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linearity. Based on the complex nonlinear dynamics in the considered vehicles, a control-orientedmodel, which can retain the dominant features
of the higher-fidelitymodel, is adopted for the control design. First, the T-S fuzzy approach is utilized tomodel the nonlinear dynamic of flexible
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is considered. Then, based on the constructed T-S fuzzy model, a novel fuzzy integral sliding mode control method is proposed. This method
can eliminate the reaching phase of the traditional sliding mode control by designing a novel sliding surface. Moreover, by the parallel-
distributed compensation scheme, a sufficient condition is established to guarantee the global robust stability of the sliding mode dynamics
in the specified surface in the presence of unmatched uncertainties and disturbance. The reachability of the specified sliding surface is guaran-
teed by an adaptive sliding mode controller under input nonlinearity. Finally, simulation results are given to show the effectiveness of the pro-
posed control methods. DOI: 10.1061/(ASCE)AS.1943-5525.0000193. © 2013 American Society of Civil Engineers.
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Introduction

In response to the promising prospects for reliable affordable access to
space exploration and global reaching capabilities, air-breathing hy-
personic vehicles (AHVs) have drawn much attention in recent years
(Bertin and Cumming 2003). Such hypersonic flight technology,
which may enable cost-effective vehicle systems for use in space
launching, orbiting, and maneuvering, would translate to technical
improvements in military interceptors and tactical and strategic re-
connaissance, as well as in high-speed and orbital transport activities.

Because of the unique characteristics of AHVs dynamics, the
design of guidance and control systems for this type of vehicle is
a challenge (Bolender and Doman 2007). The couplings between
propulsive and aerodynamic forces are very strong, because
AHVs use the technology of airframe integrated with scramjet
engine configuration (Curran 2001). The aerodynamic forces are
significantly affected by the length, slender geometry, and flexibility
of the vehicle structure (McRuer 1991; Oppenheimer et al. 2007). In

addition, modeling inaccuracies and parameter uncertainties always
exist, as do various other disturbances. All of these can exert strong
adverse effects on the performance of AHVs control systems, so any
sensible control design for AHVs must provide robustness against
(possibly large) uncertainties and disturbances.

The modeling and controller design problems of AHVs have
been widely studied over the last few years. Because of the dy-
namics’ enormous complexity, only the longitudinal dynamics
models of AHVs have been used for control design. In Schmidt
(1992) and Chavez and Schmidt (1994), a comprehensive analytical
model of hypersonic vehicles was first developed. The model is
highly nonlinear, multivariable, and has strong couplings between
the propulsive and aerodynamic effects (Chavez and Schmidt 1999).
Robust controller design methods have been used to analyze this
model, such as, for example,H‘ andm-synthesis methods (Buschek
and Calise 1997), model reference adaptive control (Mooij 2001),
and linear parameter-varying control (Lind 2002). Several other
nonlinear control approaches were also proposed for this generic
vehicle model. For example, in Marrison and Stengel (1998) and
Wang and Stengel (2000), robust flight control systems with non-
linear dynamic inversion structures were synthesized via the sto-
chastic robustness analysis approach. An adaptive sliding controller
was also designed for the same model in Xu et al. (2004).

A flexible air-breathing hypersonic flight vehicle (FAHV) model,
which included theflexible dynamics,was developed inBolender and
Doman(2007, 2006). Based on thismodel, someflight-control design
problems have been studied in recent years. The equations of this
model will become exceedingly complex when flexibility effects are
considered, so this model can be used only for simulations or vali-
dation purposes (Oppenheimer et al. 2007; Williams et al. 2006). In
Parker et al. (2007), a control-oriented model was derived for the
FAHVmodel using curve fits calculated directly from the forces and
moments included in the truth model, and an approximate feedback
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liberalization example of control design was given to derive a non-
linear controller. In Sigthorsson et al. (2008), dynamic output feed-
back techniques were used to provide reference robust velocity and
altitude tracking control in the presence of model uncertainties and
varying flight conditions, and in Groves et al. (2006) and Sigthorsson
et al. (2006), linear controllers with input constraints using on-line
optimization and anti-windup techniques were also proposed. More
recently, a nonlinear robust adaptive control design method was
presented in Fiorentini et al. (2009), and in Wilcox et al. (2010), the
authors considered themodelingof aerothermoelastic effects andgave
a Lyapunov-based tracking controller (Lyapunov 1992).

Although many approaches have been presented, robust control
for the high nonlinear dynamics of FAHVs is still a problem.

Recently, the Takagi-Sugeno (T-S) (Tanaka and Wang 2001)
fuzzy approach has been successfully applied to the control and filter
designs of nonlinear systems, such as for the stabilization problem
(Wu and Zheng 2009; Zhao et al. 2009; Du and Zhang 2009), the
tracking problem (Zheng et al. 2002), and the filtering problem (Wu
andWang 2009; Li and Tseng 2009). The T-S modeling technique is
a very good representation for a certain class of nonlinear dynamic
systems (Feng 2006). Any smooth nonlinear function can be ap-
proximated by a T-S fuzzymodel to any specified accuracywith linear
rule consequence (Tanaka and Wang 2001). The T-S fuzzy model is
represented by a set of linear models by fuzzy IF-THEN rules and the
conventional linear control theories can be applied to analysis and
synthesis of nonlinear systems based on the parallel-distributed
compensation (PDC) scheme. In this paper, the T-S fuzzy control
will be implemented to develop efficient control approaches to the
tracking control of FAHVssubject to complexnonlinear and coupling.

Most of the proposed approaches for the control of FAHVs are
based on the assumption that the considered systems are characterized
by linear inputs, so the input dynamics can be reasonably approximated
by a linear model. However, in practice, the linear model is an ex-
ception, and the actuator seems to have a nonlinear character because of
its physical limitations. The presence of input nonlinearity in control
may cause serious influence on FAHV stability and performance, and
may even cause the FAHVs’ system to reflect unpredictable results.
Therefore, the effect of input nonlinearity cannot be ignored in the
analysis and realizationof controller design.The robust control problem
of uncertain multivariable systems with nonlinear input channels has
received remarkable attention because of ubiquitous input non-
linearities such as saturation, quantization, backlash, and dead-zones.
However, to our knowledge, the control problem for FAHVs in
containing the input nonlinearity has not been widely discussed.

