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Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision, nonlinear interactions of grav-
ity waves are simulated and the matching relationships of the wavelengths and frequencies of the interacting waves are dis-
cussed. In resonant interactions, the wavelengths of the excited wave are in good agreement with the values derived from sum 
or difference resonant conditions, and the frequencies of the three waves also satisfy the matching condition. Since the inter-
acting waves obey the resonant conditions, resonant interactions have a reversible feature that for a resonant wave triad, any 
two waves are selected to be the initial perturbations, and the third wave can then be excited through sum or difference reso-
nant interaction. The numerical results for nonresonant triads show that in nonresonant interactions, the wave vectors tend to 
approximately match in a single direction, generally in the horizontal direction. The frequency of the excited wave is close to 
the matching value, and the degree of mismatching of frequencies may depend on the combined effect of both the wavenumber 
and frequency mismatches that should benefit energy exchange to the greatest extent. The matching and mismatching rela-
tionships in nonresonant interactions differ from the results of weak interaction theory that the wave vectors are required to 
satisfy the resonant matching condition but the frequencies are permitted to mismatch and oscillate with amplitude of half the 
mismatching frequency. Nonresonant excitation has an irreversible characteristic, which is different from what is found for the 
resonant interaction. For specified initial primary and secondary waves, it is difficult to predict the values of the mismatching 
wavenumber and frequency for the excited wave owing to the complexity. 
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Gravity waves play important roles in determining large- 
scale circulations and dynamics of the middle atmosphere 
because of their inherent ability to transport momentum 
from one level to another and deposit energy at the heights 
where the waves dissipate [1–4]. Many possible mecha-
nisms of the generation, internal transfer and dissipation of 
gravity waves have been extensively explored in the past 
several decades. The most obvious sources of gravity waves 

in the lower atmosphere include flow over topography, 
convection, wind shear and adjustment of unbalanced flows 
in the vicinity of jet streams [5–7]. Additional sources, such 
as body forcing accompanying localized wave dissipation [8, 
9], may be of significance in the middle and upper atmos-
phere [10]. On account of the diversity and variability of 
wave sources, gravity waves are generated on various spa-
tial and temporal scales [11–14]. Since the amplitude of 
gravity waves increases exponentially with height, a non-
linear effect is one of the most significant features of gravity 
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waves in the middle and upper atmosphere. When gravity 
waves propagate in the middle and upper atmosphere, they 
represent a random encounter and superposition of many 
waves with different amplitudes, wave numbers and fre-
quencies. At this time, there may also be redistribution of 
energy and momentum among different wave components 
with approximate conservation of total energy and momen-
tum owing to nonlinear interactions, which may lead to the 
rapid relaxation of distorted spectra toward the universal 
form of gravity waves. Doppler spread theory presented by 
Hines [15] and Weinstock [16] employs statistical 
wave-wave interactions to account for the form of the satu-
rated spectrum, and attributes the spectral energy transfer to 
Doppler spread. Weinstock [16] treated the effects of non-
linearity as a damping decrement in the dispersion relation 
of gravity waves and inferred an energy cascade to smaller 
wave scale. Hence, wave–wave interactions are regarded as 
an important mechanism in the energy exchanges and spec-
tral evolution of gravity waves in the middle and upper at-
mosphere [15–18].  

As a relatively mature theory, weak nonlinear interaction 
theory has been extensively applied to the phenomena of 
wave–wave interaction. Under the weak nonlinear approx-
imation, the equations of motion are linearized, and then 
transformed into interaction equations. In this way, the am-
plitudes of the interacting waves are expressed as functions 
slowly varying in time, and the coupling coefficients can be 
written as expressions of the wave vectors and frequencies 
of the interacting waves. Hence, it is possible to discuss the 
feature of energy exchange among the wave triad. Employ-
ing weak interaction theory, many studies on the features 
and effects of resonant and nonresonant interactions among 
atmospheric gravity waves have been carried out [19–23]. 
Starting from a set of linearized resonant interaction equa-
tions, interaction rates for three resonant triads have been 
deduced [19]. Dong and Yeh [20] studied wave-wave inter-
actions not confined to a resonance surface, and suggested 
that in the case of frequency mismatch, there might be non-
resonant interaction with an amplitude threshold. Some 
characteristics of resonant and nonresonant interactions in a 
sheared, dissipative and rotating atmosphere have been ac-
quired [22, 23]. Additionally, weak nonlinear approxima-
tion has been extended to investigate nonlinear interaction 
between planetary waves and inertial gravity waves in the 
atmosphere [24, 25]. These theoretical works revealed the 
essential property of nonlinear interaction of atmospheric 
waves in a weak nonlinear regime. 

