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Applying the Möbius transformation to rational Bézier curves and surfaces, the weights
can be modified whereas the control points remain unchanged. With appropriate
transformation parameters, the maximal ratio of the weights of rational Bézier curves and
surfaces can be minimized, which have applications in improving the bounds of derivatives,
optimizing degree reduction of rational Bézier curves. In the surface case, there has not
yet been a solution for the problem of finding transformation parameters such that the
maximal ratio of the weights reaches its minimum. In this paper, a new method for the
problem in the curve case is presented, and the uniqueness of the solution can be easily
proved; then the method is generalized to the surface case with geometric perception.
Some numerical examples are given for showing our results in improving the bounds of
derivatives of rational Bézier curves and surfaces.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In geometric design, it is often needed to estimate the bounds of derivatives of rational curves and surfaces. Given a
rational Bézier curve and a rational Bézier surface

R(t) =
∑n

i=0 Bn
i (t)ωi R i∑n

i=0 Bn
i (t)ωi

, 0 � t � 1, (1)

R(u, v) =
∑m

i=0
∑n

j=0 Bm
i (u)Bn

j (v)ωi j R i j∑m
i=0

∑n
j=0 Bm

i (u)Bn
j (v)ωi j

, 0 � u, v � 1, (2)

where ωi , ωi j are positive weights of the curve and surface respectively. Floater (1992) and Wang et al. (1997) provided the
following estimations for the bounds of derivatives of the curve and surface respectively,

∥∥dR(t)/dt
∥∥ � n

(
max

0�i�n
ωi/ min

0�i�n
ωi

)
max

0�i, j�n
‖R i − R j‖, (3)

∥∥dR(t)/dt
∥∥ � n

(
max

0�i�n
ωi/ min

0�i�n
ωi

)2
max

0�i�n−1
‖R i − R i+1‖; (4)
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∥∥∥∥∂ R(u, v)

∂u

∥∥∥∥ � m
(

max
0�i�m
0� j�n

ωi j/ min
0�i�m
0� j�n

ωi j

)3
max

0�i,k�m
0� j,l�n

‖R i j − Rkl‖, (5)

where neither of inequalities (3) and (4) is stronger than the other. To further decrease the bounds of derivatives of the curve
and surface, Selimovic (2005) used the intermediate weights and control points generated by the de Casteljau algorithm and
improved inequalities (3) and (5). With the techniques of fractional inequalities, Zhang and Ma (2006) gave a better result
than that of Selimovic (2005), and improved inequality (4) greatly when the degree of the rational Bézier curve is smaller
than or equal to six. Applying the degree elevation algorithm to rational Bézier curve, Huang and Su (2006) also got a better
result than that of Selimovic (2005).

However the expressions of these improved results are quite complicated and more and more variables are present. It is
very difficult for further improvement. Fortunately, there is another way to decrease the bounds of derivatives of rational
Bézier curves and surfaces. Firstly applying the Möbius transformation t = γ s/(γ s + 1 − s) to the rational Bézier curve,
Eq. (1) is changed to

R(t) = R(s) =
∑n

i=0 Bn
i (s)ωiγ

i R i∑n
i=0 Bn

i (s)ωiγ i
, 0 � s � 1,

where γ (> 0) is the transformation parameter and the weights ωi are changed to γ iωi ; similarly applying the Möbius
transformations u = αs/(αs + 1 − s), v = βt/(βt + 1 − t) to the rational Bézier surface, Eq. (2) is changed to

R(u, v) = R(s, t) =
∑m

i=0
∑n

j=0 Bm
i (s)Bn

j (t)ωi jα
iβ j R i j∑m

i=0
∑n

j=0 Bm
i (s)Bn

j (t)ωi jαiβ j
, 0 � s, t � 1,

where α, β (> 0) are transformation parameters and the weights ωi j are changed to αiβ jωi j . Secondly, apply certain
algorithms to find appropriate transformation parameters such that the maximal ratio of weights of the curve and surface
can be minimized, and then the bounds of the derivatives of the curve and surface can be decreased via inequalities (3), (4)
and (5).

