issues concerning improving the solution
quality of GAs for solving TSPs were discussed. Tsai
et al.[29] addressed these issues by analyzing the behav-
iors of some crossover and mutation operators on some
well-known TSPs. They found that genetic algorithms
for TSPs should at least have two mechanisms: power-
ful genetic operators which can preserve and add “good
edges” (i.e., the edges in the near-optimal tour) as well
as a mechanism to keep the population diversity.

Multidisciplinary work undertakes to mathemati-
cally model these processes and to develop statistical
analyses and mathematical algorithms to understand
the scrambling in the chromosomes of two or more re-
lated genomes[4]. Earlier approaches using “building
block” concepts or schemata theory can be referred
to messy GAs[30] and fast messy GAs[31]. Messy GAs
(mGAs) are a class of iterative optimization algorithms
that make use of a local search template, adaptive rep-
resentation, and a decision theoretic sampling strategy.
The work on mGAs was initiated in 1990 by Goldberg
et al.[30] to eliminate some major problems of the stan-
dard GA. In [31], Goldberg et al. addressed a major de-
ficiency of mGAs, the initialization bottleneck. During
the past decade, mGAs have been applied successfully
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to a number of problem domains, including
permutation-based problems[32]. In general, mGAs
evolve a single population of building blocks. A popu-
lation of building blocks of a predefined length m is
initialized during each iteration. A thresholding se-
lection operator is applied to increase the number of
fitter building blocks, while discarding those with poor
fitness. Then, cut and slice operators are applied to
construct global solutions by combining good building
blocks together. The best solution obtained is kept
as the competitive template for the next iteration. In
the next iteration, the length of the building blocks is
increased by one (i.e., set to m + 1). The mGA can be
run level by level (i.e., m by m) until a good-enough so-
lution is obtained or the algorithm may be terminated
after a given stop criterion is met.

A different approach similar to mGA is proposed
in [33]. The authors present a novel co-evolutionary
algorithm, the Puzzle Algorithm, where a population
of building blocks (BBs) coevolves alongside a popu-
lation of solutions. They show that the addition of
a building-block population to a standard evolution-
ary algorithm results in notably improved performance
on the hard shortest common superstring (SCS) prob-
lem. However, due to the nature of BBs that are
dependent on the problems and the encoding of the
chromosome, their behaviors are difficult to analyze.
General problem-independent GAs such as mGA[30]

and the Puzzle algorithm[33] are not very efficient in
solving TSPs, especially for large problems.

3 p-ACGA: A Puzzle-Based Genetic
Algorithm

During the evolution process of a GA, each gene of
all the chromosomes will slowly converge to a specific
position in the chromosomes after many generations.
Thus, near the end of the evolution process, the avail-
able chromosomes have low diversity and high homo-
geneity due to the slow convergence. Diverse chromo-
somes are required to find the global optima.

In our earlier researches[34-36], Artificial Chromo-
some Genetic Algorithm (ACGA) has been very suc-
cessful in injecting ACs into the evolutionary process
of GA to speed up the convergence. The basic idea
behind the insertion of artificial chromosomes is to in-
troduce some diversity among the homogeneous chro-
mosomes. An artificial chromosome (AC) generating
mechanism can be developed by collecting the gene in-
formation in the archive. The frequency of the occur-
rence of each city i in position j is calculated by the AC
generating mechanism and the frequency is transformed
into a matrix called dominance matrix (represented by
M). This matrix will be further converted into a proba-
bilistic matrix to guide the assignment of each gene to

its respective position. These chromosomes can help to
locate more efficiently the global optima.

To further improve the solution quality of ACGA,
in this research, p-ACGA, a puzzle-based genetic algo-
rithm will be introduced. p-ACGA contains several spe-
cial characteristics. Firstly, the new method uses ACO
pheromone update rules to extract the blocks from the
population generated in the previous generations. It is
a process of linkage learning which is applied to discover
the hidden knowledge within the dependent variables.
The common subsequences among a set of highly fit
chromosomes are called “blocks”. The block consists of
a series of genes linked to each other continuously. Seco-
ndly, a recombination procedure is adopted to regroup
the blocks and the rest of the cities together to gener-
ate a set of artificial chromosomes. These ACs are built
with very good subsequences (or, micro-structures) and
they will be injected into the evolutionary process to
speed up the convergence process. The block mining by
ACO pheromone update is very effective and can iden-
tify a good subsequence from the chromosome. These
blocks can reduce the size of the search space, so that
the search process may take less time to find the near-
optimal solution.

