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Abstract In this paper, a new set of frequency-hopping sequences is proposed, and the
Hamming correlation distribution of the new set is investigated. The construction of new fre-
quency hopping sequences is based upon generalized cyclotomy. It is shown that the proposed
frequency-hopping sequence set is optimal with respect to the average Hamming correlation
bound.
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1 Introduction

Frequency-hopping code-division multiple-access (FH-CDMA) is widely used in modern
communication systems such as Bluetooth, ultra-wideband (UWB), military or radar appli-
cations, etc. In a FH system, the wideband signal is generated by hopping from one frequency
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slot to another over a large number of frequency slots. The frequency slots used are chosen
pseudorandomly by codes called frequency-hopping (FH) sequences. The receiver is con-
fronted with the interference caused by undesired signals when it attempts to demodulate one
of the signals from several transmitters in FH-CDMA systems. Generally, it is very desir-
able to keep the mutual interference, or the Hamming crosscorrelations and the out-of-phase
Hamming autocorrelations of the FH sequences employed, as low as possible. On the other
hand, it is also preferred to have more FH sequences accommodating more distinct users. As
a consequence, the need for finding FH sequences which have simultaneously low Hamming
correlation and large family size is therefore well motivated.

There are two kinds of measurement for the Hamming correlation of FH sequences: one
is the maximum Hamming correlation [1,2] and another is the average Hamming correla-
tion [3]. The design of FH sequences remains of great interest. Among of them, most have
been devoted to the maximum Hamming correlation property. The average Hamming cor-
relation (or average of hits) indicates the average error (or interference) performance of the
FH-CDMA systems, the design of optimal FH sequences with respect to the optimal average
Hamming correlation property is very meaningful as well.

A generalized cyclotomy with respect to n = pq was introduced by Whiteman [4],
where p and q are two different odd prime numbers. When n is a prime, it is referred to
as classical cyclotomy. Some optimal or near-optimal FH sequence sets with respect to the
maximum Hamming correlation bound were constructed based on classical cyclotomy [5–7].
Whiteman’s generalized cyclotomy has been widely applied to design difference sets [4,8],
as well as to construct binary sequences with good correlation properties (but, not Ham-
ming correlation) [9–11]. In this paper, we construct a new set of FH sequences based on
Whiteman’s generalized cyclotomy and investigate the average Hamming correlation of the
FH sequence set. It is shown that the set of FH sequences is an optimal average Hamming
correlation set.

The outline of this paper is as follows. In Sect. 2, we give some preliminaries on FH
sequences, and review some bounds on the maximum and average Hamming correlation,
respectively. In Sect. 3, we introduce the definition and some fundamental properties of
Whiteman’s generalized cyclotomy and the corresponding cyclotomic numbers. In Sect. 4,
we give some basic lemmas that are needed to prove our main results. In Sect. 5, we focus
on a new construction of the FH sequence set, and determine the Hamming correlation value
of the FH sequences.

2 Preliminaries

Let F = { f0, f1, . . . , fv−1} be a set of available frequencies called a frequency library. Let U
be a set of M FH sequences of length L over F . Given two sequences X = {x0, x1, . . . , xL−1}
and Y = {y0, y1, . . . , yL−1} in U , the periodic Hamming cross-correlation function of X and
Y is defined by

HX,Y (τ ) =
L−1∑

t=0

h[xt , yt+τ ], 0 ≤ τ < L

where h[xt , yt+τ ] = 1 if xt = yt+τ , and 0 otherwise, and the subscript addition is calculated
modulo L . When X = Y , HX,Y (τ ) is called the Hamming autocorrelation function of X . In
this case, we denote it by HX (τ ).
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The maximum Hamming autocorrelation sidelobe H(X) of X and the maximum Ham-
ming crosscorrelation H(X, Y ) between X and Y are defined, respectively, by

H(X) = max
1≤τ<L

{HX (τ )},
H(X, Y ) = max

0≤τ<L
{HX,Y (τ )}.

To estimate these measures for a single FH sequence or a pair of FH sequences, Lem-
pel and Greenberger established the first bound in 1974, known as the Lempel-Greenberger
bound.

Lemma 1 (The Lempel-Greenberger bound [1]) For any FH sequence X of length L over
F with |F | = v,

H(X) ≥
⌈

(L − b)(L + b − v)

v(L − 1)

⌉
,

where b denotes the nonnegative residue of L modulo v, and �x� denotes the smallest integer
greater than or equal to x.

For any given FH sequence set U , the maximum Hamming autocorrelation sidelobe Ha(U)

and the maximum Hamming crosscorrelation Hc(U) are defined, respectively, by

Ha(U) = max
X∈U

{H(X)},
Hc(U) = max

X,Y∈U,X �=Y
{H(X, Y )}.

In 2004, Peng and Fan took account of the number of sequences in the family and then
developed the following bound.