There has been a long debate over the validity range of 
weak interaction theory [10, 26, 27], which motivates the 
direct numerical simulations of wave-wave interactions. 
According to numerical studies, wave-wave interaction sub-
stantially reduces in momentum flux [27], and spatially lo-
calized interaction could transfer significant energy on a 
timescale of several periods of the primary wave [28]. Us-
ing the linearized resonant interaction equations, the tem-

poral and spatial evolutions of gravity wave packets in res-
onant interactions have been investigated [29]. Starting 
from a set of nonlinear equations, gravity wave excitations 
due to resonant and nonresonant interactions have been 
clearly demonstrated in numerical experiments, showing 
that energy exchange in nonlinear interaction is irreversible 
rather than periodic as predicted by weak interaction theory 
[30–32]. Huang et al. [31] examined the effect of viscosity 
on nonresonant interaction. Their results showed that vis-
cous dissipation mainly led to energy decay of the interact-
ing waves, and the amplitude threshold for nonresonant 
interaction in the presence of viscosity predicted by weak 
interaction theory might be a rather loose restriction. More-
over, a detuning degree of interaction was introduced to 
determine whether there is effective energy exchange in 
nonlinear interactions [32]. 

In weak interaction theory, three resonant waves must 
satisfy both the wave vector and frequency matching condi-
tions, which are expressed as  

 1 2 3 ,k k k 
  

 (1) 

 1 2 3    , (2) 

where the subscripts j = 1, 2 and 3 denote the interacting 
waves, which are named the primary, secondary and excited 

waves; and k


 and   are the wave vector and frequency. 
The wave vector and frequency for each wave obey the 

dispersion relation ( )j jk  


, which can be written as 
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where kx and kz are the horizontal and vertical components 
of the wave vectors, respectively; N is the buoyancy fre-
quency; va is the acoustic speed; and a is the acoustic-  
cutoff frequency. These two types of interactions pre-  
sented in the resonant conditions of eqs. (1) and (2) are re-
ferred to as sum and difference resonant interactions, re-
spectively. 

In resonant interaction, for two specified initial waves, 
the wavelengths and frequencies of the excited waves can 
be derived from the resonant conditions. It should be noted 
that because resonant interaction is restricted by the severe 
matching conditions, nonresonant interaction may occur 
more frequently than resonant interaction. However, for 
nonresonant interaction, owing to approximations and the 
complicated eigenvalue and eigenvector obtained from the 
linearized interaction equations, weak interaction theory 
may give unintelligible results. For example, three nonres-
onant waves are required to satisfy the wavenumber match-
ing condition, and only their frequencies are permitted to 
mismatch; moreover, the frequencies of both the excited 
and secondary waves oscillate with amplitude of half the 
mismatching frequency [20, 22, 23]. This means that the  
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excited and secondary waves do not obey the dispersion 
relation of gravity waves in interaction. Fritts et al. [22] 
relaxed the limit of the wavenumber matching condition, 
and proposed that there might be a mismatch of wave-
numbers as well as frequencies in nonresonant interaction. 
Nevertheless, in this case, it is difficult to obtain not only 
the mismatching degrees of wavenumbers and frequencies 
but also the expressions of the interaction coefficients. 
Hence, there remains much to be done in quantitative stud-
ies on the matching relationships of the wavelengths and 
frequencies of nonresonant waves. Previous numerical 
studies paid more attention to energy exchange in a certain 
sum or difference interaction. In this paper, we focus on the 
relation of three waves in resonant and nonresonant excita-
tions by investigating sum and difference nonlinear interac-
tions of wave triads, and explore the match and mismatch 
among the interacting waves, which is helpful in under-
standing the nonlinearity of gravity waves.  

1  Numerical model  

1.1  Governing equations and numerical scheme 

The simulations adopt a set of primitive hydrodynamic 
equations for an adiabatic, inviscid and two-dimensional 
compressible atmosphere, which can be written as  
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 (4) 

where x and z are the horizontal and vertical (positive up-
ward) coordinates, respectively; u and w are the horizontal 
and vertical components of the total wind field, respectively; 
 and T are the density and temperature, respectively; g is 

the acceleration due to gravity; R=287 J kg1 K1 is the spe-
cial gas constant for air; and =cp/cv (cp=1005 J kg1 K1  
and cv=718 J kg1 K1 are specific heats at constant pressure 
and volume, respectively).  