In p-ACGA, an SGA will be adopted and the tra-
ditional GA consists of several operators: crossover,
mutation and selection, which are responsible for ex-
ploitation, exploration and preservation. The popula-
tion control includes population µ+λ during the evolu-
tionary processes. However, in our proposed approach
we will have a different population strategy to include
β chromosomes as another source of population gene-
ration during the AC injection process. In most ap-
plications, GAs can find excellent solutions even the
optimal ones. However, in the applications of high com-
plexity GAs are usually trapped in the local optima. p-
ACGA aims at mining the linkage information of genes
to assemble the strong joining blocks and recombine the
mined blocks with the remaining genes to generate ACs
to enhance the solutions structure. The framework of
the heuristic is depicted as Fig.1, where Maxgen means
the maximum number of generations.

3.1 Genetic Algorithm

A simple GA is applied to solve the TSP. The process
includes the following aspects.

Chromosome Coding. In this paper, we will use the
most direct way to denote TSP-path presentation. For
example, path 4-2-1-3-4 can be denoted as (4, 2, 1, 3)
or (2, 1, 3, 4) and it is referred to as a chromosome.
Every chromosome is regarded as a valid path.

Initialization. A set of cities, i.e., n, are generated
randomly.

Fitness Value. It is the standard of judging whether
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Fig.1. Framework of p-ACGA.

an individual is “good” or not. We take the reciprocal
of the length of each path as the fitness function. The
shorter the length, the better the fitness values. The
fitness function is defined in the following formula:

F (π) =
1

f(π, d)
=

1
n−1∑

i=0

dπi,π(i+1) + dπn,π0

. (3)

Selection Strategy. After crossover or mutation, new
generations are produced. A truncation strategy is
adopted to keep the total number of chromosomes con-
sistent. The tournament selection strategy is applied in
this research.

Crossover Strategy. The crossover operator involves
the swapping of genetic material between the two
parent strings. Two parents produce two offspring. In
this research, two different crossover operators, i.e., OX
and GSX are applied to generate offspring simultane-
ously.

Mutation Strategy. The mutation strategy is used
to avoid getting trapped into local optima. It aims to
gradually generate individuals with better fitness. Four
different mutation operators, i.e., Swap, Inverse, PMX

and Insert are applied to generate offspring simulta-
neously.

Terminal Condition. The algorithm will stop once
the total number of generations is reached.

After the initialization stage, µ + λ are introduced
to the mating pool for selection. An AC injection con-
trolling threshold θI is used to decide whether the con-
vergence starts to slow down. If the mechanism is ac-
tivated, the AC generator will generate new ACs, i.e.,
β, to be injected into the evolutionary process. Then,
these β artificial chromosomes will be combined with
population µ + λ to form a new population which will
be introduced into the mating pool. Furthermore, an-
other variable k is applied to control the number of
times to inject β ACs into the mating pool. If the in-
jection of AC cannot increase θI to surpass θthre, the
injection of AC will continue until the count reaches k.
In addition, tan−1δf/δI is applied to evaluate the fit-
ness differences δf between specific evolving iterations
δI. θI is designed to dynamically adjust the conver-
gence pressure and effectively inject the artificial chro-
mosomes into the evolutionary process. By injecting
ACs into the GA process, a different breed of species is
introduced and these species contain a very good mi-
crostructure identified by the ACO algorithm. These
ACs maintain the high quality blocks which can speed
up the convergence speed quickly. At the same time,
even the fitness is not compatible after long evolution-
ary runs, these ACs consisting of high quality of blocks
can lead the genetic operator to search for promising so-
lution areas. AC counts is the controller for adjusting the
continuous iterations for injecting AC. Once AC counts is
greater than l which is a preset number, the pheromone
matrix will be reset to 0. The population strategy in-
cludes β and µ + λ. That is the new population µi+1

which will replace the original population µi and be-
come the new population µ for next generation. Fig.2
is a schematic diagram illustrating the reconstruction
of the population.

Fig.2. Population reconstruction schematic diagram.

3.2 Definition of Blocks

Data mining[18] is the process of applying clustering,
classification and association rule methods to data with
the intention of uncovering hidden patterns[37], which
will lead the algorithm to recombine the discrete genes
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more effectively. In this paper, the so-called “Blocks
Mining” technique of mining linkage information is ap-
plied for joining available segments together as the as-
sembling foundation to recombine the chromosomes.
Theoretically, the crossover or mutation of blocks will
significantly decrease the complexity of searching solu-
tions when compared with the crossover or mutation of
genes. Therefore, the computational time will be re-
duced while the quality of solutions will be enhanced
via recombining the mined blocks.