Sliding mode control (SMC) is well known for its robustness to
parametric uncertainties and external disturbances, as long as the
uncertainties and disturbances satisfy the matched conditions (Hung
et al. 1993; Yong et al. 1999). However, when thematched condition
is not satisfied, the robustness cannot be guaranteed. A novel control
scheme called integral sliding mode control (ISMC) has been
studied in Chern and Wu (1991, 1992), Cheng and Liu (1999), and
Choi (2007), and the robustness of the system can be guaranteed
even if the matched conditions are not satisfied (Cao and Xu 2004;
Castacos and Fridman 2006; Utkin and Shi 1996). In Hsu (1999),
Hsu et al. (2004), Niu and Ho (2006), and Shyu et al. (2005), it has
been shown that SMC can overcome the limitations of systems with
multiple inputs containing both sector nonlinearities and dead-
zones. Therefore, in this paper, we will investigate a novel robust
control approach for FAHVs with multiple inputs containing sector
nonlinearities, dead-zones, and actuator saturation.

Motivatedby theprecedingdiscussions in the literature, in this paper,
we will propose a T-S model-based fuzzy integral sliding mode control
(FISMC) design approach for the longitudinal model of FAHVs. The
nonlinear dynamics of FAHVs are supposed to suffer from parameter

uncertainties, nonlinear perturbations, and input nonlinearity. First,
a T-S fuzzy model is constructed to represent the complex nonlinear
longitudinal model of a FAHV. The model of input nonlinearity is
considered; therefore, the model contains dead-zones, sector non-
linearities, and actuator saturation. A novel fuzzy integral-type sliding
surface is developed and the robustness of the equivalent dynamics on
the designed sliding surface is discussed. Based on the PDC scheme, an
equivalent control is designed and a sufficient condition is given to
guarantee the stabilization of the equivalent dynamics in the integral-
type sliding surface. An adaptive SMC law is then synthesized to
guarantee the reachability of the specified sliding surface in the presence
of input nonlinearity. Finally, an illustrative example is provided to
show the effectiveness of the proposed control design methods.

The rest of this paper is organized as follows: The fuzzy modeling
and control problem of FAHVs is presented in Problem Statement
and Preliminaries, followed by the Main Result presenting the
design of robust FISMC for the T-S model, then Simulation Results
and the Conclusion.

Problem Statement and Preliminaries

T-S Fuzzy Modeling of FAHVs

A longitudinal sketch of FAHVs is given in Fig. 1, and the nonlinear
dynamics of FAHVs considered in this paper was first developed by
Bolender and Doman (2007, 2006), which is shown as follows:

_h ¼ V sinðu2aÞ,
_V ¼ 1

m
ðT cosa2DÞ2 g sinðu2aÞ,

a ¼ 1
mV

ð2T sina2 LÞ þ Qþ 1
V
cosðu2aÞ,

_u ¼ Q,

Iyy _Q ¼ M,

€h1 ¼ 22§1v1 _h12v2
1h1 þ N1,

€h2 ¼ 22§2v2 _h22v2
2h2 þ N2

(1)

where T , L, D, and Ni 5 thrust, lift, drag, and generalized elastic
forces, respectively; and M 5 pitching moment. This nonlinear
model is composed of five rigid-body state variables: xðtÞ5 ðh, V ,
a, u, QÞT and four flexible states hðtÞ5 ðh1, _h1, h2, _h2ÞT . The
control input uðtÞ5 ðF, deÞT does not appear explicitly in the
equations. The preceding equations are exceedingly complex, so
these models should be used for simulations or validation purposes
only. Using curve-fits approximations, polynomial expressions of
the forces and moments T , L, D, M, N1, and N2 are constructed in
Parker et al. (2007), which are shown as follows:

L � 1
2
rV2SCLða, deÞ,

D � 1
2
rV2SCDða, deÞ,

M � zTT þ 1
2
rV2Sc

�
CM,aðaÞ þ CM,deðdeÞ

�
,

T � Ca3

T a3 þ Ca2

T a2 þ Ca
Taþ C0

T ,

N1 � Na2

1 a2 þ Na
1 aþ N0

1 ,

N2 � Na2

2 a2 þ Na
2 aþ Nd

2de þ N0
2

(2)
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with

r ¼ r0 exp

�
2ðh2 h0Þ

hs

�
,

CL ¼ Ca
Laþ Cde

L de þ C0
L,

CD ¼ Ca2

D a2 þ Ca
Daþ C

d2e
D d2e þ Cde

D de þ C0
D,

CM,a ¼ Ca2

M,aaþ Ca
M,adþ C0

M,a, CM,de ¼ cede,

Ca3

T ¼ b1

�
h, q

�
Fþ b2

�
h, q

�
, q ¼ 1

2
rV2,

Ca2

T ¼ b3

�
h, q

�
Fþ b4

�
h, q

�
,

Ca
T ¼ b5

�
h, q

�
Fþ b6

�
h, q

�
,

C0
T ¼ b7

�
h, q

�
Fþ b8

�
h, q

�

(3)

The polynomial expressions of the forces and moments, while
retaining the relevant dynamics feature of Eq. (1), simplify the
control design and stability analysis of FAHVs, so in this paper, they
are utilized to develop the controller.

By inserting Eqs. (2) and (3) into Eq. (1), the nonlinear equations
can be rewritten in an affine nonlinear form, that is

_xðtÞ ¼ f ½xðtÞ� þ g½xðtÞ�uðtÞ,
yðtÞ ¼ CxðtÞ (4)

where xðtÞ5 ðh,V ,a, u,Q,h1, _h1,h2, _h2ÞT , uðtÞ5 ðF, deÞT , and

C ¼
�
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

�
(5)

The nonlinear dynamic of FAHVs is highly complex, so it is diffi-
cult to design a controller directly. The T-S fuzzy model is said to be
efficient for approaching a nonlinear system at any precision, so in
this paper, we will construct a T-S fuzzy model for the nonlinear
hypersonicvehicle systemfromEq. (1).When establishing the fuzzy
model, the T-S fuzzy modeling technique expressed in Teixeira and
Zak (1999) is employed. This paper gives a novel approach for
constructing a T-S fuzzy model by utilizing the mathematical ap-
proximation method. Simultaneously, we will consider the system

with parameter uncertainties and disturbances. The system Eq. (4)
can be represented by the following linear models:

If z1ðtÞ5Mi
1 and z2ðtÞ5Mi

2 . . . zpðtÞ5Mi
p, then

_xðtÞ ¼ ðAi þ DAiÞxðtÞ þ BiuðtÞ þ DiˆðtÞ,
yðtÞ ¼ CxðtÞ (6)

where zðtÞ5 ½z1ðtÞ z2ðtÞ . . . zpðtÞ� 5 premise variables; Mi
1, . . .M

i
p

5 fuzzy sets; Ai, Bi, C, and Di 5 known constant matrices; DAi

5 unknown parameter uncertainty of Ai; and ˆðtÞ 5 uncertain
extraneous disturbance or the nonlinearity. Then, the T-S fuzzy
model representing the nonlinear hypersonic vehicle model from
Eq. (1) can be inferred as follows:

_xðtÞ ¼ Pl
i¼1

miðzÞ½ðAi þ DAiÞxðtÞ þ BiuðtÞ þ DiˆðtÞ�,
yðtÞ ¼ CxðtÞ

(7)

where l 5 number of the fuzzy rules and

miðzÞ ¼
miðzÞPl
i¼1miðzÞ

, miðzÞ ¼ ∏
q

j¼1
Mi

jðzÞ

with miðtÞ$ 0, i5 1, . . . , l and
Pl

i5 1 miðtÞ5 1.
For description brevity, the preceding equation can be written as

_xðtÞ ¼ �
Am þ DAm

�
xðtÞ þ BmuðtÞ þ DmˆðtÞ,

yðtÞ ¼ CxðtÞ (8)

where

Am ¼ Pl
i¼1

miðtÞAi,

Bm ¼ Pl
i¼1

miðtÞBi,

DAm ¼ Pl
i¼1

miðtÞDAi,

Dm ¼ Pl
i¼1

miðtÞDi

Fig. 1. Geometry of the flexible hypersonic vehicle model
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Input Nonlinearity Model

The input nonlinearity under consideration can be described by the
following mathematical model:

cp½upðtÞ� ¼
cþ
p ½upðtÞ�

�
upðtÞ2 uþp

�
, up . uþp

0, 2u2p # up # uþp
c2
p ½upðtÞ�

�
upðtÞ þ u2p

�
, up , 2u2p

8><
>: (9)

where c1
p ½upðtÞ�. 0 and c2

p ½upðtÞ�. 0 5 nonlinear functions of
upðtÞ; upðtÞ 5 inputs of FAHVs; p5F and de; and u1p . 0 and
u2p . 0 5 known constants.

Assumption 1
The input nonlinear functions c1

p ½upðtÞ� and c2
p ½upðtÞ� satisfy

aþ
p

�
upðtÞ2 uþp

�
#cþ

p ½upðtÞ�#bþ
p

�
upðtÞ2 uþp

�
, upðtÞ. uþp

b2
p

�
upðtÞ þ u2p

�
#cþ

p ½upðtÞ�#a2
p

�
upðtÞ2 u2p

�
, upðtÞ,2u2p

(10)

where a1
p , b1

p , a
2
p , and b2

p (called gain reduction tolerances)
5 known constants.

In addition, both of the control inputs are constrained by a satu-
ration value, expressed by

2upmin#cp½upðtÞ�# upmax

Each of the inputs has a separate saturation limit, but because the real
value of the input cp½upðtÞ� is unknown in practice, it is difficult to
define a saturation function directly for each component of c½uðtÞ�.
Because the nonlinear functions of the input satisfy Eq. (10), the
saturation function satðuÞ is defined as

satfcp½upðtÞ�g ¼ ap½upðtÞ�cp½upðtÞ�

where 0, ap½upðtÞ�# 1 and

ap½upðtÞ� ¼

upmax

cp½upðtÞ�
, bþ

p

�
upðtÞ2 uþp

�
. upmax

1,
0#bþ

p

�
upðtÞ2 uþp

�
# upmax

or2 upmin#b2
p

�
upðtÞ2 u2p

�
, 0

upmin

cp½upðtÞ�
, b2

p

�
upðtÞ2 u2p

�
, 2upmin

8>>>>>>>>><
>>>>>>>>>:

(11)

Remark 1: Obviously, the saturation functions described in Eq. (11)
constitute an approximate approach. Under the unknown nonlinear
input, the approach can provide a effective way to the saturation
problem.

The nonlinear input function is shown in Fig. 2.
Hence, by considering the input nonlinearity problem, the fuzzy

systems in Eq. (7) can be transformed into

_xðtÞ ¼ Pl
i¼1

miðzÞ½ðAi þ DAiÞxðtÞ þ Bisatfc½uðtÞ�g þ DiˆðtÞ�,
yðtÞ ¼ CxðtÞ

(12)

Remark 2: From the model presented in Eqs. (9) and (10), we can
see that this kind of mathematical model can represent not only

dead-zones but also sector nonlinearities. From a practical point of
view, the parameters u1p and u2p are not required to be equivalent, so
a1
p and a2

p are not required to be equivalent either.
Remark 3: In practice, the fuel/air F may have a sector nonlinear
character, but based on the exit of friction and derived delay, the
elevator deflection de would suffer both from dead-zones and sector
nonlinearities.

Model Reference Control Objective

For the purpose of model reference, the reference model of the fuzzy
system in Eq. (12) can be defined by

Rule i: If z1ðtÞ5Mi
1, z2ðtÞ5Mi

2 . . . zpðtÞ5Mi
p,

then

_xmðtÞ ¼ AmixmðtÞ þ BmirðtÞ (13)

where xmðtÞ 2Rn 5 state of the reference model; rðtÞ 2Rm

5 known, piecewise continuous and bounded reference input;
and Ami and Bmi 5 known and real constant matrices with ap-
proximate dimensions. In addition, Ami is assumed to be a stable
matrix.

The vector of the tracking error is defined as

eðtÞ ¼ xðtÞ2 xmðtÞ (14)

By differentiating Eq. (14) with respect to time and considering
Eqs. (12) and (13), the dynamic equation of tracking error can be
described by

Rule i: If z1ðtÞ5Mi
1, z2ðtÞ5Mi

2 . . . zpðtÞ5Mi
p,

then

_eðtÞ ¼ AmieðtÞ þ Bisatfc½uðtÞ�g þ ðAi þ DAi 2AmiÞxðtÞ
2BmirðtÞ þ DiˆðtÞ (15)

The overall tracking error system is given by

Fig. 2. Nonlinear input function
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_eðtÞ ¼ Pl
i¼1

miðtÞ½AmieðtÞ þ Bisatfc½uðtÞ�g

þ ðAi þ DAi2AmiÞxðtÞ2BmirðtÞ þ DiˆðtÞ�,

¼ Pl
i¼1

miðtÞ½AmieðtÞ þ Bisatfc½uðtÞ�g þ xiðtÞ�

(16)

where xiðtÞ5 ðAi 2AmiÞxðtÞ2BmirðtÞ1DAixðtÞ1DiˆðtÞ.
To ensure the achievement of model reference’s objective, the

following assumptions are necessary.

Assumption 2
The pairs (Ami, Bi) and (Ai, Bi) are controllable.

