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DOD and DOA Estimation in
Bistatic Non-Uniform Multiple-Input Multiple-Output Radar Systems

Bobin Yao, Student Member, IEEE, Wenjie Wang, Member, IEEE, and Qinye Yin

Abstract—This letter investigates the joint estimation of the
direction of departure (DOD) and direction of arrival (DOA)
for multi-input multi-output (MIMO) radar systems. A novel
estimation method based on non-uniform array configuration is
proposed and the practical identifiability of the corresponding
parameter is analyzed. The key idea is to use the Doppler
diversity to construct a virtual MIMO array. Through the
theoretical proof, we demonstrate that the proposed method can
provide much stronger parameter identifiability than the con-
ventional ones, and also can improve the parameter estimation
performance. Numerical simulations verify the effectiveness of
the proposed algorithm.

Index Terms—Multiple-input multiple-output radar, non-
unform array, parameter identifiability, angle estimation.

I. INTRODUCTION

JOINT estimation of direction of departure (DOD) and
direction of arrival (DOA), as an important method for

exploiting the opportunistic space-division multiple access
(OSDMA) in wireless communication system [1] or moving
target localization in multiple-input multiple-output (MIMO)
radar system [2], [3], [4], [5], has been attracted lots of
attention. Two-dimension multiple signal classification (MU-
SIC) algorithm [3] and its reduced dimension version [4]
were exploited separately, both of which have almost the
same performance. The rotational invariance technique have
been studied in [5], however the performance is inferior
to the MUSIC based algorithms. Moreover, the parameter
identifiability also needs to be discussed elaborately, which
is a natural pre-requisite for a well-posed estimation problem.
The authors in [6] proved that the maximum number of targets
that can be uniquely identified by co-located uniform MIMO
radar (i.e., uniform linear array is utilized on both transmit
and receive ends) is up to M times as that of the conventional
uniform phased radar, where M is the number of transmit
antennas. It also shows in [7] that the bistatic uniform MIMO
radar with single pulse in a coherent process interval provides
a identifiability upper bound 0.34M(N + 1), where N is the
number of receive antennas.

To further improve the parameter identifiability and the
estimation performance, we utilize a bistatic non-uniform
MIMO array in this letter. The non-uniform means that the
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antenna locations normalized by half carrier wavelength are
not a series of consecutive integers. The typical examples
are the minimum redundancy (MR) array [8], nested array
[9] and coprime array [10]. We herein develop a novel joint
DOD and DOA estimation algorithm, the kernel of which is
to use the Doppler diversity to construct a large virtual MIMO
array with more degree of freedom (DOF). The proposed
scheme is proved to be possessed of much stronger parameter
identifiability and much better estimation performance than the
conventional uniform MIMO array. Meanwhile, it is also with
lower computational complexity and requires no parameter
pairing.

Notation: (·)∗, (·)T , (·)H , (·)† denote the complex conju-
gate, transpose, Hermitian transpose, pseudo-inverse, respec-
tively. Symbol “⊗” denotes Kronecker product and “�” stands
for Khatri-Rao product (column-wise Kronecker product). IM
is a M × M identity matrix and 0 symbolizes zero matrix.
A(m) is a submatrix of A formed by its last m rows.

II. NON-UNIFORM MIMO RADAR FOR TARGET

LOCALIZATION

A. Data Model

Consider a bistatic MIMO radar system with M -antenna
transmit array and N -antenna receive array, both of which
are in non-uniform configuration. It is also assumed that there
are K targets, and the output baseband signal of the matched
filters at the receive array can be written as [4] [5] [7]

y(t) = [b(φ1)⊗ a(θ1), · · · ,b(φK)⊗ a(θK)]h(t) + z(t) (1)

where the transmit steering vector a(θk) and the receive
steering vector b(φk), for k = 1, 2, · · · ,K , are assumed to
be unchanged during a coherent processing interval (CPI),
and θk, φk are the DOD and DOA of the kth target, re-
spectively. The vector h(t) = [γ1(t), · · · , γK(t)]T relies
on the Doppler frequency fdk and the radar cross section
(RCS) coefficient βk, i.e., γk(t) = βke

j2πfdk(t−1). Note
that a(θk) = [ejπl1 sin θk , · · · , ejπlM sin θk ]T and b(φk) =
[ejπl1 sinφk , · · · , ejπlN sinφk ]T are mutilated Vandemonde vec-
tors, where l is the antenna location normalized by half carrier
wavelength. z(t) is the additive zero-mean Gaussian noise
with covariance σ2

n.
Defining A = [a(θ1), · · · , a(θK)] ∈ CM×K , B =

[b(φ1), · · · ,b(φK)] ∈ CN×K , and after collecting Q consec-
utive pulses, (1) can be rewritten by the following compact
form

Y = (B�A)H+ Z (2)

where Y = [y(1), · · · ,y(Q)], H = [h(1), · · · ,h(Q)] and
Z = [z(1), · · · , z(Q)].