In this paper, we aim at adopting the mined block to
enhance the performance of recombination in AC gen-
eration. Basically, block recombination is regarded as
the puzzle process, which tries to assemble the puzzle
pieces and locate them in the right allocation. Here we
propose a “Puzzle-Based Model”(PBM). PBM is for-
mally defined as a triple (H, S, R) where H is a finite set
of non-empty blocks (puzzles) with fixed gene length,
i.e., 4 here, S is the rest of cities not in the blocks, R
is called the recombination function that combines the
set of blocks with S together to form a legal chromo-
somes, i.e., nearest neighbor (NN) in this research. A
schematic diagram of the puzzle-based model is illus-
trated in Fig.3.

Fig.3. Schematic diagram of the puzzle-based model for AC gene-

ration.

Basically, in p-ACGA, we use ACO pheromones in-
tensities to identify a set of suitable blocks which is
treated as a small piece of puzzle to be recombined into
a legal chromosome. In order to understand the behav-
ior of PBM from the point of view of blocks creation and
composition, there is a need for a very simple and di-
rect representation of blocks. In this paper, we propose
a new way to look at blocks which are called “puzzles”.
The proposed definition can be applied directly in seve-
ral ways both in the identification and the composition
process. A block or puzzle can be regarded as a sub-
set of the building block structure. A similar concept
can be found in [38, 44]. Here is a 10-city chromosome
composed of 3 ∗ 925 ∗ ∗ ∗ 71 shown in Fig.4. There are
three blocks in this schema as follows: {3}, {9, 2, 5} and
{7, 1} (B1, B2 and B3 respectively).

Many possible patterns of blocks in a chromosome
are shown in Fig.5. The minimum size of a block is
one allele, i.e., C3. The maximum size equals to the
chromosome length, i.e., C2. The remaining block sizes

Fig.4. Example of block within a schema.

Fig.5. Example of possible patterns of blocks in a chromosome.

are between 1 and k− 1, i.e., C1, where k is the length
of the chromosome. The constructed blocks with dif-
ferent patterns will be recombined with the rest of the
cities into a chromosome.

3.3 Block Mining by ACO

In ACO algorithms, proposed by Dorigo et al.[39],
simple artificial ants act as co-operative agents to gene-
rate high quality solutions to a combinatorial optimiza-
tion problem via interaction between the ants and their
environment. The ants use a stochastic construction
heuristic that employs probabilistic decisions on the ba-
sis of artificial pheromone trails and problem-specific
heuristic information. Pheromone is accumulated dur-
ing the construction phase through a learning mecha-
nism implied in the algorithm’s pheromone update rule.
In particular, ants move from one node to another on
a construction graph using a transition rule that fa-
vors shorter edges and edges with greater amounts of
pheromone. They update the pheromone trail of their
generated tours based on a pheromone update rule.
This rule deposits a quantity of pheromone proportional
to the quality (or length) of the corresponding tour.

In GAs, each chromosome holds some information
about the solution. We generally accept that good
solutions can guide a search method to the desired so-
lution because they contain some useful information.
The problem is how to extract such information. The
common knowledge between good solutions (the mu-
tual information) can be observed. In the case of two
chromosomes, the similarity of bits in the same position
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is their mutual information. Although there are many
different chromosomes that have the same fitness value,
there will be some repeat pattern (common knowledge)
between them. If the size of population is large enough,
this mutual information will be reliable. This increases
the chance to find common subsequences and maintains
diversity of common patterns.

The common blocks are regarded as having high po-
tential for good substructure or genomes (the building
blocks) because they appear identically in two selected
chromosomes which are assumed to be good or highly
fit. Therefore they will be retained in the original struc-
tures.

To identify a block from a set of high-fit chromo-
somes, in this research pheromone intensity among
cities as in ACO will be applied to locate a small piece
of block. This block is just like a microstructure within
the set of chromosomes. A set of blocks will be mined
from these chromosomes and they are similar to frag-
ments of DNA. These blocks will be then recombined
with the rest of cities to form an AC. This process is
built in an AC generation model. In the AC genera-
tion model, there are two major mechanisms applied
to produce β number of artificial chromosomes to be
injected into the evolutionary process. The first phase
is the block mining procedure and the main purpose of
this phase is to identify a small set of cities with high
percentage of pheromones. This set of cities is called
a “block” of the chromosome. A physical chromosome
consists of couples of blocks to be identified by ACO
algorithm, and is non-overlapping and can be recom-
bined with the rest of the cities later on to form a new
legal chromosome.