Assumption 3
Matrix Bi is of full column rank.

Assumption 4
There exist positive scalars r0 and r1 such that kxiðtÞkmax #r0
1 r1 keðtÞk for all i5 1, 2, . . . , 9.

Remark 4: Assumption 4 means that xiðtÞ is not necessary to
satisfy the matched condition, but it satisfies kxiðtÞkmax #r0
1 r1 keðtÞk.

The main objective of this paper is to design a fuzzy model ref-
erence controller, such that the states of Eq. (12) track those of the
reference model in the asymptotic sense. In addition, the globally
asymptotic stability of the system Eq. (16) should be guaranteed
even with the existence of parameter uncertainties and extraneous
disturbance.

Main Result

In this paper, a FISMC technique will be utilized to stabilize the
tracking error’s dynamics in Eq. (16). By the FISMC, the ro-
bustness of the system can be guaranteed even if the uncertainties
and disturbance do not satisfy the matched condition. To this end,
in this section, a fuzzy integral sliding surface for the T-S fuzzy
mode will be designed, and the robustness of this sliding surface
will be guaranteed by designing a controller based on the PDC
scheme.

Integral Sliding Mode Design and Stability Analysis

Choose the following integral-type sliding surface:
Rule i: If z1ðtÞ5Mi

1, z2ðtÞ5Mi
2 . . . zpðtÞ5Mi

p,
then

siðtÞ ¼ Gi

�
½eðtÞ2 eðt0Þ�2

ðt
t0

½AmieðtÞ þ BiKieðtÞ�dt
	

(17)

where Gi 2Rm3 n and Ki 2Rn3m 5 constant matrices to be de-
signed. The matrices Ki and Gi are to be designed such that the
matrix (Ami 1BiKi) is Hurwitz (Wang et al. 1994) and the matrix
GiBi is nonsingular. Then, the overall sliding surface can be de-
scribed as

sðtÞ ¼ P9
i¼1

miðtÞsiðtÞ (18)

Note that s½xðt0, t0Þ�5 0. The integral sliding mode Eq. (18) con-
verges to zero at the beginning (i.e., the reaching phase is elimi-
nated). When the state trajectories of the system enter the sliding
surface, we have siðtÞ5 0 and _siðtÞ5 0; that is

_siðtÞ ¼ Gi½AmieðtÞþ Bisatfc½uðtÞ�gþ xiðtÞ2 ½AmieðtÞþ BiKieðtÞ��,
¼ GiBiðsatfc½uðtÞ�g2KieðtÞÞ þ GixiðtÞ ¼ 0

(19)

Then the ith equivalent control sat fc½uðtÞ�geqi is obtained as

satfc½uðtÞ�geqi ¼ KieðtÞ2 ðGiBiÞ21GixiðtÞ (20)

The ith sliding mode dynamics can be obtained by substituting
Eq. (20) into Eq. (15), that is,

Rule i: If z1ðtÞ5Mi
1, z2ðtÞ5Mi

2⋯zpðtÞ5Mi
p,

then

_eðtÞ ¼
n
AmieðtÞ þ BiKieðtÞ þ

h
I2BiðGiBiÞ21Gi

i
xiðtÞ

o
(21)

Remark 5: From the preceding analysis, it can be seen that the
nonlinear inputs in the sliding mode dynamics possess the same
property as those without. Therefore, the nonlinear inputs have no
effect on sliding mode dynamics.

In the following, we will consider xiðtÞ as an unmatched per-
turbation, and design the fuzzy equivalent controller parameterKi to
stabilize the nominal case of the preceding sliding mode dynamics.
Before proceeding, the matrix Gi should meet the following two
constraints:
1. GiBi is invertible; and
2. The norm of ½I2BiðGiBiÞ21Gi�xiðtÞ is minimized.

Remark 6: The first constraint is a necessary condition for the exit of
sliding surface and the second is for minimizing the influence of
xiðtÞ.
Lemma 1 (Castacos and Fridman 2006). For the sliding mode
dynamics Eq. (21), Gi 5B1

i 5 ðBT
i BiÞ21BT

i satisfies the previously-
mentioned two constraints. By choosing Gi 5B1

i , the norm of
½I2BiðGiBiÞ21Gi�xiðtÞ can beminimized, and its Euclidean norm is
not bigger than the original one.

Based on Lemma 1, the overall sliding mode dynamics can be
described by

_eðtÞ ¼ Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ
�
AmieðtÞ þ BiKjeðtÞ þ vðtÞ� (22)

where kvðtÞk 5max½kxiðtÞk , i5 1, 2, . . . , 9�.
In the following, wewill consider the design of fuzzy equivalent

controller parameter Ki. For a T-S fuzzy system, the PDC offers
a procedure to design a fuzzy controller. In the PDC design, each
control rule is designed from the corresponding rule of a T-S fuzzy
model. The designed fuzzy controller shares the same fuzzy sets
with the fuzzy model in the premise parts. In this paper, our main
work is to design a SMC such that the tracking errors
eðtÞ5 xðtÞ2 xmðtÞ converge to zero. However, there is unmatched
perturbation in Eq. (22). To this end, the following H‘ tracking
performance related to the tracking error vector eðtÞ in Eq. (22) is
set as follows:

ð‘
0

eTðtÞVeðtÞ dt#r2
ð‘
0

vTðtÞvðtÞ dt (23)
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or

ð‘
0

eTðtÞVeðtÞ dt

ð‘
0

vTðtÞvðtÞ dt
#r2 (24)

wherevðtÞ 2L2ð0,‘Þ;V5 positive definite weighting matrix; and
r 5 prescribed attenuation level.

The physical meaning of Eq. (23) [or Eq. (24)] is that the effect
of any vðtÞ on tracking error eðtÞ5 xðtÞ2 xmðtÞmust be attenuated
below a desired level r from the viewpoint of energy, nomatter what
vðtÞ is [i.e., the gain from vðtÞ to eðtÞ5 xðtÞ2 xmðtÞ must be equal
to, or less than, a prescribed value r].