Zheng (2005) reduced the problem of minimizing the maximal ratio of weights of a rational Bézier curve to a linear
programming problem, and provided a direct expression for the appropriate transformation parameter. In this paper, a new
method for obtaining the transformation parameter is presented for the problem in the curve case, which can be generalized
to the surface case, whereas Zheng (2005)’s method is only suitable for the curve case.

The rest of the paper is organized as follows. In Sections 2 and 3, we describe the problem in a mathematical manner
and give the solutions of the problem in the curve and surface cases respectively. In Section 4, some numerical examples
are given for showing our methods in improving the bounds of derivatives of rational Bézier curves and surfaces. Finally,
we give the conclusions of this paper in Section 5.

2. Description of the problem in curve case and its solution

From Section 1, we know that applying the Möbius transformation with parameter γ to the rational Bézier curve in
Eq. (1), the weights of the curve is changed from ωi to γ iωi , and the ratio of two weights is changed correspondingly from
ωi/ω j to γ i− jωi/ω j . To minimize the maximal ratio of the weights, we should find the maximum of the set {γ i− jωi/ω j |
0 � i, j � n}, and vary the positive real number γ such that the maximum reaches its minimum. As the logarithmic function
y = log(x) is monotonically increasing on its domain x > 0, the problem can be described as

Problem 2.1. Find a positive real number γ , such that the function

ρ(γ ) = max
{

log
(
γ i− jωi/ω j

) ∣∣ 0 � i, j � n
}

(γ > 0)

reaches its minimum.

In order to solve the problem, we firstly introduce 2n + 1 constants

fk = max
{

log(ωi/ω j)
∣∣ 0 � i, j � n, i − j = k

}
, −n � k � n,

and 2n + 1 functions

fk(γ ) = max
{

log(γ i− jωi/ω j)
∣∣ 0 � i, j � n, i − j = k

} = k log(γ ) + fk (γ > 0), −n � k � n.

Then we get a compact expression for the target function

ρ(γ ) = max
{

fk(γ )
∣∣ −n � k � n

}
.
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Fig. 1. Geometric perception of Theorems 2.3, 2.4.

With these functions and constants, we define a set of invariants which are independent of the transformation parame-
ter γ ,

gkj := j fk(γ ) − kf j(γ )

j − k
= j fk − kf j

j − k
, −n � k < j � n.

There is a geometric perception for gkj . In the planar Cartesian coordinate, (0, gkj) is the intersection point of the y-axis
and the line passing through the points (k, fk) and ( j, f j).

We choose all of the invariants gkj with kj < 0, and congregate them to a set

G = {gkj | kj < 0, −n � k < j � n} = {
( j fk − kf j)/( j − k)

∣∣ −n � k < 0 < j � n
}
.

With the set, we give a lower bound of the function ρ(γ ) (γ > 0).

Lemma 2.2. 0 � max G � min{ρ(γ ) | γ > 0}.

Proof. Firstly 0 = (log(ω0/ω1) + log(ω1/ω0))/2 � ( f−1 + f1)/2 = g−11 � max G .
And then for every γ > 0, gkj ∈ G , −n � k < 0 < j � n, we have

gkj = (
j fk(γ ) − kf j(γ )

)
/( j − k) �

(
jρ(γ ) − kρ(γ )

)
/( j − k) = ρ(γ ).

⇒ max G � ρ(γ ) ⇒ max G � min{ρ(γ ) | γ > 0}. �
To prove min{ρ(γ ) | γ > 0} = max G , we only need to find a γ ∗ (> 0), such that ρ(γ ∗) = max G .

Theorem 2.3. Let k∗, j∗ be integers, −n � k∗ < 0 < j∗ � n, γ ∗ be positive real number such that

gk∗ j∗ = ( j∗ fk∗ − k∗ f j∗)/( j∗ − k∗) = max G, log(γ ∗) = ( fk∗ − f j∗)/( j∗ − k∗).

We then have ρ(γ ∗) = max G = min{ρ(γ ) | γ > 0}.

Proof. It can be readily shown that the equation of the line passing through the points (k∗, fk∗ ) and ( j∗, f j∗ ) is l: x log(γ ∗)+
y = gk∗ j∗ , which leads to fk∗ (γ ∗) = k∗ log(γ ∗) + fk∗ = gk∗ j∗ = max G, f j∗ (γ ∗) = max G (see Fig. 1).