ACO is applied to identify the strength between city
to city by the pheromone updating strategy. In the be-
ginning, a pheromone matrix is initialized by selecting
µ chromosomes with best fitness from the population
in the first generation as shown in Fig.6. The initial
pheromone for each city is represented as τ0 for evalua-
ting the intensities between cities via τ0 = 1/L, where
L denotes the total distance travelled for a complete
tour. The data are collected in a matrix to record the
pheromone intensities for each city.

Fig.6. Initial pheromone matrix.

Next, the pheromone matrix is updated by popula-
tion stored in the µ archive. For example, in this re-
search the top 10 best fit chromosomes in µ are selected
from the archive as shown in Fig.7. Then compute τij

of each pair of cities, where ρ represents the evapo-
ration rate[39], and τij(t + 1) denotes the updated τij .
Finally, the pheromone matrix will be updated by these
10 chromosomes.

Fig.7. New pheromone matrix.
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The new updated pheromone matrix is shown in
Fig.7. The pheromone intensities τij within each pair of
cities (i, j) which is represented as the linkage strength
between these two cities. This strength can be applied
to identify a set of cities with the highest strength as a
block.

To convert the pheromone matrix into a probabi-
lity matrix, (4) is defined as follows. The variable ηij

is denoted as the inverse distance of dij as in [36] to
compute the probability Pij

[39] for each pair of cities
selected. The parameters a and b control the relative
importance of the pheromone versus ηij and uns is a
set of feasible cities to be visited next.

Pij =
τa
ij × ηb

ij∑

j∈uns

τa
ij × ηb

ij

, ηij =
1

dij
. (4)

Pij is applied to establish the probability matrix of a
set of cities or a complete tour. This probability matrix
is then adopted to establish a block using the accumu-
lative probability of a set of cities as shown in Fig.8.

City1 City2 City3 · · · Cityi

City1 N/A P12 P13 · · · P1i

City2 P21 N/A P23 · · · P2i

City3 P31 P32 N/A · · · P3i

...
...

...
...

...
...

Cityi Pi1 Pi2 Pi3 · · · N/A

Fig.8. Probability matrix.

According to the probability matrix, a city is picked
randomly and then the five connected cities with high-
est probabilities will be branched. For example, city 38
is selected randomly and the next five cities as shown
in Fig.9, with the probability in non-descending orders
will be 9, 33, 47, 5, and 8. Again, for each city branched
it can be further expanded in the next level. For ex-
ample, city 9 will be selected and further branched for
the next 5 cities, until all cities in the same level are
branched. The same procedure repeats again and again

Fig.9. Set of blocks mined from the probability matrix.

until it reaches the fourth level. In the final level, there
will be 125 cities, i.e., 5× 5× 5 cities.

A branching strategy from Branch and Bound
(B&B) algorithm[40] for the TSP is applied to gene-
rate the possible blocks. In this research, we adopt
a forward branching strategy that prescribes which
sub-problems should be expanded next and Best First
Search (BFS) which solves the most promising sub-
problem first, usually the sub-problem with the largest
probability value.

A legal block is a set of connecting cities from level
1 up to level 4. In this research, we only branch three
times to form a legal block with the length of 4. The
reason is to save computational time especially when
the problem size is large, i.e., thousand or up to ten
thousands of cities. In addition, the block is just like a
micro-structure of the chromosome. They can be easily
recombined by a heuristic function R in the recombina-
tion process to form a longer block.

The probability for each block will be calculated
from city to city among these 125 combinations. For
example for block {38, 9, 40, 18} the probability is equal
to 0.026 533 1. The one with the largest probability will
be saved into the block archive. The procedures will be
repeated again until a pre-defined number of blocks are
identified. If any block with a city overlaps with the
blocks previous generated, it will be abandoned. The
final set of blocks, i.e., puzzles, are stored in the archive
as shown in Fig.9.

3.4 Blocks Recombination

The common sequences are regarded as having
high potential for good substructure or the blocks be-
cause they appear identically in different selected chro-
mosomes which are assumed to be good or highly
fit. Therefore they will be retained in the original
structures.

Once the set of blocks are identified and stored in the
archive, the rest of cities not in the blocks are also saved
together. We name this archive as a puzzle archive as
shown in Fig.10.

Fig.10. Composition of puzzle archive.
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There are numerous methods to recombine these
blocks and cities for solving the puzzle to construct a
feasible chromosome. The Nearest Neighbor (NN) ap-
proach has been applied here in this research. The NN
method was initially introduced by Skellam[41] where
the ratio of expected and observed mean value of the
nearest neighbor distances is used to determine if a
dataset is clustered. A diagram by using the NN to
form a legal tour is illustrated in Fig.11.