To design the robust controller, the following lemmas are
necessary:
Lemma 2 (Petersen 1987). Let X and Y 5 real matrices (or vectors)
of appropriate dimensions; then for any scalar ɛ. 0, we have

XTY þ YTX# ɛXTX þ ɛ21YTY

Lemma 3 (Tuan et al. 2001). The parameterized linear matrix
inequalities,

Pk
i¼1

Pk
i¼1

mimjMij , 0

are fulfilled, if the following condition holds:

Mii, 0,

1
k2 1

Mii þ 1
2

�
Mij þMji

�
, 0, 1# i� j# k

Theorem 1. Consider the system in Eq. (16) with the designed
sliding surface in Eq. (18) and Assumptions 2–4. If there exist
matrices X. 0, Yi, and a scalar r. 0 satisfying

Qii , 0, i ¼ 1, 2, . . . , l (25)

1
k2 1

Qii þ 1
2

�
Qij þQji

�
, 0, 1# i� j# l (26)

where

Qij ¼
"
AmiX þ XTAmi þ BiYj þ YT

j B
T
i þ r22I X

XT 2V21

#
(27)

then the slidingmode dynamics in Eq. (22) is robustly stable and the
H‘ performance in Eq. (23) or Eq. (24) is guaranteed for a prescribed
performance index r. Moreover, the desired fuzzy controller gain
matrices Ki is given by

Ki ¼ YiX
21

Proof. Defining P5X21, pre- and post-multiplying Eq. (27) by
diag



X21 I I

�
and its transpose, respectively, we have

Q̂ij ¼
"
P
�
Ami þ BiKj

�þ �
Ami þ BiKj

�T
Pþ r22PP I

I 2V21

#

So Eqs. (25) and (26) are equal to

Q̂ii, 0, i ¼ 1, 2, . . . , 9,

1
k2 1

Q̂ii þ 1
2

�
Q̂ij þ Q̂ji


, 0, 1# i� j# 9

According to Lemma 3, if the preceding inequalities hold, the fol-
lowing inequality is guaranteed:

Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ
�
P
�
Ami þ BiKj

�þ �
Ami þ BiKj

�T
Pþ r22PP I

I 2V21

�
, 0

Using the Schur complement, the preceding inequality is equivalent
to

Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ
h
P
�
Ami þ BiKj

�þ �
Ami þ BiKj

�T
P

þ r22PPþV
i
, 0 (28)

Choose the following Lyapunov function for system Eq. (22):

VðtÞ ¼ eTðtÞPeðtÞ (29)

and taking the time derivative of VðtÞ along with the solution of
Eq. (22) with vðtÞ5 0, we have

_VðtÞ ¼ 2eTðtÞP _eðtÞ

¼ 2eTðtÞP
(Pl

i¼1

Pl
i¼1

miðtÞmjðtÞ
�
AmieðtÞ þ BiKjeðtÞ

�)

¼ Pl
i¼1

Pl
i¼1

miðtÞmjðtÞeTðtÞ
h
P
�
Ami þ BiKj

�

þ �
Ami þ BiKj

�T
P
i
eðtÞ

(30)

Considering V. 0 and P. 0, it follows that r22PP1V. 0.
Therefore, from Eq. (28) we obtain

Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ
h
P
�
Ami þ BiKj

�þ �
Ami þ BiKj

�T
P
i
, 0
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which means that

_VðtÞ ¼Pl
i¼1

Pl
i¼1

miðtÞmjðtÞeTðtÞ
h
P
�
Ami þ BiKj

�
þ �

Ami þ BiKj
�T
P
i
eðtÞ, 0

Therefore, the sliding mode dynamics equation, Eq. (22), is as-
ymptotically stable with vðtÞ5 0.

Next, we shall establish the H‘ performance of sliding mode
dynamics Eq. (22). It can be shown that for any nonzero
vðtÞ 2 L2½0,‘Þ and t. 0,

ð‘
0

eTðtÞQeðtÞdt ¼ eTð0ÞPeð0Þ2 eTð‘ÞPeð‘Þ þ
ð‘
0

h
eTðtÞVeðtÞ þ _eT ðtÞPeðtÞ þ d

dt
eTðtÞPeðtÞ

i
dt

#

ð‘
0

h
eTðtÞVeðtÞ þ _eTðtÞPeðtÞ þ eTðtÞP _eðtÞ

i
dt ¼

ð‘
0

Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ
n�

AmieðtÞ þ BiKjeðtÞ þ vðtÞ�TPeðtÞ

þ eTðtÞP�AmieðtÞ þ BiKjeðtÞ þ vðtÞ�þ eTðtÞVeðtÞ
o
dt

¼
ð‘
0

Pl
i¼1

Pl
i¼1

miðtÞmjðtÞ


eT ðtÞ�P�Ami þ BiKj

�þ �
Ami þ BiKj

�T
PþV

io
eðtÞvTðtÞPeðtÞ þ eTðtÞPvðtÞdt

Using Lemma 2, we haveð‘
0

h
vTðtÞPeðtÞ þ eTðtÞPvðtÞ

i
dt,

#r2
ð‘
0

vTðtÞvðtÞdt þ r22
ð‘
0

eTðtÞPPeðtÞdt

Considering Eq. (28), we have

ð‘
0

eTðtÞQeðtÞdt#r2
ð‘
0

vTðtÞvðtÞdt

Therefore, the tracking control performance is achieved with a pre-
scribed level r. The proof is completed.

To obtain a better tracking performance, the tracking control
problem can be obtained by solving the following optimal problem:

min
X. 0

r s:t: linear matrix inequality ðLMIÞ Eqs: ð25Þ2ð27Þ
(31)

Adaptive Controller Design

After designing the sliding surface, the next phase of the traditional
SMC is to design an appropriate SMC law, such that the error dy-
namics will be driven onto the sliding surface and remain there.
When utilizing the conventional SMC technique, to design a control
law with the switching part dominating the influence of perturba-
tions, the upper bound of kxiðtÞkmax should be known (Hung et al.
1993; Yong et al. 1999). For the system from Eq. (16), kxiðtÞkmax

#r0 1 r1 keðtÞk, the parameters r0 and r1 should be known for
designing the sliding mode controller. However, in practice it is
difficult to obtain r0 and r1. In this section, an adaptive law will
be designed to estimate r0 and r1, thus an adaptive sliding mode
controller for the system from Eq. (16) will be synthesized. Because
0,ap½upðtÞ�# 1, there always exists a constant gp that satisfies

0, gp # ap½upðtÞ�# 1

Choose g5minðgF,gdeÞ, then g# ap½upðtÞ�# 1 is always satis-
fied. The following designed controller will also provide an adaptive
law to deal with the saturation problem.