1089-7798/12$31.00 c© 2012 IEEE



YAO et al.: DOD AND DOA ESTIMATION IN BISTATIC NON-UNIFORM MULTIPLE-INPUT MULTIPLE-OUTPUT RADAR SYSTEMS 1797

B. Virtual MIMO Array

Different from the conventional subspace-based algorithms,
i.e., directly extracting noise subspace or signal subspace of
estimated covariance matrix to perform MUSIC or ESPRIT
algorithms, we adopt a new operation based on Doppler diver-
sity, which is later proved to be greatly effective in improving
parameter identifiability and angle estimation accuracy.

Assuming the Doppler frequencies satisfy fd1 �= · · · �= fdK
and are all well separated so that the target signals sampled by
a sufficient large snapshot rate (at least twice the maximum
Doppler frequency) are uncorrelated with each other. The
correlation matrix of the observed data is given by

RYY = E[YYH ] (3)

= (B�A)Λ(B�A)H + σ2
nIMN .

Then we vectorize RYY to get the following vector

r = vec(RYY) (4)

= [(B�A)∗ � (B�A)]p+ σ2
n1

where vec(·) is vectorizing operator. p = [β2
1 , · · · , β2

K ]T ,
diagonal matrix Λ = diag[p] and 1 = [eT1 , · · · , eTMN ]T with
ei being a vector of all zeros except a 1 at the ith position.

In order to discuss the parameter identifiability, we intro-
duce the following lemma with respect to the Khatri-Rao
product.

Lemma 1: For two matrices, C1 ∈ CN×K and C2 ∈
CM×K , by defining the selection matrix, Π = IN ⊗Γ⊗ IM ,
where

Γ =

⎡
⎢⎢⎢⎣

Γ1

0M×1 Γ1

...
...

. . .
0M×1 0M×1 . . . Γ1

⎤
⎥⎥⎥⎦
MN×MN

,

Γ1 =

⎡
⎢⎢⎢⎣

1
01×N 1

...
...

. . .
01×N 01×N . . . 1

⎤
⎥⎥⎥⎦
M×[N(M−1)+1]

then the following equation holds,

Π[(C1�C2)
∗� (C1�C2)] = (C∗

1�C1)� (C∗
2�C2). (5)

The above equation utilizes some properties of the Khatri-
Rao product of multiple matrices, one can reference [12] for
more detailed derivation.

According to the lemma above, after left-multiplying the
selection matrix Π on (4), we can acquire a new observed
data with the following form,

r̃ = Πr = [(B∗ �B)� (A∗ �A)]p+ σ2
nΠ1. (6)

The vector r̃ can be viewed as one-pulse baseband observation
in a deterministic noise environment of a virtual MIMO radar
with equivalent transmitting steering matrix (A∗ � A) and
equivalent receiving steering matrix (B∗ �B).

Remark 1: The equivalent steering matrix [(B∗ � B) �
(A∗ � A)] is a kind of two dimension difference co-array,
whose one dimension version was used in [9]. Taking the
transmit steering vector a(θk) for example, [a∗(θk) ⊗ a(θk)]

implies that the virtual antennas locate in the integer set
{li − lj}, i, j = 1, · · · ,M . In order to obtain the maximum
DOF through the non-uniform array, we use the minimum
redundancy configuration on both transmit and receive ends.
For example, if let M = 4 with antenna locations li ∈ [0 1 4 6]
at transmit end, the virtual antennas appear from −6 to 6 with
only four redundancy items at location 0.

We define Ā and B̄ as the virtual transmit and the virtual
receive steering matrix after deleting the redundant items,
which can be achieved by deleting the corresponding row
observations in r̃. Therefore, (6) can be further rewritten as

r̄ = [B̄� Ā]p+ σ2
ne, (7)

where the kth column of B̄ and Ā have the following
forms, b̄(φk) = [e−jπN̄sinφk , · · · , 1, · · · , ejπN̄sinφk ]T and
ā(θk) = [e−jπM̄sinθk , · · · , 1, · · · , ejπM̄sinθk ]T . e is a zero
column vector except a 1 in the middle.