1. Decide the Starting Point

20

2. Select the City with the Minimal Distance

20 18 · · · · · · · · ·
3. Repeat Until all the Cities and Blocks are Sequence

20 18 1 54 48 93

Fig.11. Composition of puzzle archive.

The first step is to randomly choose a city from the
set of rest cities as the starting point, then choose a
starting city of the block with the minimal distance
among these blocks in archive, and repeat until all the
cities and blocks are sequenced.

The recombined chromosome here is called AC. AC
is the key to maintain the population in GA. Since AC
is produced via the block recombination and stored in
the AC archive as shown in Fig.12. These β chromo-
somes will be injected to the population mating pool.
These ACs with very good infrastructures can play a
paramount role in speeding up the convergence process.

20 19 · · · · · · · · · 54

54 33 · · · · · · · · · 98

5 9 · · · · · · · · · 76

86 44 · · · · · · · · · 13

Fig.12. Artificial chromosomes archive.

4 Experimental Studies

The basic parameter setups for GA and ACO are
listed in Table 1. Parameters of the basic operators in
p-ACGA are exactly the same as those in GA. How-
ever, two critical factors in p-ACGA are to be further
investigated. The first one is ∆I which represents the
iteration gaps for injecting the artificial chromosomes.
Factor ∆I is set to two levels, i.e., 0.5 or 1.0 × city num-
ber (CN). The second factor, AC counts, is designed for
the number of times to continuously inject the ACs into
the population and it is set to 0.2 and 0.4 × city num-
ber (represented as n). The best combination of these
two factors is ∆I = CN ×0.5 and AC counts = CN ×0.4
according to the experimental results.

Table 1. Parameter Setups for GA and ACO

Parameter Config. Description

θthre 0.55 The threshold for controlling
the injection of AC, represented
as the angle for judging the con-
vergence pressure

∆I n× 0.5 n× 1.0 The total iteration without any
update for the found solution,
adopted for the AC injection
occasion

AC counts n× 0.2 n× 0.4 The controller for adjusting the
continuous iterations for inject-
ing AC

CR 0.8 Crossover threshold is the prob-
ability for each chromosome to
crossover

MR 0.2 Mutation threshold is the prob-
ability for each chromosome to
mutate

Selection n× 4 The parameter used for control-
ling the selection approach:

Selection =




offsprings, if ∆I is

greater than 0,

Parents and offsprings,

otherwise
Population 100 Population size

Ants
number

30 Number of ants

ρ 0.1 The pheromone evaporation
rate

Pheromone
update

Global/Local τij(t + 1) = (1 − ρ)τij(t) +
ρ∆τij(τ0)

Pheromone
reset

n× 5 The fixed iteration used to re-
set the ACO for renewing the
pheromone matrix

Termination
criterion

n× 50 The algorithm will stop once
the total number of generations,
i.e., n× 50 is reached

4.1 Comparisons with Meta-Heuristics

Since p-ACGA adopts the concept of pheromone
update for block mining and the evolving operators
of GA, two well-known algorithms, GA and ACO are
applied to compare. GA code is from http://www.
codeproject.com and ACO is from http://www.aco-
metaheuristic.org.

The comparisons of p-ACGA with GA, ACO and
ACGA are listed in Table 2, where Opt. means the op-
timal solution. The CPU time of each algorithm is also
listed in Table 3.

The results show that the error rate of GA is rel-
atively higher than the other compared algorithms
reaching over 300%. From the plot in Fig.13, p-
ACGA is more effective than the other algorithms in
instances obtained from the website of TSPLIB (http://
comopt.ifi.uni-heidelberg.de / software / TSPLIB95 / ).
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Table 2. Comparisons of p-ACGA with Other Approaches

TSP Instances

kroA100 kroA150 kroA200 pr299 pcb442 pr1002 pcb1173 pr2392 pcb3038 Avg.

Opt. 21 282 26 524 29 368 48 191 50 778 259 045 56 892 378 032 137 694

p-ACGA Mean 21 547.9 27 302.9 30 467.3 50 019.1 53 719.8 277 906.7 61 184.0 420 618.7 151 321.3

Best 21 282 26 714 29 794 48 995 52 263 274 828 60 910 417 300 150 535

Std. 256.45 344.57 378.86 654.97 607.47 2 853.23 299.66 5 166.24 801.93

Error Rate (%) 1.25 2.94 3.74 3.79 5.79 7.28 7.54 11.27 9.90 5.94

ACO Mean 26 577.2 33 860.0 39 927.0 66 697.5 68 547.5 360 559.1 78 336.1 539 686.2 245 724.2