Let r̂0ðtÞ, r̂1ðtÞ, and ĝðtÞ represent the estimate of r0, r1, and g,
respectively. The adaptive SMC that drives the system dynamics
onto the sliding surface can be designed as

upðtÞ ¼

8>>>>>><
>>>>>>:

2kpĝðtÞnðtÞ spðtÞ
ksðtÞk2 u2p , sp . 0

0, sp ¼ 0

2kpĝðtÞnðtÞ spðtÞ
ksðtÞk þ uþp , sp , 0

(32)

where kp . 1=lp,lp 5minfa1
p , a2

p g, nðtÞ5 r̂0ðtÞ1 r̂1ðtÞkeðtÞk.
The adaptive laws are designed as follows:

_̂r0ðtÞ ¼ q1ksðtÞk, _̂r1ðtÞ ¼ q2ksðtÞkkeðtÞk (33)

with r̂0ð0Þ5 r̂1ð0Þ5 0, where q1 and q2 5 adjustable positive
constants. The value ĝðtÞ is the solution of the following linear
differential equation:

_̂gðtÞ ¼ bĝ3ðtÞnðtÞksðtÞk

with ĝð0Þ5 g0, where g0 5 bounded positive initial value of ĝðtÞ,
b. 0; the rest will be defined later.
Theorem 2. Consider the uncertain tracking dynamic system de-
scribed by Eq. (16) with input nonlinearity in Eq. (9) under
Assumptions 1–4; suppose that the integral sliding surface is given
in Eq. (18), with Gi 5B1

i , Ki satisfying LMI Eqs. (25)–(27). If the
system is controlled by Eq. (32) with adaptive laws in Eqs. (33), then
the reachability of the sliding surface sðtÞ5 0 is guaranteed.
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Proof. Considering Eqs. (9) and (10), when upðtÞ, 2u2p for
sp . 0,

�
upðtÞþ u2p

�
sat



c2
p ½upðtÞ�

� ¼ 2kpĝðtÞnðtÞ
spðtÞsat



c2
p ½upðtÞ�

�
ksðtÞk

$a2
p k

2
pgĝ

2ðtÞn2ðtÞ s2pðtÞ
ksðtÞk2

and for upðtÞ. u1p for sp , 0

�
upðtÞ2 uþp

�
sat



cþ
p ½upðtÞ�

� ¼ 2kp~gðtÞnðtÞ
spðtÞsat



c2
p ½upðtÞ�

�
ksðtÞk

$aþ
pk

2
pgĝ

2ðtÞn2ðtÞ s2pðtÞ
ksðtÞk2

Hence, we can get that for all spðtÞ

spðtÞsatfcp½upðtÞ�g# 2lpkpgĝðtÞnðtÞ s2pðtÞ
ksðtÞk

wherekp . 1=lp,lp 5minfa1
p , a

2
p g. Then, for the overall sliding

surface

sTðtÞsatfc½uðtÞ�g ¼ sTFðtÞsatfcF½uFðtÞ�g þ sTdeðtÞsat


cde

�
udeðtÞ

��

#2 lFkFĝðtÞnðtÞ
sTFðtÞsFðtÞ
ksðtÞk

2 lde kde ĝðtÞnðtÞ
sTdeðtÞsdeðtÞ
ksðtÞk

#2bgĝðtÞnðtÞksðtÞk
(34)

whereb5minflFkF, lde kdeg. Because kp . 1=lp, b. 1 is always
satisfied.

Choose the Lyapunov function as

VðtÞ ¼ sðtÞTsðtÞ
2

þ 1
2
~g2ðtÞ þ 1

2q1
~r20ðtÞ þ 1

2q2
~r21ðtÞ (35)

where ~r0ðtÞ5 r0 2 r̂0ðtÞ, ~r1ðtÞ5 r1 2 r̂1ðtÞ, and ~gðtÞ5g2 ĝ21ðtÞ.
Note that _~r0ðtÞ5 2 _̂r0ðtÞ, _~r1ðtÞ5 2 _̂r1ðtÞ, and _~gðtÞ5 ĝ22ðtÞ _̂gðtÞ.
By using Eqs. (19) and (34), we have

_VðtÞ ¼ sTðtÞ_sðtÞ þ ~gðtÞ _~gðtÞ2 1
q1

~r0ðtÞ _̂r0ðtÞ2 1
q2

~r1ðtÞ _̂r1ðtÞ ¼ sTðtÞ
(Pl

i¼1
miðtÞðsatfc½uðtÞ�g2KieðtÞÞ þ xi½xðtÞ, t�

)

þ ~gðtÞ _~gðtÞ2 1
q1

~r0ðtÞ _̂r0ðtÞ2 1
q2

~r1ðtÞ _̂r1ðtÞ ¼ sT ðtÞsatfc½uðtÞ�g2 Pl
i¼1

miðtÞ


sTðtÞKieðtÞ2 sTðtÞxi½xðtÞ, t�

�þ ~gðtÞ _~gðtÞ

2 1
q1

~r0ðtÞ _̂r0ðtÞ2 1
q2

~r1ðtÞ _̂r1ðtÞ#2bgĝðtÞnðtÞksðtÞk2 Pl
i¼1

miðtÞksðtÞkkKikkeðtÞk þ ksðtÞkðr0 þ r1keðtÞkÞ þ ~gðtÞĝ22ðtÞ _̂gðtÞ

2 1
q1

~r0ðtÞ _̂r0ðtÞ2 1
q2

~r1ðtÞ _̂r1ðtÞ#2bnðtÞksðtÞk2 Pl
i¼1

miðtÞksðtÞkkKikkeðtÞk þ ksðtÞkðr0 þ r1keðtÞkÞ

2 ~r0ðtÞksðtÞk2 ~r1ðtÞksðtÞkkeðtÞk#2
�
b2 1

h
r̂0ðtÞ þ r̂1ðtÞkeðtÞk

i
ksðtÞk2 Pl

i¼1
miðtÞksðtÞkkKikkeðtÞk

Note that r̂0ð0Þ5 r̂1ð0Þ5 0; _̂r0ðtÞ. 0; _̂r1ðtÞ. 0; and for t. 0,
r̂0ðtÞ. 0 and r̂1ðtÞ. 0. Then for t. 0

_VðtÞ, 0

Therefore, the adaptive control law from Eq. (32) can drive the
system dynamics onto the sliding surface Eq. (18). The proof is
completed.
Remark 7: For the sliding mode control system, chattering is
a common phenomenon (Hung et al. 1993), which is usually caused
by the term of spðtÞ=ksðtÞk in the slidingmode controller of Eq. (32).
To reduce the chattering phenomenon, one simple and useful way is
to replace the term spðtÞ=ksðtÞk by spðtÞ=ksðtÞk1 d, where d is an
adjustable scalar.