Usually, the propagation of gravity waves in the atmos-
phere is a long-lasting process. To precisely simulate the 
propagation and interaction of gravity waves, a numerical 
scheme should be of high accuracy and fine stability. Here, 
a composite difference scheme with second-order temporal 
and spatial precision, which was described in detail by 
Huang et al. [31], is applied to discretizing the equations (4), 
and a corresponding three-dimensional model is extended to 
investigate the propagation characteristics of gravity waves 
[33]. 

To avoid the boundary reflection, the lateral boundaries 
are set to be periodic, and projected characteristic line 
boundaries are employed at the top and bottom boundaries 
[34]. In view of an explicit scheme used for the projected 
characteristic line boundaries, the time step should be re-
stricted by the Courant condition:  

 c 1/2

a 2 2

1
,

1 1
( )

t t

v v
x z

   
     

 (5) 

where the acoustic speed av RT , and 2 2v u w  . 

In this paper, we take c0.5 .t t    

1.2  Initial background and perturbation 

To investigate the matching relations of the wavenumbers 
and frequencies of the interacting gravity waves, we avoid 
the influences of background wind and inhomogeneous 
temperature fields by assuming that the initial background 
atmosphere is windless and isothermal and is in hydrostatic 
equilibrium with initial constant temperature of T0=290 K 

and initial density profile of 0
0 e ,gz RT

c    where c  = 

1.2 kg m–3 is the density at ground level.  
In the initial background atmosphere, we introduce two 

discrete gravity wave packets as the initial wave perturba-
tions, of which the horizontal velocity disturbances have the 
Gaussian form 
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where ucj (j=1 and 2) is the maximum horizontal wind am-
plitude; xcj and zcj are the initial geometric center positions 
of the wave packets in x and z directions, respectively; and 
xj and zj represent the half–widths of the wave packets in 
x and z directions, which are chosen to be xj=zj and zj=zj, 
where xj and zj are the horizontal and vertical wavelengths 
of the interacting waves, respectively. The other initial per-
turbation quantities ( ,  ,  j j jw T   ) are derived from the po-

larization equations of gravity waves. 

2  Matching among the resonant triad 

Observations show that the horizontal wavelengths of at-
mospheric gravity waves range from several ten to several 
hundred kilometers, the vertical wavelengths from several 
to more than ten kilometers, and the intrinsic frequencies 
from the inertial frequency to buoyancy frequency [11–14, 
35]. In case 1, we choose the horizontal and vertical wave-
lengths for the primary wave to be 50 and 5 km, of which 



4 Huang K M, et al.   Sci China Earth Sci   January (2012) Vol.55 No.1 

the frequency is derived as 18.05×104 rad s1, from the 
dispersion relation of eq. (3). For resonant interaction, the 
secondary wave should be selected from the resonant curve 
of the primary wave, which is determined by the resonant 
conditions of eqs. (1) and (2) and the dispersion relation of 
eq. (3). Hence, the wavelengths of the secondary wave are 
chosen to be 129.67 and –2.3 km in the horizontal and ver-
tical directions, respectively, where the negative sign in 
front of the vertical wavelength denotes downward phase 
progression but upward wave energy propagation, and the 
corresponding frequency is 3.22×104 rad s1. According to 
eqs. (1)–(3), the excited wave would have horizontal and 
vertical wavelengths of 36.08 and –4.26 km, and frequency 
of 21.27×104 rad s1, if there is resonant interaction. In the 
atmosphere, when the amplitudes of upward propagating 
gravity waves reach their instability thresholds, wave 
breaking may occur, and the body force due to local break-
ing of waves tends to create high-frequency gravity waves 
with large vertical group velocity [8, 9]. Besides this, the 
upward propagating high-frequency gravity waves are likely 
to experience reflection in the shear wind and temperature 
gradient of the middle and upper atmosphere, and turn to 
propagate downwards [36]. Observations from radiosondes 
show that the fraction of downward propagating gravity 
waves is about 20%–30% in the stratosphere [11, 12, 14]. In 
case 1, the primary wave is chosen to be a downward prop-
agating high-frequency perturbation with large vertical scale. 
Hereby, it should be pointed out that all wavelengths and 
frequencies of the wave triad presented here are typical ob-
servational values in the atmosphere, and the upward and 
downward propagations of the wave triad are also consistent 
with observations [11, 13, 35]. Table 1 lists the wavelengths 
and frequencies of these resonant three waves. In the first 
case group (cases 1–3), besides waves 1 and 2 being select-
ed as the initial wave perturbations in case 1, waves 2 and 3 
and waves 1 and 3 are selected as the initial wave perturba-
tions in cases 2 and 3, respectively.  