C. Angle Estimation

When exploiting the subspace algorithm to achieve angle
estimation, it is necessary to perform two dimension smooth-
ing on (7). So we define the following (M̄ + 1)(N̄ + 1) ×
(M̄ + 1)(N̄ + 1) selection operator

Ξn,m = [0(N̄+1)×(N̄+1−n) I(N̄+1) 0(N̄+1)×(n−1)]

⊗ [0(M̄+1)×(M̄+1−m) IM̄+1 0(M̄+1)×(m−1)] (8)

where 1 ≤ n ≤ N̄ + 1, 1 ≤ m ≤ M̄ + 1. Then stacking
the observation vector r̄ after using the selecting operator, we
have

L(r̄) = [Ξ1,1r̄ · · · Ξ1,M̄+1r̄ Ξ2,1r̄

· · · Ξ2,M̄+1r̄ · · · ΞN̄+1,M̄+1r̄]. (9)

Then the two dimension smoothing operation yields

Ȳ = L(r̄) = [B̄(N̄+1) � Ā(M̄+1)]S̄+ σ2
nI(M̄+1)(N̄+1) (10)

where the equivalent signal matrix S̄ = Λ[B̄(N̄+1) �
Ā(M̄+1)]H .

For convenience, we define Ã = B̄(N̄+1) � Ā(M̄+1).
Illuminating by the almost surely full column rank of the
Khatri-Rao product of two Vandermonde matrices [11], i.e.,
rank[CM1×K

1 �CM2×K
2 ] = min(M1M2,K), we know that

providing (N̄ + 1)(M̄ + 1) ≥ K , Ã and ÃH are all almost
surely K rank. Considering the eigenvalue decomposition

Ȳ = UΣUH , (11)

we can extract the (N̄ + 1)(M̄ + 1)×K signal subspace Us

according to the K largest eigenvalues. When disregarding
of noise, Us and Ã span the same signal subspace, namely
Us = ÃT, where T is a nonsingular matrix. Without loss of
generality, assume N̄ ≥ M̄ , so we can partition Us by the
first N̄(M̄ + 1) rows as U1 and the last N̄(M̄ + 1) rows as
U2, then we have U†

1U2 = T−1ΦT. Obviously, T−1 can
be calculated by the eigenvalue decomposition of U†

1U2, and
furthermore the least square solution of Ã can be given by

ÃLS = UsT
−1. (12)
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The corresponding auto-paired angle estimations are

θ̂k = asin

(
1

πL1

N̄+1∑
p=1

M̄+1∑
q=2

angle

[
ãk(p, q)

ãk(p, q − 1)

])
(13)

φ̂k = asin

(
1

πL2

M̄+1∑
q=1

N̄+1∑
p=2

angle

[
ãk(p, q)

ãk(p− 1, q)

])
(14)

where angle(·) is the operation of getting the phase. ãk is
the kth column of ÃLS , and ãk(p, q) is the corresponding
[(p− 1)(M̄ + 1) + q]th element. L1 = M̄(N̄ + 1) and L2 =
N̄(M̄ + 1).

III. PARAMETER IDENTIFIABILITY ANALYSIS

Actually, (7) manifests the problem of two dimension fre-
quency estimation, which has been discussed in [11]. However
its conclusion is not appropriate to our situation because the
special structure of (7), i.e., r̄ = r̄∗, cannot be further used to
exploit the backward permutation matrix. We herein provide
the parameter identifiability by the following theorem.

Theorem 1: Given the non-uniform MIMO radar model (2)
with K distinct Doppler frequencies, after the transformation
to (6) by lemma 1, and further to (10), the parameter set
(θk, φk), for k = 1, 2, · · · ,K , can be uniquely identified if

K ≤ N̄(M̄ + 1) (15)

where the parameters set is drawn from a continuous dis-
tribution with respect to the Lebesgue measure in L2K ,
L := [−π/2, π/2].

Proof: Suppose the parameters are all drawn from a
continuous distribution. Retrospecting the model described in
(10), according to the almost surely full column rank of the
Khatri-Rao product of two Vandermonde matrices, we know
that the requirement of rank(Ã) = K is K ≤ (M̄+1)(N̄+1).
In addition, the calculation of T in (12) by partitioning the
signal subspace Us requires K ≤ N̄(M̄ + 1). Therefore, the
proposed joint DOD and DOA estimation algorithm requires
K ≤ N̄(M̄+1) to guarantee the parameter identifiability with
probability one.