We then need to prove that for every integer i, −n � i � n, f i(γ
∗) � max G .

If i = 0, since f0(γ
∗) = f0 = 0, according to Lemma 2.2, it’s clear that f0(γ

∗) � max G .
If i �= 0, without loss of generality, we assume that i < 0. Suppose the point (i, f i ) is above the line l (see the square

point in Fig. 1), since (0, gij∗ ) is the intersection point of the y-axis and the line passing through the points (i, f i ) and
( j∗, f j∗ ), we must have gij∗ > gk∗ j∗ = max G , which is a contradiction. So the point (i, f i) must be under or on the line l,
which means f i(γ

∗) = i log(γ ∗) + f i � gk∗ j∗ = max G .
With Lemma 2.2, we thus have ρ(γ ∗) = max G = min{ρ(γ ) | γ > 0}. �
Theorem 2.3 provides the solution of Problem 2.1, which is the same as the result given in Zheng (2005). In the following,

we can prove the uniqueness of the solution.

Theorem 2.4. There is only one γ ∗ , given in Theorem 2.3, such that ρ(γ ∗) = min{ρ(γ ) | γ > 0}.
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Proof. Let k∗ , j∗ be the integers and γ ∗ be the positive real number given in Theorem 2.3. If there exists a positive real
number γ0 such that ρ(γ0) = ρ(γ ∗), then we have f i(γ0) � ρ(γ0) = ρ(γ ∗) = gk∗ j∗ , −n � i � n, or equivalently, every point
(i, f i) is under or on the line l0: x log(γ0) + y = gk∗ j∗ . Since the line l0 passes through the point (0, gk∗ j∗ ) and covers the
points (k∗, fk∗ ) and ( j∗, f j∗ ), we conclude that l0 is just the line l in the proof of Theorem 2.3 (see Fig. 1), which leads to
γ0 = γ ∗ . �
3. Description of the problem in surface case and its solutions

From Section 1, we know that applying the Möbius transformations with parameters α, β (> 0) to the rational Bézier
surface in Eq. (2), the weights of the surface are changed from ωi j to αiβ jωi j . Like the curve case, the problem can be
described as

Problem 3.1. Find two positive real numbers α, β , such that the function

ρ(α,β) = max
{

log
(
αi−kβ j−lωi j/ωkl

) ∣∣ 0 � i,k � m, 0 � j, l � n
}

(α,β > 0)

reaches its minimum.

For simplification, we firstly define a set

Ω = {
(k, l) ∈ Z × Z

∣∣ −m � k � m, −n � l � n
}
, where Z is the set of all integers.

Then for every p = (k, l) ∈ Ω , we define a constant

f p = max
{

log(ωi1, j1/ωi2, j2)
∣∣ 0 � i1, i2 � m, i1 − i2 = k; 0 � j1, j2 � n, j1 − j2 = l

}
,

and a function

f p(α,β) = k log(α) + l log(β) + f p = p · (log(α), log(β)
) + f p,

where · is the sign of inner product of two vectors. Then we have

ρ(α,β) = max
{

f p(α,β)
∣∣ p ∈ Ω

}
(α,β > 0).

Let o = (0,0) be the origin of the planar Cartesian coordinate. We define two sets as

A2 = {
(p1, p2)

∣∣ p1, p2 ∈ Ω − {o}, ‖p2‖p1 + ‖p1‖p2 = o
}
, where ‖ · ‖ is the Euclidean norm;

A3 = {(p1, p2, p3)
∣∣ pi ∈ Ω − {o}, T (opi pi+1) > 0, i = 1,2,3, p4 = p1}, where T = 2S , and S(p1 p2 p3) is the signed area

of the triangle p1 p2 p3 (Pogorelov, 1984). If pi = (ki, li), i = 1,2,3, the expression of T is

T (p1 p2 p3) =
∣∣∣∣∣

1 1 1
k1 k2 k3
l1 l2 l3

∣∣∣∣∣ = k1l2 + k2l3 + k3l1 − k2l1 − k3l2 − k1l3.