According to the wavenumbers and frequencies of this 
wave triad listed Table 1, one can easily verify that the sum 
resonant excitation may occur in case 1 because of 

1 2 3k k k 
  

 and 1 2 3    , while difference resonant 

excitations probably arise in cases 2 and 3 because of  

3 2 1k k k 
  

 and 3 2 1     in case 2, and 3 1k k 
 

 

2k


 and 3 1 2     in case 3. When waves 1–3 are re-

garded as the initial wave perturbations, their amplitudes 
and center positions are also listed in Table 1. In the nu- 

merical computation, on the basis of the scale of waves 1–3 
in this case group, the spatial grid sizes in the horizontal and 
vertical directions are set to be x  3.6 km and z  0.23 
km, and the computational domains are chosen to be 
0 x  2376 km and 0 z  184 km in the horizontal and 
vertical directions, respectively.  

Figure 1 shows new wave excitation through nonlinear 
interaction using the square-root density-weighted horizon-
tal velocity disturbances in cases 1–3, which are calculated 
from the expression of 1/2

0 0( ) [ ( ) / ] ( ),ru z z u z    where 

0r is the background density at a reference level of z=60 
km. At the start time, there are two separate initial waves at 
different heights. At t= 5 h, new waves are excited through 
nonlinear interactions, and after propagation and interaction 
for 9 h, these interacting waves are almost apart from each 
other in each case. 

To investigate the matching relationships of the wave-
numbers and frequencies among the interacting waves, the 
wavenumber spectra of three waves are obtained by making 
a discrete Fourier transformation of the square-root densi-
ty-weighted horizontal velocity disturbances over the whole 
computational domain. The calculated wavenumber spectra 
are normalized by the maximum spectral magnitude at the 
start time. Figure 2 shows the normalized wavenumber 
spectra of the interacting waves at t= 0 and 9 h for cases 1–3. 
According to the spectrum of the excited wave after 9 hours, 
we calculate the dominant wavelengths of the excited waves. 
In cases 1–3, the horizontal and vertical wavelengths of the 
excited waves are 36.0 and –4.28 km, 50.55 and 4.97 km, 
and 125.05 and –2.30 km, respectively, which are in agree-
ment with matching wavelengths listed in Table 1. The tiny 
distinctions between the calculated and matching wave-
lengths are due to the limited spectral resolution in the nu-
merical computation. The frequencies of the excited waves 
are calculated to be 21.42×104, 17.75×104 and 3.34×104 
rad s1 in cases 1–3, and the deviations from the matching 
frequencies listed in Table 1 are small values of 0.7%, 1.7% 
and 3.8%, resulting from the wavelength errors due to the 
spectral resolution. Figure 2 shows that the dominant wave-
lengths of the primary and secondary waves remain un-
changed in the interactions in each case. This means that in 
the sum and difference resonant interactions, both the 
wavelengths and frequencies of the interacting waves satis-
fy the resonant matching conditions, as predicted by weak 
interaction theory. Since the resonant conditions are satis-
fied, for a resonant wave triad, any two waves are chosen to 
be the initial wave perturbations, and the third wave is then   

Table 1  Initial parameters of waves 1–3 regarded as initial perturbations in cases 1–3 

 x (km) z (km) kx (104 rad m–1) kz (103 rad m–1) (104 rad s–1) uc (m s–1) xc (km) zc (km) 

Wave 1 50 5.0 1.26 1.26 18.05 5.0 500 80 

Wave 2 129.67 -2.3 0.48 2.73 3.22 1.0 600 60 

Wave 3 36.08 -4.26 1.74 1.47 21.27 0.4 530 43 
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Figure 1  Sum and difference resonant interactions. The first, second and third columns correspond to cases 1–3, respectively. 

excited through the sum or difference resonant interaction, 
as shown in Figures 1. In other words, the resonant interac-
tion has a reversible excitation characteristic.  