Best 26 019 32 470 39 058 63 795 65 741 353 632 76 086 530 915 242 969

Std. 520.25 924.58 601.79 1 392.03 1 734.50 4 764.69 1 185.04 7 023.87 2 698.83

Error Rate (%) 24.88 27.66 35.95 38.40 34.99 39.19 37.69 42.76 78.46 40.00

GA Mean 27 230.2 34 770.2 44 577.2 115 648.8 136 426.3 1 229 439 282 746.4 3 418 356 1 282 795.0

Best 24 960 31 504 39 609 99 315 125 779 1 193 770 270 264 3 355 720 1 257 040

Std. 1 866.39 3 090.91 4 581.08 10 242.23 7 768.42 25 263.57 8 952.91 52 932.60 13 282.15

Error Rate (%) 27.95 31.09 51.79 139.98 168.67 374.60 396.99 804.25 831.63 314.11

ACGA Mean 21 596.7 27 346.6 30 559.1 49 977.9 53 783.8 281 503.0 62 663.0 426 801.2 155 919.1

Best 21 346 27 109 30 203 48 984 53 388 280 107 62 435 422 839 253 359

Std. 173.10 190.19 233.80 547.37 204.66 1 009.68 222.50 2 041.69 1 247.09

Error Rate (%) 1.48 3.10 4.06 3.71 5.92 8.67 10.14 12.90 13.24 7.02

Table 3. CPU Time Comparisons of Each Algorithm

TSP CPU Time (s)

Instances p-ACGA ACO GA ACGA

kroA100 45.0 79.3 40.0 6.0

kroA150 96.2 255.1 88.0 14.0

kroA200 167.7 607.8 155.1 25.0

pr299 372.2 1253.4 332.8 59.9

pcb442 796.6 3328.6 713.8 389.5

pr1002 3865.0 5648.6 3624.8 2894.8

pcb1173 5806.0 15320.3 5374.6 4464.2

pr2392 24754.3 48206.7 22776.4 30667.2

pcb3038 30044.1 67654.5 33510.9 61179.5

Fig.13. Error rates comparison of the tested parameters.

For the problems with higher complexities, the error
rates of the other two algorithms increase significantly.
However, p-ACGA still performs well even for large

instances with high complexities. In addition, our pro-
posed approach is also very competitive in terms of
computational time as shown in Table 3. We did not
compare p-ACGA with other effective heuristics such as
ILK[45] since p-ACGA did not include any local search
heuristic.

4.2 Comparisons with Other Approaches

In this subsection we present the experimental re-
sults of p-ACGA and compare the performance of p-
ACGA with other algorithms. Each algorithm is exe-
cuted for 30 times on each instance and the computing
hardware consists of Intel Core2 (1.86GHz) and with
DDR2 800 (2 GB Memory). The programming lan-
guage is Microsoft Visual C++ 2008 Express. All test
cases were chosen from website TSPLIB and with the
best known solutions.

In order to appropriately tune the algorithms to the
problems under investigation, some preliminary experi-
ments were performed and the results are presented in
the following. The results to be presented here are the
best, mean and standard deviation (Std.) of the cost
(tour length) taken over 30 runs.

These two state-of-the-art approaches, i.e.,
RABNET-TSP[42] and SME[43], are selected for
comparison with our proposed approach. These two
approaches are based on Self-Organized Map (SOM)
network with very effective and efficient performances.
The comparisons of the experimental results for p-
ACGA, RABNET-TSP, and SME are presented in
Table 4, where Opt. means the optimal solution.
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Table 4. Comparisons of p-ACGA, RABNET-TSP and SME

TSP Opt. p-ACGA RABNET-TSP SME

Instances Mean Std. Best Error Mean Std. Best Error Mean Std. Best Error

Rate (%) Rate(%) Rate(%)

eil51 426 430.3 3.8 427 1.00 437.5 4.2 427 2.70 440.6 3.4 433 3.40

eil76 538 548.4 6.1 538 1.90 556.3 5.3 541 3.40 562.3 5.2 552 5.50

eil101 629 641.5 6.9 631 2.00 648.6 3.9 638 3.10 655.6 6.0 640 4.20

beriln52 7 542 7 615.4 126.3 7542 1.00 7 932.5 277.3 7 542 5.20 8 025.1 248.8 7 715 5.80

bier127 118 282 120 377.6 1 616.1 118 695 1.80 120 886.3 1 158.8 118 970 2.20 121 733.3 1 240.0 119 840 3.40

ch130 6 110 6 277.9 60.0 6 137 2.70 6 282.4 60.2 6 145 2.80 6 307.2 63.0 6 203 3.20