It can be readily verified that p1, p2, p3 are collinear ⇔ T (p1 p2 p3) = 0. If p1, p2, p3 are not collinear and in counter
clock order, then T (p1 p2 p3) > 0. Else if they are in clockwise order, then T (p1 p2 p3) < 0. By direct computations, we can
get two identities

T (op2 p3) + T (op3 p1) + T (op1 p2) = T (p1 p2 p3), (6)

T (op2 p3)p1 + T (op3 p1)p2 + T (op1 p2)p3 = o. (7)

Thus every element (p1, p2, p3) of the set A3 can be identified as the three vertices of a triangle, arranged in counterclock-
wise order, in the planar Cartesian coordinate, and the origin o is inside the triangle p1 p2 p3 (excluding the edges).

The elements of the sets A2 and A3 can be visualized from Figs. 2 and 3 respectively.
Then we define two classes of invariants which are independent of α, β . For every (p1, p2) ∈ A2,

gp1 p2 := ‖p2‖ f p1(α,β) + ‖p1‖ f p2(α,β)

‖p2‖ + ‖p1‖
= (‖p2‖p1 + ‖p1‖p2) · (log(α), log(β)) + ‖p2‖ f p1 + ‖p1‖ f p2

‖p2‖ + ‖p1‖
= ‖p2‖ f p1 + ‖p1‖ f p2

‖p2‖ + ‖p1‖
. (8)

For every triple (p1, p2, p3), pi = (ki, li), i = 1,2,3, T (p1 p2 p3) �= 0,
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Fig. 2. Elements of the set A2.

Fig. 3. Element of the set A3.

gp1 p2 p3 := T (op2 p3) f p1(α,β) + T (op3 p1) f p2(α,β) + T (op1 p2) f p3(α,β)

T (p1 p2 p3)

= {(
T (op2 p3)p1 + T (op3 p1)p2 + T (op1 p2)p3

) · (log(α), log(β)
) + T (op2 p3) f p1 + T (op3 p1) f p2

+ T (op1 p2) f p3

}{
T (p1 p2 p3)

}−1

= T (op2 p3) f p1 + T (op3 p1) f p2 + T (op1 p2) f p3

T (p1 p2 p3)
= 1

T (p1 p2 p3)

∣∣∣∣∣
k1 k2 k3
l1 l2 l3
f p1 f p2 f p3

∣∣∣∣∣ . (9)

There are geometric perceptions for these invariants. In the spatial Cartesian coordinate, (o, gpq) is the intersection point
of the z-axis and the line passing through the points (p, f p) and (q, fq); (o, gpqr ) is the intersection point of the z-axis and
the plane passing through the points (p, f p), (q, fq) and (r, fr ).

Let G2 = {gp1 p2 | (p1, p2) ∈ A2}, G3 = {gp1 p2 p3 | (p1, p2, p3) ∈ A3}, we can have

Lemma 3.2. 0 � max G2 ∪ G3 � min{ρ(α,β) | α,β > 0}.

Proof. Let p = (0,1), q = (0,−1), it is clear that

0 = (
log(ω01/ω00) + log(ω00/ω01)

)
/2 � ( f p + fq)/2 = gpq � max G2 � max G2 ∪ G3.

For every α,β > 0, (p1, p2) ∈ A2, (q1,q2,q3) ∈ A3, with Eqs. (6), (8) and (9), we can obtain that

gq1q2q3 = T (oq2q3) fq1(α,β) + T (oq3q1) fq2(α,β) + T (oq1q2) fq3(α,β)

T (q1q2q3)
� ρ(α,β) ⇒ max G3 � ρ(α,β);

gp1 p2 = ‖p2‖ f p1(α,β) + ‖p1‖ f p2(α,β)

‖p2‖ + ‖p1‖
� ρ(α,β) ⇒ max G2 � ρ(α,β).

⇒ max G2 ∪ G3 � ρ(α,β) ⇒ max G2 ∪ G3 � min{ρ(α,β) | α,β > 0}. �
In addition to Lemma 3.2, one more lemma is needed for the solutions of the surface case, which is so easy that we

omit the proof of it.
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Fig. 4. Geometric perception of Theorem 3.4.