3  Mismatch in nonresonant interaction 

3.1  Nonresonant case 

For the second case group (cases 4–6), we first simulate 
case 4. In case 4, downward propagating wave 1 and up-
ward propagating wave 2 are chosen as the initial waves; 
their parameters are listed in Table 2. Here, the possible 
interaction between these two waves is discussed in brief. 
Supposing an excited wave obeys the sum matching condi-
tion for wavenumbers, its wavelengths should equal the 
matching wavelengths (Lx and Lz), i.e., x3=Lsx= 35.29 km 
and z3=Lsz=–3.33 km. Its frequency is then derived from 
the dispersion relation as 17.06×104 rad s1, which is 
smaller than the sum (21.08×104 rad s1) of the frequencies 
of waves 1 and 2. This means that the sum resonant interac- 

tion does not take place because the sum matching condi-
tion of frequencies cannot be satisfied. On the other hand, if 
an excited wave meets the difference matching condition of 
wavenumbers, its wavelengths are calculated to be x3=Ldx=  
85.71 km and z3=Ldz=1.43 km; thus, its frequency is 
3.03×104 rad s1. We can take notice of this frequency 
much less than the difference (15.02×104 rad s1) of the 
frequencies of waves 1 and 2. Hence, the difference matching 
condition for frequencies is not satisfied either, which indi-
cates that there is no difference resonant interaction. Since 
neither a sum nor difference resonant interaction can occur, a 
new wave would be excited only through nonresonant inter-
action if it arose. Huang et al. [32] introduced a detuning 

degree of interaction, 1 2 1 2

1 2

( ) ( ) ( )
,

( )

k k k k

k k


   


 

   
   which 

may be applied to determining whether there is an effective 
energy exchange in the nonlinear interaction of gravity 
waves. According to the wavenumbers of waves 1 and 2 
listed in Table 2, the detuning degrees of sum and differ- 
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Figure 2  Normalized wave number spectra in cases 1–3. The contour 
values are 0.2, 0.4, 0.6 and 0.8. The first, second and third rows correspond 
to cases 1–3, respectively. 

ence interactions are calculated to be s=0.23 and d=3.97, 
respectively. Such a large detuning degree of the difference 
interaction (d=3.97) implies that there is no significant en-
ergy transfer in the difference nonresonant interaction. 
However, considering a small detuning degree of the sum 
interaction (s=0.23), one expects that a new wave may be 
excited through the sum nonresonant interaction. Further-
more, we can distinguish a new wave excited through the 
sum nonresonant interaction from one excited through the 
difference nonresonant interaction only by its upward 
propagation because the new wave would propagate down-
wards if the difference nonresonant interaction between 
waves 1 and 2 listed in Table 2 excited a third wave. In ad-
dition, in the numerical computation, considering the spatial 
scale of the interacting waves, the grid sizes are adjusted to 
be x=3.5 km and z=0.2 km, and the hori- zontal and ver-
tical domains are altered to be 0 km x  2520 km and 

0 km z  172 km, respectively. 
Figure 3 shows the nonlinear interaction process using 

square-root density-weighted horizontal velocity disturb-
ances. As we expected, a new wave (wave 3) is excited 
through the sum nonresonant interaction because of its up-
ward propagation direction. Figure 4 shows the normalized 
wavenumber spectra of the interacting waves. In Figure 4, 
the two values in brackets denote the dominant horizontal 
and vertical wavelengths of the excited wave derived from 
the corresponding wavenumbers at the peak. From 7 to 10 h, 
the wavelengths of the excited wave maintain the constant 
values of 35.49 and –4.0 km in the horizontal and vertical 
directions, respectively, and the frequency is calculated to 
be 20.32×104 rad s1, which also remains unchanged in the 
interaction. It is interesting that the horizontal wavelength 
of wave 3 (x3= 35.49 km) is consistent with its matching 
value (Lsx= 35.29 km), while its vertical wavelength (z3= 
–4.0 km) is obviously greater than its matching value (Lsz= 
–3.33 km). In the whole propagation and interaction process, 
as shown in Figure 4, the dominant wavelengths of waves 1 
and 2 in both the horizontal and vertical directions remain 
invariable; thus, the frequencies are fixed at 18.05×104  
and 3.03×104 rad s1 as listed in Table 2. The frequency 
(20.32×104 rad s1) of wave 3 is slightly lower than the 
sum (21.08×104 rad s1) of the frequencies of waves 1 and 
2. Therefore, this nonresonant case shows that the frequency 
of the excited wave approaches the matching value, and the 
wave vectors of waves 1–3 seem to match in the horizontal 
direction, but not in the vertical direction. 