Remark2: In some very special cases, it has rank(Ã) < K
even though K ≤ N̄(M̄ + 1), however the theorem tell us
that such cases are measure-zero events, that is to say, Ã is
almost surely full column rank.

Previous result on the maximum upper bound of the param-
eter identifiability such as MUSIC-like or rotational invariance
algorithms is MN − 1 when the uniform array configuration
is used. Due to the non-uniform array configuration in the
proposed method, it usually satisfies M̄ > M and N̄ > N ,
showing a much stronger identifiability. It is worth mentioning
that although the upper bound of parameter identifiability is
derived under the noise-less case, it still works under the
limited snapshot number and lower signal-to-noise ratio (SNR)
case.

IV. NUMERICAL EXAMPLES

We present some numerical simulations to demonstrate
the effectiveness and advantages of the proposed algo-
rithm under the non-uniform MIMO radar configuration.
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Fig. 1: The average RMSE performance comparison between
different methods.

The average root mean squared error (RMSE) is defined

as (1/K)
∑K

k=1

√
E
[
(θ̂k − θk)2 + (φ̂k − φk)2

]
to assess the

estimation performance. All the numerical results are obtained
from 1000 independent trials.

First, the performance comparison between different meth-
ods is shown in Fig. 1, where three targets locate at θ ∈
{10◦, 20◦, 30◦}, φ ∈ {15◦, 25◦, 35◦} with β ∈ {1, 0.8, 0.5}
and Q = 100. The Doppler frequencies are well separated.
We use M = N = 7 MR configuration in our method,
M = N = 8 comprime configuration in [10] and M = N = 8
uniform configuration in [4], [5], and [7]. The results manifest
that the non-uniform MIMO radar outperforms the uniform
one. Furthermore, the MR configuration used in our method
performs the best. Such performance improvement mainly
benefits from the extended DOFs of the non-uniform array.

For large target number case, we consider ten targets
with equal angle spacing θ ∈ {45◦, · · · ,−30◦} and φ ∈
{−35◦, · · · , 40◦}. The β and fd hold linearly spaced values
from 0.8 to 0.3 and 230Hz to 3170Hz, respectively. The
snapshot number Q = 200. Other parameters are similar to
the first example. A target is said to be localized successfully
in a given trial if |γ̂ − γ| ≤ ε, γ ∈ {θ, φ}. When focussing on
the minimum power target, see Fig. 2(a), the proposed method
keeps a much higher successful estimation probability than
others, especially at lower SNR. Fig. 2(b) depicts the RMSE
after excluding the failed trials. Here we choose ε = 2◦.

Following the second example, we show the potential
identifying ability under two cases: M = N = 4 and
M = 5, N = 6, each one of which has MR and uniform
configuration, and Q = 500, SNR= 20dB. Fig. 3 proves that
when the target number increases, the uniform MIMO radar
breaks down faster than the proposed non-uniform MIMO
radar. Besides, we also notice that both of them cannot attain
their theoretical identifying bound in this scenario, however
the improvement of the proposed method is salient.

V. CONCLUSION

In this letter, we have discussed the joint DOD and DOA
estimation in bistatic non-uniform MIMO radar system. We
proved in theory that the proposed algorithm based on non-
uniform MIMO radar can unveil a much stronger parameter



YAO et al.: DOD AND DOA ESTIMATION IN BISTATIC NON-UNIFORM MULTIPLE-INPUT MULTIPLE-OUTPUT RADAR SYSTEMS 1799

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR /dB

P
ro

ba
bi

lit
y

 

 

RD−MUSIC [4]
ESPRIT [5]
Parafac [7]
Coprime [10]
Proposed

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

SNR /dB

R
M

S
E

 /d
eg

re
e

 

 
RD−MUSIC [4]
ESPRIT [5]
Parafac [7]
Coprime [10]
Proposed

(b)

Fig. 2: Performance comparison. (a) The probability of successful estimation; (b) the corresponding RMSE.
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Fig. 3: The successful estimation probability with different
target number.

identifiability than the conventional uniform MIMO radar. In
addition, compared with the previous estimation algorithms,
it achieved a superior performance when the same number of
transmit/receive antennas is used.
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