ch150 6 528 6 646.6 73.8 6 549 1.80 6 738.4 76.1 6 602 3.20 6 751.1 62.2 6 631 3.90

rd100 7 910 8 044.3 88.8 7 910 1.70 8 199.8 80.8 7 982 3.70 8 239.4 103.9 8 028 4.00

lin105 14 379 14 574.5 170.1 14 379 1.40 14 400.2 44.0 14 379 0.20 14 475.6 118.2 14 379 2.80

lin318 42 029 43 550.1 399.5 42 820 3.60 43 696.8 410.1 42 834 4.00 43 922.9 383.3 43 154 4.20

kroA100 21 282 21 566.5 258.0 21 282 1.30 21 522.7 93.3 21 333 1.10 21 616.8 164.2 21 410 2.60

kroA150 26 524 27 362.4 389.2 26 714 3.20 27 356.0 327.9 26 678 3.10 27 401.3 252.0 26 930 4.60

kroA200 29 368 30 118.8 398.7 29 471 2.60 30 190.3 273.4 29 600 2.80 30 415.7 132.9 30 144 3.70

kroB100 22 141 22 510.1 233.4 22 179 1.70 22 661.5 193.5 22 343 2.40 22 622.5 75.3 25 548 2.90

kroB150 26 130 26 760.7 326.9 26 310 2.40 26 631.9 232.9 26 264 1.90 26 806.3 250.1 26 342 2.80

kroB200 29 437 30 366.0 369.4 29 743 3.20 30 135.0 276.8 29 637 2.40 30 286.5 301.2 29 703 2.80

kroC100 20 749 21 064.6 295.7 20 749 1.50 20 971.2 108.2 20 915 1.10 21 149.9 188.0 20 921 3.20

kroD100 21 294 21 779.1 285.5 21 330 2.30 21 697.4 157.0 21 374 1.90 21 845.7 154.3 21 500 2.30

kroE100 22 068 22 374.6 206.9 22 121 1.40 22 714.6 260.2 22 395 2.90 22 682.5 214.1 22 379 3.40

rat575 6 773 7 152.0 65.7 7 081 5.60 7 115.7 37.5 7 047 5.10 7 173.6 39.5 7 090 5.90

rat783 8 806 9 374.2 80.2 9 235 6.50 9 343.8 47.0 9 246 6.10 9 387.6 39.4 9 316 6.60

rl1323 270 199 296 999.4 2 767.4 294 547 9.90 305 314.3 2 315.8 300 770 13.00 300 899.0 2 717.1 295 780 11.30

fl1400 20 127 21 117.8 58.1 21 037 4.90 21 110.0 163.3 20 851 4.90 20 742.6 115.8 20 558 2.80

d1655 62 128 66 078.4 383.3 65 484 6.40 72 113.2 698.6 70 918 16.10 68 046.4 379.3 67 459 9.50

Avg. 2.99 3.97 4.37

The results show that p-ACGA algorithm outper-
formed RABNET-TSP[42] and SME[43]. The effective-
ness of the proposed approach can be observed in the
reduced average error rate for all instances. The re-
sults of p-ACGA show that the algorithm is capable of
finding the best solution in most cases even for those
instances with larger number of cities. Fig.14 shows
the error rate of these three approaches on all instances
which is computed as (Mean-Opt.)/Opt.×100%.

Fig.14. Error rates of these three approaches on all instances.

In addition, the CPU time of p-ACGA are listed in
Table 5 for reference. The experimental results show
that p-ACGA is very efficient and effective in solving
the TSP problems.

For validating the searching ability of p-ACGA
on the problems with high complexities, we run p-
ACGA with 5 times of computational time which is
applied in Table 6. The error rates for these large
instances are from 9.9%, 4.9% and 6.4% down to
3.54%, 3.54% and 3.64% for instances rl1323, fl1400
and d1655 respectively. In addition, to verify the signif-
icance of the comparisons[46], student t-tests are con-
ducted for these instances. There are two instances,
i.e., fl1400 and d1655, that p-ACGA significantly out-
performs RABNET-TSP and SME. The other 22 in-
stances are non-significant. The reason is that p-ACGA
works pretty much the same as the other two algorithms
for small instances. However, p-ACGA performs espe-
cially well for large instances.