Fig. 5. Classification of a point p ∈ Ω .

Lemma 3.3. If P i = (xi, yi, zi), i = 1,2,3, are non-collinear points in the spatial Cartesian coordinate, then the equation of the plane
passing through P 1 , P 2 , P 3 can be written as

π(P 1 P 2 P 3):
∣∣∣∣∣

1 1 1
y1 y2 y3
z1 z2 z3

∣∣∣∣∣ x +
∣∣∣∣∣

1 1 1
z1 z2 z3
x1 x2 x3

∣∣∣∣∣ y +
∣∣∣∣∣

1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣ z =
∣∣∣∣∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣ .
To prove min{ρ(α,β) | α,β > 0} = max G2 ∪ G3, we need to find α∗ , β∗ (> 0) such that ρ(α∗, β∗) = max G2 ∪ G3. There

are two cases, max G3 � max G2 and max G2 > max G3.

Theorem 3.4. If max G3 � max G2 , there exists (q1,q2,q3) ∈ A3 , qi = (ki, li), i = 1,2,3, such that gq1q2q3 = max G3 . Let

(
log(α∗), log(β∗)

) = 1

T (q1q2q3)

(∣∣∣∣∣
1 1 1
l1 l2 l3
fq1 fq2 fq3

∣∣∣∣∣ ,
∣∣∣∣∣

1 1 1
fq1 fq2 fq3

k1 k2 k3

∣∣∣∣∣
)

,

we then have ρ(α∗, β∗) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}.

Proof. According to Lemma 3.3 and Eq. (9), we know that the equation of the plane passing through the points Q i =
(qi, fqi ), i = 1,2,3, is

π( Q 1Q 2Q 3): x log(α∗) + y log(β∗) + z = gq1q2q3 = max G3 = max G2 ∪ G3,

which leads to fq(α∗, β∗) = q · (log(α∗), log(β∗)) + fq = max G2 ∪ G3, q = q1,q2,q3. (See Fig. 4.)
Then we need to prove that for every p = (k, l) ∈ Ω , f p(α∗, β∗) � max G2 ∪ G3.
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Fig. 6. Geometric perception of Theorem 3.6.

If p = (0,0), then f(0,0)(α
∗, β∗) = f(0,0) = 0 � max G2 ∪ G3 (Lemma 3.2).

If p �= (0,0), then one of the following statements must be true (see Fig. 5): 1) there is a qi , such that (p,qi) ∈ A2;
2) there are q j , qk , such that (p,q j,qk) ∈ A3, i, j,k ∈ {1,2,3}. Suppose a point (p, f p) is above the plane π( Q 1Q 2Q 3),
with the geometric perceptions of (o, gpqi

) and (o, gq1q2q3 ), we can deduce that the validity of statement 1) leads to
gpqi

> gq1q2q3 = max G3 � max G2, a contradiction, and the validity of statement 2) leads to gpq jqk
> gq1q2q3 = max G3,

also a contradiction. Hence every point (p, f p), p ∈ Ω , is under or on the plane π( Q 1Q 2Q 3), that means f p(α∗, β∗) =
p · (log(α∗), log(β∗)) + f p � max G2 ∪ G3.

With Lemma 3.2, we finally get ρ(α∗, β∗) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}. �
In a similar way as the proof of Theorem 2.4, we can get

Theorem 3.5. If max G3 � max G2 , there is only one pair of parameters α∗ , β∗ , given in Theorem 3.4, such that ρ(α∗, β∗) =
min{ρ(α,β) | α,β > 0}.

Before going to the next case, max G2 > max G3, we need two numbers a, b. Given (q1,q2) ∈ A2, it’s true that q1 �= q2,
so there always exist two numbers a, b such that

fq1(a,b) = q1 · (log(a), log(b)
) + fq1 = q2 · (log(a), log(b)

) + fq2 = fq2(a,b). (10)

For example, we can choose (log(a), log(b)) = ( fq1 − fq2 )(q2 − q1)/‖q2 − q1‖2.