3.2  Nonresonant triad 

In case 4, for given wave 1 (x1= 50 km and z1= 5.0 km) 
and wave 2 (x2= 120 km and z1= –2.0 km), wave 3 with 
x3= 35.49 km and z3= –4.0 km is excited through the sum 
nonresonant interaction; thus, waves 1–3 make up a non-
resonant triad. In cases 5 and 6, we choose waves 2 and 3 
and waves 1 and 3 to be the initial wave perturbations, re-
spectively. The initial parameters of wave 3, as the initial 
wave in cases 5 and 6, are also listed in Table 2. This indi-
cates that when waves 1–3 are selected to be the initial per-
turbations, their initial parameters are identical in different 
cases. In cases 5 and 6, the detuning degrees of sum interac-
tion are calculated to be s= 1.64 and 0.70, respectively, 
while the detuning degrees of difference interaction are d= 
0.20 and 0.31, respectively. Therefore, the difference non- 
resonant interaction may arise in both cases 5 and 6 owing  

Table 2  Initial parameters of waves 1–3 regarded as initial perturbations in cases 4–6 

 x (km) z (km) kx (104 rad m1) kz (103 rad m1)  (104 rad s1) uc (m s–1) xc (km) zc (km) 

Wave 1 50 5.0 1.26 1.26 18.05 5.0 488 80 

Wave 2 120 2.0 0.52 3.14 3.03 1.0 600 60 

Wave 3 35.49 4.0 1.77 1.57 20.32 0.4 526 44.4 
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Figure 3  Sum nonresonant interaction in case 4. 

 

Figure 4  Normalized wave number spectra in case 4. The contour values 
are 0.2, 04, 0.6 and 0.8. The two values in each set of brackets denote the 
dominant horizontal and vertical wavelengths of the excited wave in unit of 
kilometers. 

to the detuning degrees of the difference interaction being 
much less than the detuning degrees of the sum interaction. 
The nonlinear excitations for cases 5 and 6 are shown in 
Figure 5. The normalized wavenumber spectra of the inter-
acting waves at t= 0 and 10 h are shown in Figure 6. Similar 
to cases 1–4, after 10 h, the wavelengths of the primary and 
secondary waves remain similar to their initial values. In 
case 5, the excited wave has horizontal and vertical wave-
lengths of 50.40 and 4.41 km, and its frequency is derived 
from the dispersion relation as 15.81×104 rad s1, which is 
lower than the value (17.29×104 rad s1) of 32. In case 
6, the wavelengths of the excited wave are 100.8 and –2.21 
km in the horizontal and vertical directions, and its fre-
quency of 3.98×104 rad s1 is larger than the value 
(2.27×104 rad s1) of 31. The excited waves in cases 5 
and 6 are different from wave 1 and wave 2; thus, we refer 
to these new waves as waves 4 and 5 in cases 5 and 6, re-
spectively. This indicates that for a nonresonant wave triad, 
once any of the two initial waves is replaced with the third 
wave, the anew excited wave is not the replaced wave any 
more, which differs from the reversible characteristic in 
resonant interaction.  

Figure 7 shows the wave vectors of waves 1–5 and the 
matching wave vectors in cases 4–6. In cases 4 and 5, the  
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Figure 5  Difference nonresonant excitations for cases 5 (a) and 6 (b). 

 

Figure 6  Normalized wave number spectra for cases 5 (a) and 6 (b). The 
values of contours are 0.2, 0.4, 0.6 and 0.8. 

horizontal wavenumbers of the excited waves (waves 3 and 
4) almost equal the matching values, while in case 6, the 
excited wave (wave 5) has a vertical wavenumber close to 
its matching value. Therefore, in the nonresonant interaction, 
although the three wave vectors mismatch, their horizontal 
components approximately meet the matching condition, or 
their vertical components tend to match.  