Simulation Results

In this section, a numerical example is given to test the effectiveness
of the proposed fuzzy adaptive FISMC. The parameter values of

FAHVs model are borrowed from Parker et al. (2007). The equi-
librium point of the nonlinear vehicle dynamics is listed in Table 1.
When constituting the fuzzymodel, the output y5 ½V , h�T is selected
as the determinant of the premise variables, and for the application of
the method expressed in Teixeira and Zak (1999), three levels are
chosen for every premise variable: a lower bound, an upper bound,
and an equilibrium point, which are named small (S), big (B), and
middle (M), respectively. The low and high bounds of V and h
are chosen as VB 5 9,000 ft=s, Vs 5 6,400 ft=s, hB 5 10,000 ft, and

Table 1. Trim Point

State Value State Value State Value

h 85,000 ft h1 1.5122 F 0.2514
V 7,702:0808 ft×s21 _h1 0 de 11.4635
a 1.5153� h2 1.2144
u 1.5153� _h2 0
Q 0�×s21
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hS 5 7,000 ft. Other states are chosen according to the flight en-
velope. Then the T-S fuzzy model can be constructed by using the
modeling method described in Main Result. The fuzzy membership
functions of V and h are defined as follows:

if V .VM ,

mSðVÞ ¼ 0,

mMðVÞ ¼ 12mBðVÞ,
mBðVÞ ¼ exp

h
23:5� 10212jVðtÞ2VBj4

i

if V ,VM ,
mSðVÞ ¼ exp

h
23:5� 10212jVðtÞ2VSj4

i
,

mMðVÞ ¼ 12mBðVÞ,
mBðVÞ ¼ 0

if h. hM ,

mSðhÞ ¼ 0,

mMðhÞ ¼ 12mBðhÞ,
mBðhÞ ¼ exp

h
22:44� 10216jhðtÞ2 hBj4

i

if h, hM ,
mSðhÞ ¼ exp

h
22:44� 10216jhðtÞ2 hSj4

i
,

mMðhÞ ¼ 12mbðhÞ,
mBðhÞ ¼ 0

The membership functions of the fuzzy model are shown in Figs. 3
and 4. Fig. 3 shows the membership functions of h and Fig. 4 shows
that of V . The input nonlinearity model of a FAHV is chosen as the
following:

cF½uFðtÞ� ¼

(
½uFðtÞ2 0:1�f1þ 0:1� sin½uFðtÞ2 0:1�g, uFðtÞ. 0:1

0, 20:1# uFðtÞ# 0:1

½uFðtÞ þ 0:1�f1þ 0:1� cos½uFðtÞ þ 0:1�g, uFðtÞ, 20:1

(36)

cde

�
udeðtÞ

� ¼
( �

udeðtÞ2 3
�

1þ 0:1� sin

�
udeðtÞ2 3

��
, udeðtÞ. 3

0, 23# udeðtÞ# 3�
udeðtÞ þ 3

�

1þ 0:1� cos

�
udeðtÞ þ 3

��
, udeðtÞ, 23

(37)

Fig. 3. Membership functions of h
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Then the gain reduction tolerances of the plant,a1
p , b

1
p , a

2
p , and b

2
p ,

can be derived, where a1
p 5a2

p 5 0:9 and b1
p 5b2

p 5 1:1. Because
the T-S model is derived from regional linearization, with respect
to the trim point, the actuator saturation value uFmax 5 0:7 and
ude max 5 9�.

The nonlinear model Eq. (1) can then be represented by a nine-
rule T-S fuzzy model. The details of constructing the T-S fuzzy
model for FAHVs is omitted here, which can be found in our
previous work.
Rule 1. If V is small (VS) and h is small (hS), then

_xðtÞ ¼ ðA1 þ DA1ÞxðtÞ þ B1satfc½uðtÞ�g þ D1ˆðtÞ,
yðtÞ ¼ C1xðtÞ

Rule 2. If V is small (VS) and h is middle (hM), then

_xðtÞ ¼ ðA2 þ DA2ÞxðtÞ þ B2satfc½uðtÞ�g þ D2ˆðtÞ,
yðtÞ ¼ C2xðtÞ

Rule 3. If V is small (VS) and h is big (hB), then

_xðtÞ ¼ ðA3 þ DA3ÞxðtÞ þ B3satfc½uðtÞ�g þ D3ˆðtÞ,
yðtÞ ¼ C3xðtÞ

Rule 4. If V is middle (VM) and h is small (hS), then

_xðtÞ ¼ ðA4 þ DA4ÞxðtÞ þ B4satfc½uðtÞ�g þ D4ˆðtÞ,
yðtÞ ¼ C4xðtÞ

Rule 5. If V is middle (VM) and h is middle (hM), then

_xðtÞ ¼ ðA5 þ DA5ÞxðtÞ þ B5satfc½uðtÞ�g þ D5ˆðtÞ,
yðtÞ ¼ C5xðtÞ

Rule 6. If V is middle (VM) and h is big (hB), then

_xðtÞ ¼ ðA6 þ DA6ÞxðtÞ þ B6satfc½uðtÞ�g þ D6ˆðtÞ,
yðtÞ ¼ C6xðtÞ

Rule 7. If V is big (VB) and h is small (hS), then

_xðtÞ ¼ ðA7 þ DA7ðtÞÞxðtÞ þ B7satfc½uðtÞ�g þ D7ˆðtÞ,
yðtÞ ¼ C7xðtÞ

Rule 8. If V is big (VB) and h is middle (hM), then

_xðtÞ ¼ ðA8 þ DA8ÞxðtÞ þ B8satfc½uðtÞ�g þ D8ˆðtÞ,
yðtÞ ¼ C8xðtÞ

Rule 9. If V is big (VB) and h is big (hB), then

_xðtÞ ¼ ðA9 þ DA9ÞxðtÞ þ B9satfc½uðtÞ�g þ D9ˆðtÞ,
yðtÞ ¼ C9xðtÞ

The main control objective is to track a set step with respect to
a trim condition, which is a reasonable requirement for this kind of
vehicle. The input reference commands are chosen as step inputs, so
each command will pass through a prefilter as

Fig. 4. Membership functions of V
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HðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

where z 5 damping ratio and vn 5 natural frequency and are as-
sumed to be 0:9 and 0:01 rad=s, respectively. The output of the

prefilter is defined as a reference input of the reference model.
In the simulation, we choose Am1 5Am2 5⋯5Am9 5Am and
Bm1 5Bm2 5⋯5Bm9 5Bm. Based on the method proposed in
Dong et al. (2010), thematricesAm andBm of the referencemodel are
chosen as