Theorem 3.6. If max G2 > max G3 , there exists (q1,q2) ∈ A2 , qi = (ki, li), i = 1,2, such that gq1q2 = max G2 . Let a, b be two numbers
satisfying Eq. (10), and ri = (ri, si) ∈ Ω , i = 0,1, such that(

fr0(a,b) − gq1q2

)
/T (r0q1q2) = max

p∈Ω
T (pq1q2)>0

{(
f p(a,b) − gq1q2

)
/T (pq1q2)

}
, (11)

(
fr1(a,b) − gq1q2

)
/T (r1q2q1) = max

p∈Ω
T (pq2q1)>0

{
( f p(a,b) − gq1q2)/T (pq2q1)

}
.

Let α∗(i), β∗(i), i = 0,1, be real numbers such that

(
log

(
α∗(i)

)
, log

(
β∗(i)

)) = 1

T (riq1q2)

(∣∣∣∣∣
1 1 1
si l1 l2
fri fq1 fq2

∣∣∣∣∣ ,
∣∣∣∣∣

1 1 1
fri fq1 fq2

ri k1 k2

∣∣∣∣∣
)

, i = 0,1, (12)

and let α∗(λ), β∗(λ), 0 � λ � 1, be functions such that(
log

(
α∗(λ)

)
, log

(
β∗(λ)

)) = (1 − λ)
(
log

(
α∗(0)

)
, log

(
β∗(0)

)) + λ
(
log

(
α∗(1)

)
, log

(
β∗(1)

))
. (13)

We then have ρ(α∗(λ), β∗(λ)) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}, 0 � λ � 1.

Proof. With Lemma 3.3 and a few computations, we can obtain that the equation of the plane passing through the points
R0 = (r0, fr0 ), Q i = (qi, fqi

), i = 1,2, is (see Fig. 6)

π( Q 1Q 2 R0): x log
(
α∗(0)

) + y log
(
β∗(0)

) + z = gq1q2 = max G2 = max G2 ∪ G3,
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Fig. 7. Illustration of Eq. (11).

which leads to fq(α∗(0), β∗(0)) = q · (log(α∗(0)), log(β∗(0))) + fq = max G2 ∪ G3, q = q1,q2, r0.
Then we want to prove that for every p = (k, l) ∈ Ω , f p(α∗(0), β∗(0)) � max G2 ∪ G3.
If p = (0,0), then f(0,0)(α

∗(0), β∗(0)) = f(0,0) = 0 � max G2 ∪ G3 (Lemma 3.2).
If p �= (0,0), then one of the following statements must be true: a) there is a q ∈ {q1,q2, r0}, such that (p,q) ∈ A2; b)

there are q, r ∈ {q1,q2, r0}, such that (p,q, r) ∈ A3; c) T (pq1q2) > 0.
In a similar way as the proof of Theorem 3.4, we can prove by apagoge that f p(α∗(0), β∗(0)) � max G2 ∪ G3 if statement

a) or b) is true. Thus we only need to show that f p(α∗(0), β∗(0)) = p ·(log(α∗(0)), log(β∗(0)))+ f p � max G2 ∪ G3, provided
p ∈ Ω and T (pq1q2) > 0.

Let ϕ be an affine transformation defined as ϕ(x, y, z) = (x, y, z + x log(a) + y log(b)), then for every P = (p, f p), p ∈
Ω , P̃ = ϕ(P ) = (p, f p(a,b)). Since fq1 (a,b) = fq2 (a,b), we can draw a plane π0 that passes through Q̃ i = (qi, fqi

(a,b)),
i = 1,2, and is perpendicular to the z-axis. For every P̃ with T (pq1q2) > 0, let θ be the signed dihedral angle from π0 to
π( Q̃ 1Q̃ 2 P̃ )(θ > 0, if P̃ is above π0; θ < 0, if P̃ is under π0). As the signed distance from P̃ to π0 is f p(a,b)− gq1q2 , and the
height of the triangle pq1q2 on the edge q1q2 is T (pq1q2)/‖q1q2‖, the formula in brace on the right hand side of Eq. (11)
is equivalent to tan θ/‖q1q2‖. Hence θ0, the dihedral angle from π0 to π( Q̃ 1Q̃ 2 R̃0), is the maximal one among these θ (see
Fig. 7). So every P̃ = ϕ(P ) with T (pq1q2) > 0, must be under or on the plane π( Q̃ 1Q̃ 2 R̃0). Then from the definition of ϕ ,
we can correspondingly deduce that every P = (p, f p) with T (pq1q2) > 0, is under or on the plane π( Q 1Q 2 R0), which
means f p(α∗(0), β∗(0)) = p · (log(α∗(0)), log(β∗(0))) + f p � max G2 ∪ G3.