3.3  More nonresonant triads 

Several nonresonant wave triads are investigated to further 
reveal the general characteristics of the nonresonant excita-
tions. For the third case group (cases 7–9), firstly, we nu-
merically study case 7. In case 7, the initial parameters of 
initial waves 1 and 2 are listed in Table 3. The detuning 
degrees of sum and difference interactions are s =0.28 and 
d =3.43, which implies that a new wave will be excited 
through the sum nonresonant interaction. The sum matching 
wavelengths are calculated to be Lsx=38.10 km and Lsz= 
–3.33 km from the sum matching condition of the wave-
number. According to the wavenumber spectra of the inter-
acting waves at t=10 h, the excited wave (wave 3) has 
wavelengths of x3=38.18 km and z3=–4.0 km, and the 
frequency of 18.91×104 rad s1 is lower than the sum 
(20.32×104 rad s1) of the frequencies of waves 1 and 2. 
Hereby, waves 1–3 constitute a nonresonant triad. Next, 
waves 2 and 3 and waves 1 and 3 are regarded as the initial 
waves to simulate cases 8 and 9, respectively. When wave 3 
is selected to be the initial wave perturbations, its parame-
ters are also presented in Table 3. In case 8, the new wave 
(wave 4) is a downward propagating wave with x4=50.04 
km and z4=–4.30 km. Thus, its frequency is 15.53×104 rad 
s1, which is a bit lower than the difference (16.64×104 rad 
s1) in frequencies of waves 2 and 3. In case 9, the wave-
lengths of the excited wave (wave 5) are x5 =126.0 km and 
z5=–2.21 km, and wave 5 has frequency of 3.18×104 rad 
s1, which is higher than the difference (0.86×104 rad s1)  
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in the frequencies of waves 1 and 3. We then consider the 
fourth case group (cases 10–12). In the fourth group of cas-
es, the two initial waves are selected to be waves 1 and 2, 
waves 2 and 3, and waves 1 and 3 in cases 10–12, respec-
tively. Initial parameters of waves 1–3 are listed in Table 4. 
In case 10, the sum matching wavelengths are Lsx= 35.29 
km and Lsz= –5.0 km; however, the excited wave has wave-
lengths of x= 35.49 km and z= –4.3 km, and frequency of 
21.82×104 rad s1, which are consistent with those of wave 
3 listed in Table 4. It is obvious that these three waves do 
not obey the resonant conditions; thus, waves 1–3 presented 
in Table 4 also constitute a nonresonant triad. At t=10 h,  
the spatial scales of excited waves (waves 4 and 5) are  

x4=50.40 km and z4=5.12 km in case 11, and x5=100.8 
km and z5=2.29 km in case 12, and the corresponding 
frequencies of waves 4 and 5 are 18.33×104 and 4.12×104 
rad s1. It is an interesting phenomenon that the frequencies 
of new waves 3–5 are rather close to the matching values 
(21.83×104, 18.04×104 and 3.77×104 rad s1) of 13 in 
case 10, 32 in case 11, and 31 in case 12, respec-
tively.  

Figures 8 and 9 display the relationship among the wave 
vectors of the interacting waves and the matching wave 
vectors in cases 7–9 and cases 10–12, respectively. Similar 
to Figure 7, Figures 8 and 9 show two common features of 
the nonresonant interactions. The first is the characteristic  

 

 
Figure 7  Wave vectors of waves 1–5 and matching wave vectors in cases 4–6. 

Table 3  Initial parameters of waves 1–3 regarded as initial perturbations in cases 7–9 

 x (km) z (km) kx (104 rad m1) kz (103 rad m–1)  (10–4 rad s–1) uc (m s–1) xc (km) zc (km) 

Wave 1 50 5.0 1.26 1.26 18.05 5.0 487 80 

Wave 2 160 2.0 0.39 3.14 2.27 1.0 600 60 

Wave 3 38.18 4.0 1.65 1.57 18.91 0.4 520 44 

Table 4  Initial parameters of waves 1–3 regarded as initial perturbations in cases 10–12 

 x (km) z (km) kx (104 rad m1) kz (103 rad m–1)  (10–4 rad s–1) uc (m s–1) xc (km) zc (km) 

Wave 1 50 5.0 1.26 1.26 18.05 5.0 511 80 

Wave 2 120 2.5 0.52 2.51 3.78 1.0 600 60 

Wave 3 35.49 4.30 1.77 1.46 21.82 0.4 536 43 
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Figure 8  Wave vectors of waves 1–5 and matching wave vectors in cases 7–9. 