Am ¼

2
666666666666666664

0 0 27,702 7,702 0 0

23:162 20:62 18,253:45 221,295:5 2441:1 90:6

1:434� 1024 1:633� 1024 0:881 21:055 0:949 21:165� 1024

0 0 0 0 1 0

20:03336 0:01556 210:91 2236:47 28:23 0:477

0 0 0 0 0 0

0 0 4,648 0 0 2272:3

0 0 0 0 0 0

0 0 2,598 0 0 0

0 0

26:95 21:9

4:311 28:329� 1024

0 0

20:0326 20:106

1 0

20:66 0

0 0

0 2400

0

27:5

3:75� 1025

0

20:036

0

0

1

20:8

3
777777777777777775

Bm ¼
�
0 3:165 1:437� 1024 0 0:0336 0 0 0 216:99
0 0:599 21:65� 1024 0 20:0158 0 0 0 17:95

�T

The modeling of parameter uncertainties is similar to Buschek
and Calise (1997), and in this work, the parameters of Ca

L , C
de
L ,

C0
L, C

a2

D , Ca
D, C

d2e
D , Cde

D , C
0
D, C

a2

M,a, C
a
M,a, C

0
M,a, and CM,de are assumed

to be uncertain, and these uncertainties are assumed to lie within
610% of nominal values, respectively. The uncertainty of S lies
within 65% of nominal value, as does the mean aerodynamic chord

Fig. 5. Tracking performances of closed-loop
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c. According toGibson et al. (2009), the disturbanceˆðtÞ is assumed
to be bounded, which can be regarded as a gust of wind in aerospace.
Here we choose a random disturbance, described by

ˆðtÞ ¼ dmaxNð•Þ

whose maximum absolute dmax 5 0:1 and Nð•Þ 5 normal distri-
bution with mean zero and SD 1.

Suppose the weighting matrix V5 13 1026 I. By solving LMI
Eqs. (25)–(27), the controller gain matrices can be obtained. For the
adaptive SMC law, the parameters are set to be ðq1, q2, and dÞ
5 ð0:001, 0:0001, and 0:01Þ.

In simulation, to illustrate the effectiveness of the proposed
controller, we will use the original nonlinear model (not the linear
model) to test the performance of the control system. The parameter
uncertainties are set to be 10 or 5% of the nominal case, respectively.
Here, we consider a climbing maneuver with longitudinal acceler-
ation using separate reference commands for altitude and velocity.
In the simulation, the reference commands for velocity and altitude
are chosen as 300 and 3,000 ft, respectively.

The effectiveness and tracking performance of the proposed
controller are shown in Figs. 5 and 6. From the figures, we can see
that the controller provides stable tracking of the reference trajec-
tories. More specifically, the tracking performance for the velocity
and altitude is shown in Fig. 5. Fig. 6 shows the angle of attack and
theflight-path angle, respectively. The input of the plant satfc½uðtÞ�g
is given in Fig. 7. Moreover, in Fig. 8, we also give the trajectory of
the sliding surface function.

Note from the preceding figures that the tracking performance is
good and the tracking error remains remarkably small during the
whole maneuver. Hence, the fuzzy model reference ISMC method
can stabilize the nonlinear system in Eq. (1) and can guarantee the
tracking performance.

Conclusion

Because of the large flight envelope, the complex interactions be-
tween the rigid and flexible modes, and the intricate coupling among
the engine and light dynamics, parameter uncertainties, and external
disturbances, the robust control of FAHVs is highly challenging.
The T-S model can approach a nonlinear system with some pre-
cision, so in this paper, the T-S modeling method has been used to
represent the nonlinear longitudinal dynamics of FAHVs. A new
FISMC strategy has also been presented for the model reference
tracking problem of FAHVs. In the control design, the input non-
linearity, which comprises not only dead-zones but also sector
nonlinearities, has been considered. Based on a PDC scheme,

Fig. 6. Angle of attack and flight-path angle

Fig. 7. Inputs of the plant
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sufficient conditions for the stability of the designed fuzzy integral
sliding surfaces have been proposed in terms of LMIs. An adaptive
SMC law has also been synthesized such that the state trajectories of
the closed-loop system are globally driven onto the specified sliding
surface. Simulation results validated the effectiveness of the pro-
posed control methods by showing excellent tracking performance.
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Notation

The following symbols are used in this paper:
CDða, deÞ 5 drag coefficient;

Cai
D 5 ith order coefficient of a contribution to

CDða, deÞ;
C
die
D 5 ith order coefficient of de contribution to

CDða, deÞ;
C0
D 5 constant term in CDða, deÞ;

CLða, deÞ 5 lift coefficient;
Cai
L 5 ith order coefficient of a contribution to

CLða, deÞ;
Cde
L 5 coefficient of de contribution to CLða, deÞ;
C0
L 5 constant term in CLða, deÞ;

CM,Qða,QÞ 5 contribution to moment due to pitch rate;
CM,aðaÞ 5 contribution to moment due to angle of

attack;
CM,deðde, dcÞ 5 control surface contribution to moment;

Cai
M,a 5 ith order coefficient of a contribution to

CM,aðaÞ;
C0
M,a 5 constant term in CM,aðaÞ;

Cai
T ðFÞ 5 ith order coefficient of a in T;

c 5 mean aerodynamic chord;
cc 5 canard coefficient in CM,deðde, dcÞ;
ce 5 elevator coefficient in CM,deðde, dcÞ;

D 5 drag;
diagf:::g 5 a block-diagonal matrix;

g 5 acceleration due to gravity;
h 5 altitude;
I 5 identity matrix;

Iyy 5 moment of inertia;
L 5 left;
Lv 5 vehicle length;
M 5 pitching moment;
m 5 vehicle mass;
Ni 5 ith generalized force;
N

aj

i 5 jth order contribution of a to Ni;
N0
i 5 constant term in Ni;

Nde
2 5 contribution of de to N2;

P. 0 5 P is real symmetric and positive definite;
Q 5 pitch rate;
q 5 dynamic pressure;

Rn 5 n-dimensional Euclidean space;
S 5 reference area;
T 5 thrust;
T 5 matrix transposition;
V 5 velocity;
x 5 state of the control-oriented model;
a 5 angle of attack;

biðh, qÞ 5 ith thrust fit parameter;
g 5 flight path angle, g5 u2a;
de 5 elevator angular deflection;
hi 5 ith generalized elastic coordinate;
u 5 pitch angle;
li 5 inertial coupling term of ith elastic mode;
j 5 damping ratio for the F dynamics;
ji 5 damping ratio for elastic mode hi;
r 5 density of air;
F 5 stoichiometrically normalized fuel/air;
v 5 natural frequency for the F dynamics;
vi 5 natural frequency for elastic mode hi;
0 5 zero matrix; and

1=hs 5 air density decay rate.
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