With Lemma 3.2 we can obtain that ρ(α∗(0), β∗(0)) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}. Similarly we can get that
ρ(α∗(1), β∗(1)) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}.

With Eq. (13), for every λ ∈ [0,1], p ∈ Ω , it is obvious that

f p
(
α∗(λ),β∗(λ)

) = p · (log
(
α∗(λ)

)
, log

(
β∗(λ)

)) + f p = (1 − λ) f p
(
α∗(0),β∗(0)

) + λ f p
(
α∗(1), β∗(1)

)
,

then we can obtain that fq(α∗(λ),β∗(λ)) = max G2 ∪ G3,q = q1,q2, and f p(α∗(λ),β∗(λ)) � max G2 ∪ G3. With Lemma 3.2,
we finally get the result ρ(α∗(λ),β∗(λ)) = max G2 ∪ G3 = min{ρ(α,β) | α,β > 0}. �

Theorems 3.4, 3.6 provide the solutions of Problem 3.1. From Eq. (13), we can see that the solutions of the case max G2 >

max G3 is generally lack of uniqueness, which is different from that of the case max G3 � max G2. Actually, according to the
following Theorem 3.7, all the solutions of the case max G2 > max G3 are included in Eq. (13), for which we leave the proof
to the readers.

Theorem 3.7. If max G2 > max G3 , let α∗(i), β∗(i), i = 0,1, be the positive real numbers given in Theorem 3.6, then we have:

1) If (α∗(0), β∗(0)) = (α∗(1), β∗(1)), the solution of Problem 3.1 is unique.
2) If (α∗(0), β∗(0)) �= (α∗(1), β∗(1)), all the solutions of Problem 3.1 are included in Eq. (13), which are of infinite number.

4. Numerical examples and discussions

In this section, we provide some numerical examples for showing the results of Theorems 2.3, 3.4, and 3.6 in improving
the bounds of derivatives of rational Bézier curves and surfaces. In practical terms, computing max G2 ∪ G3 for the surface
case by mere comparisons is time consuming, so we present an efficient algorithm in the following for computing the value.
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Algorithm 4.1 (Computing max G2 ∪ G3).

Step 1: Find a p1 such that p1 = arg max{ f p | p ∈ Ω − {o}}.
Step 2: Find a p2 such that p2 = arg maxp∈Ω−{o}{(σ1 f p − σ f p1 )/(σ1 − σ) | σ1 = p1 · p1 > σ = p · p1}.
Step 3: If T (op1 p2) �= 0, exchange the subscripts of p1, p2 if needed to assure that T (op1 p2) > 0.

Else if (p1, p2) ∈ A2, then max G2 ∪ G3 = max G2 = gp1 p2 , stop.
Else replace p1 by p2, and go to Step 2 to find a new p2.

Step 4: Find a p3 such that p3 = arg maxp∈Ω−{o}{gp p1 p2 | T (p p1 p2) > 0}.
Step 5: If (p1, p2, p3) ∈ A3, then max G2 ∪ G3 = max G3 = gp1 p2 p3 , stop.

Else replace p1 by p3 if T (op2 p3) � 0 or replace p2 by p3 if T (op3 p1) � 0, and go to Step 3.

Remark. The algorithm is a simulation of the process that a plane, which is originally perpendicular to the z-axis and above
all points P = (p, f p), p ∈ Ω , is freely dropped down until it reaches the stable position that still covers all these points and
passes through the points Q = (q, fq), q = p1, p2, (p1, p2) ∈ A2, or q = p1, p2, p3, (p1, p2, p3) ∈ A3. From Theorems 3.4,
3.6, we know that the intersection point of the z-axis and the plane at the stable position is (o, max G2 ∪ G3).