In addition, two state-of-the-art evolutionary algo-
rithms, i.e., IQCCSA[47] and ESMA[48], are also applied
to compare with p-ACGA and the results are shown in
Table 7. We leave blanks in the table if the published
algorithm did not test on these instances when com-
pared with the proposed p-ACGA. Again, p-ACGA has
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Table 5. CPUT Time of p-ACGA

TSP Instances p-ACGA

CPU Time (s)

eil51 48.1

eil76 98.9

eil101 166.9

berlin52 40.7

bier127 246.0

ch130 266.0

ch150 348.3

rd100 162.9

lin105 49.0

lin318 420.3

kroA100 45.0

kroA150 96.2

kroA200 167.7

kroB100 45.0

kroB150 96.3

kroB200 167.9

kroC100 45.0

kroD100 45.0

kroE100 45.0

rat575 1 382.4

rat783 2 558.7

rl1323 7 101.2

fl1400 6 531.4

d1655 8 769.4

Table 6. Experimental Result of p-ACGA Adopting

Test Parameters

TSP Opt. Mean Std. Best Error

Instances Rate (%)

rl1323 270 199 279 765 1 163.5 278 504 3.54

fl1400 20 127 20 840 33.0 20 819 3.54

d1655 62 128 64 390 299.7 64 044 3.64

Avg. 3.57

the minimum mean error rates for most instances.

5 Conclusions

In this study, we presented a block mining and
recombination-based genetic algorithm for solving the
TSP problems. The blocks are treated like puzzles and
the recombination procedures attempt to solve the puz-
zle to come out with a high fit solution. The quality
of the blocks mined from the previous population has a
great impact on behavior of p-ACGA. In addition, the
blocks can be continuously updated once a new set of
elite is identified through the evolutionary process. The
length of the block is kept to 4 in this research for these
blocks are similar to fragments of DNA. If the block
lengths are too big, they may contain redundant infor-
mation which will be carried over throughout the evolu-
tionary process and the final result may not be good. If
the block length is too small, the information contained

within each block may be too little and the recombina-
tion process may not be able to come out with good
quality of chromosomes. The traditional GA is still re-
served in p-ACGA since it contains the crossover and
mutation operator which will be able to further improve
the solution quality of the ACs. ACs are only injected
when needed. The reason is that the solution speed can
be greatly improved since the mining and recombina-
tion process takes some computational time.

Table 7. Comparisons of p-ACGA to IQCCSA and ESMA

TSP Opt. p-ACGA IQCCSA ESMA

Instances Best Mean Best Mean Best Mean

Err. Err. Err. Err. Err. Err.

Rate Rate Rate Rate Rate Rate

(%) (%) (%) (%) (%) (%)

eil51 426 0.20 1.10 0.0 1.7

eil76 538 1.30 2.50 1.3 2.7

eil101 629 0.20 2.80 3.5 4.6

st70 675 0.01 0.02 0.4 1.8

rd100 7 910 0.00 0.02 2.3 3.2

lin105 14 379 0.00 1.00 0.6 2.1

pr107 44 303 0.00 0.01 2.4 2.9

pr124 59 030 0.00 0.01 0.6 1.3

pr136 96 772 0.02 0.05 6.5 7.4

pr152 73 682 0.01 0.01 0.5 1.3

bier127 118 282 0.70 2.20 1.2 2.2

rat195 2 323 0.02 0.03 2.4 2.9

kroA200 29 368 1.00 3.20 1.3 2.0 8.2 10.60

kroA100 21 282 0.10 1.50 9.0 10.70

kroA150 26 524 1.30 3.60 4.5 6.40

pr299 48 191 1.70 3.80 7.2 10.20

pcb442 50 778 2.90 5.80 6.0 7.15

pcb1173 56 892 7.10 7.50 15.8 18.10

pcb3038 137 694 9.30 9.90 58.7 59.50

pr1002 259 045 6.10 7.30 13.4 15.20

pr2392 378 032 10.40 11.30 38.2 42.80

The main contribution of this paper is to demon-
strate that p-ACGA can be successfully extended to
deal with “hard” optimization problems such as the
TSP and the effectiveness and efficiency are largely im-
proved when compared with ACO and SGA. Our p-
ACGA for the TSP on small problem instances per-
forms very well with approximately 99% solution qua-
lity achieved. p-ACGA performed even better when
compared with RABNET-TSP and SME on large prob-
lem instances. The error rate of p-ACGA is only 2.99%
while 3.97% for RABNET-TSP and 4.37% for SME.
In summary, we developed a block mining approach by
pheromone updating to identify blocks from the elite
chromosomes. These blocks can be regarded as small
piece of puzzles because they are short, low-order and
come from the highly-fit chromosomes. A very effec-
tive method is developed in this research to identify
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these blocks explicitly. Finally, these blocks can be re-
combined to create better solutions. The experimental
results indicate p-ACGA is very effective and efficient.
It can be further extended to solve other COPs in the
future.
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