 

Figure 9  Wave vectors of waves 1–5 and matching wave vectors in cases 10–12. 
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of irreversible excitation. For a nonresonant triad, if any of 
the two initial waves is substituted by the third wave, the 
anew excited wave is different from the substituted wave. 
The second is the approximate matching of wave vectors in 
a single direction, especially in the horizontal direction, 
such as cases 4 and 5, cases 7 and 8, and cases 10 and 11. In 
these cases, the excited wave, with large vertical scale, is 
generated through the interaction of the primary wave with 
a low-frequency secondary wave. We can make a conjec-
ture about the approximate matching of horizontal wave-
numbers. If both the horizontal and vertical components of 
the wave vectors meet the matching conditions in the non-
resonant interaction, the frequencies of the three waves may 
mismatch too much; thus, this situation does not benefit the 
energy exchange to the greatest extent. To moderately di-
minish the mismatching degree of frequencies, the vertical 
wavenumber of the excited wave may be moderately ad-
justed because the frequency of the gravity wave is more 
sensitive to the variation in the vertical number than in the 
horizontal number owing to the vertical wavenumber gen-
erally being 1–2 orders of magnitude larger than the hori-
zontal wavenumber. In this case, the horizontal components 
of wave vectors may approximately remain matched. For 
instance, in case 4, if x3=Lsx=35.29 km and z3=Lsz= –3.33 
km, the frequency of 17.06×104 rad s1 for the new wave is 
much lower than the value (21.08×104 rad s1) of 1+2; 
thus, this large frequency mismatch may prevent the ex-
change of wave energy as much as possible. The numerical 
results show that the frequency (20.32×104 rad s1) of the 
excited wave is close to the matching value (21.08×104 rad 
s1) owing to its vertical wavelength adjustment. In this in-
stance, a considerable energy exchange arises. In cases 6, 9 
and 12, the new wave with small vertical wavelength is ex-
cited through the interaction between two high–frequency 
waves. Since the vertical wavelength of the excited wave is 
rather small, it is possible that both the horizontal and ver-
tical wavelengths of the excited wave moderately adjust, 
and even that the wavelength has a more obvious adjust-
ment in the horizontal direction than in the vertical direction. 
With the moderate adjustment of wavenumbers, the degree 
of mismatching in frequencies can reduce, and may even 
approaches zero, which means the approximate matching of 
the frequencies of the three waves, such as in the fourth case 
group. Hence, the matching relationships of wavenumbers 
and frequencies in the nonresonant interaction are complex, 
and are different from the results obtained with weak inter-
action theory [21, 23, 25]. 

4  Summary 

The matching relationships among gravity waves in reso-
nant and nonresonant interactions were investigated in nu-
merical experiments. In resonant interactions, the wave-
lengths of the excited wave are in good agreement with the 

values derived from the resonant conditions, and the fre-
quencies of the three waves also meet the matching condi-
tion, such as in the first case group. Because the resonant 
conditions are satisfied, the resonant excitations have a re-
versible characteristic that for a resonant wave triad, any 
two waves are chosen to be the initial wave perturbations, 
and the third wave can then be excited through the sum or 
difference resonant interaction. However, relative to reso-
nant interactions, nonresonant interactions have complicated 
matching relations. In nonresonant interactions, the wave 
vectors tend to approximately match in a single direction, 
generally in the horizontal direction. The frequency of the 
excited wave is close to the matching value, and the degree 
of mismatching of frequencies is likely to depend on the 
combined effect of both the wavenumber and frequency 
deviations from their matches that should benefit the energy 
exchange to the greatest extent. The matching relationships 
in the nonresonant interactions differ from the prediction in 
weak interaction theory. The nonresonant interaction has an 
irreversible excitation feature that for a nonresonant triad, if 
the excited wave substitutes any of the two initial waves, 
the anew excited wave is different from the substituted 
wave. Because of the complexity, for specified initial waves, 
it is difficult to predict both the wavelength and frequency 
of the excited wave in the nonresonant interaction.  

In observational studies on the nonlinear interaction of 
gravity waves, owing to the observational restriction, the 
resonant interaction is supported only by the satisfaction of 
the matching condition at a certain wavenumber or fre-
quency according to the spectral analysis of a series of spa-
tial or temporal data. However, according to our study of 
the matching relationships in resonant and nonresonant in-
teractions, this evidence should be insufficient for the reso-
nant interaction, especially in the realistic background at-
mosphere with wind shear, temperature gradient and various 
dissipations. Nevertheless, if assuming that the background 
atmosphere is horizontally stratified, for the resonant and 
nonresonant interactions with considerable energy transfer, 
not only do the horizontal wavenumbers generally tend to 
approximately obey the matching condition but also the 
frequencies of the three waves may also approach a match. 
The study of nonlinear interactions of gravity waves in the 
realistic atmosphere still requires great efforts in terms of 
the theory, modeling and observations.  
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