Example 1. Given a degree 6 rational Bézier curve as Eq. (1) with weights {ωi | i = 0,1, . . . ,6} = {5,2,8,56,80,96,64}, from
inequalities (3) and (4) we know that∥∥dR(t)/dt

∥∥ � 288 max
0�i, j�6

‖R i − R j‖,
∥∥dR(t)/dt

∥∥ � 13 824 max
0�i�5

‖R i − R i+1‖.

From Theorem 2.3, we can derive the appropriate transformation parameter γ ∗ = 0.5. Applying the Möbius transfor-
mation with parameter γ ∗ to the rational Bézier curve, the weights of the curve is changed to {5,1,2,7,5,3,1}. Then
according to inequalities (3) and (4) we can derive∥∥dR(s)/ds

∥∥ � 42 max
0�i, j�6

‖R i − R j‖,
∥∥dR(s)/ds

∥∥ � 294 max
0�i�5

‖R i − R i+1‖.

Example 2. Given a degree 3×3 rational Bézier surface as Eq. (2) with weights⎡
⎢⎣

ω00 ω01 ω02 ω03
ω10 ω11 ω12 ω13
ω20 ω21 ω22 ω23
ω30 ω31 ω32 ω33

⎤
⎥⎦ =

⎡
⎢⎣

5 18 27 27
2 42 36 270
8 60 72 216

32 72 144 216

⎤
⎥⎦ ,

from inequality (5), we can get that ‖∂ R(u, v)/∂u‖ � 7 381 125 max0�i, j,k,l�3 ‖R i j − Rkl‖.

From Algorithm 4.1, we can obtain that max G2 ∪ G3 = max G3 = 1.9459, then according to Theorem 3.4 we can derive
the parameters α∗ = 1/2, β∗ = 1/3. Applying the Möbius transformations with α∗ , β∗ to the rational Bézier surface, we can
obtain from inequality (5) that ‖∂ R(s, t)/∂s‖ � 1029 max0�i, j,k,l�3 ‖R i j − Rkl‖.

Example 3. Given a degree 2 × 3 rational Bézier surface as Eq. (2) with weights[
ω00 ω01 ω02 ω03
ω10 ω11 ω12 ω13
ω20 ω21 ω22 ω23

]
=

[ 1 7 5 3
12 16 12 4
8 16 4 8

]
,

according to inequality (5), we can get that ‖∂ R(u, v)/∂u‖ � 8192 max 0�i,k�2
0� j,l�3

‖R i j − Rkl‖.

Appling Algorithm 4.1, we can obtain that max G2 ∪ G3 = max G2 = 2.0794, then we can derive the parameters
(α∗(0), β∗(0)) = (2/3,3/4), (α∗(1), β∗(1)) = (7/16,8/7) from Theorem 3.6. Applying the Möbius transformations with pa-
rameters α∗(λ), β∗(λ), 0 � λ � 1 (derived from Eq. (13)) to the rational Bézier surface, we can obtain from inequality (5)
that‖∂ R(s, t)/∂s‖ � 1024 max 0�i,k�2

0� j,l�3
‖R i j − Rkl‖.

From the three examples above, we can see that the bounds of the derivatives of rational Bézier curves and surfaces
can be improved by applying the Möbius transformations with proposed parameters in Theorem 2.3, Theorems 3.4 and 3.6
respectively. Furthermore, the bounds of higher derivatives given in Wang and Tai (2008) can also be improved in a similar
way. With sharper bounds of derivatives, some algorithms such as subdivision algorithm for the intersection of surfaces in
Filip et al. (1986) can be improved. The proposed Möbius transformation can also be used to optimize the degree reduction
of rational Bézier curves by evening the weights before applying degree reduction algorithm of polynomial curves to the
rational ones in homogeneous coordinates (Cai and Wang, 2007).
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5. Conclusions

In this paper, we provide a new algorithm for solving the problem of minimizing the maximal ratio of weights of a
rational Bézier curve or surface. With geometric perception, the proof of the curve or surface case would be easily followed.
What’s more, for practical use, we present an efficient algorithm for computing max G2 ∪ G3 in the surface case and give
some numerical examples which demonstrate our results in improving the bounds of derivatives of rational Bézier curves
and surfaces.
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