Lemma 2 (The Peng-Fan bound [2]) Let U be a set of M FH sequences of length L over a
frequency slot set F with |F | = v, and I = �L M/v	, where �x	 denotes the largest integer
less than or equal to x. Then

(L − 1)vHa + (M − 1)LvHc ≥ (L M − v)L . (1)

Another important performance indicator of the FH sequences is the average Hamming
correlation defined as follows.

Definition 1 ([12]) Let U be a set of M FH sequences of length L over a given frequency
slot set F with size v, we call

Sa(U) =
∑

X∈U,1≤τ<L

HX (τ ),

Sc(U) = 1

2

∑

X,Y∈U,X �=Y,0≤τ<L

HX,Y (τ )

the overall number of Hamming autocorrelation and Hamming crosscorrelation of U respec-
tively, and call

Aa(U) = Sa(U)

M(L − 1)
, (2)

Ac(U) = 2Sc(U)

L M(M − 1)
(3)
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the average Hamming autocorrelation and the average Hamming crosscorrelation of U respec-
tively.

For simplicity, we denote Ha = Ha(U), Hc = Hc(U), Sa = Sa(U), Sc = Sc(U),
Aa = Aa(U) and Ac = Ac(U).

In 2008, Peng et al. derived the following theoretical limit which gave a bounded relation
among the parameters v, L , M , Aa and Ac.

Lemma 3 ([13]) Let U be a set of M FH sequences of length L over a given frequency
slot set F with size v, Aa and Ac be the average Hamming autocorrelation and the average
Hamming crosscorrelation of U , respectively. Then

Aa

L(M − 1)
+ Ac

L − 1
≥ L M − v

v(L − 1)(M − 1)
. (4)

Hereafter, we use the following definitions:

(1) A FH sequence X ∈ U is called optimal if the Lempel-Greenberger bound in Lemma 1
is met.

(2) A FH sequence set U is an optimal set with respect to the maximum Hamming correlation
bound if Ha and Hc of U is a pair of the minimum integer solutions of inequality (1).

(3) A FH sequence set U is an optimal set with respect to the average Hamming correlation
bound if Aa and Ac of U satisfy inequality (4) with equality.

Note that an optimal FH sequence set with respect to the maximum Hamming correlation
bound is not necessarily optimal with respect to the average Hamming correlation bound.
Similarly, an optimal FH sequence set with respect to the average Hamming correlation bound
may not be optimal with respect to the maximum Hamming correlation bound [14]. In recent
years, the constructions of optimal FH sequences with respect to the maximum Hamming
correlation bound have been studied by many researchers [5,6,15–18]. Several FH sequence
sets with optimal average Hamming correlation have been reported [3,12–14,19].

3 Generalized cyclotomy and cyclotomic number

Let p and q be two different odd primes with gcd(p − 1, q − 1) = e. According to the
Chinese Remainder Theorem, there exists a common primitive root of p and q , say g. Let x
be an integer simultaneously satisfying the congruences

{
x ≡ g(mod p),

x ≡ 1(mod q).

Let d = (p − 1)(q − 1)/e, f1 = (p − 1)/e, f2 = (q − 1)/e, and L = pq . Thus, we can
get a multiplicative subgroup of the residue ring ZL as follows [4]

Z∗
L = {gs xi : s = 0, 1, . . . , d − 1; i = 0, 1, . . . , e − 1}.

Let Z∗
L denote the set of all invertible elements of ZL . The Whiteman’s generalized cyclo-

tomic classes Di , 0 ≤ i ≤ e − 1, of order e are defined by

Di = {gs xi : s = 0, 1, . . . , d − 1},
where the multiplication is performed modulo L . Obviously, Z∗

L = ⋃e−1
i=0 Di .
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Define

P = {p, 2p, . . . , (q − 1)p},
Q = {q, 2q, . . . , (p − 1)q},
R = {0}.

Let H be a subset of ZL and a be an element of ZL . Define

H + a = {h + a : h ∈ H}, a · H = {a · h : h ∈ H}.
For fixed i and j with 0 ≤ i, j ≤ e−1, the corresponding generalized cyclotomic numbers

of order e are defined by

(i, j) = |(Di + 1) ∩ D j |. (5)

Now we give two fundamental properties of the generalized cyclotomic numbers.

Lemma 4 ([8]) The cyclotomic numbers defined by (5) have the following properties:

(1)

(i, j) = (e − i, j − i);
(2)

e−1∑

i=0

(i, j) = (p − 2)(q − 2) − 1

e
+ ε j ,

where

ε j =
{

1, if j = 0
0, otherwise.

4 Basic lemmas

In this section, we will give some useful lemmas for determining the Hamming correlation
of our FH sequence set defined in the next section.

Lemma 5
e−1∑

i=0

(k + i, i) =
{

(p−2)(q−2)−1
e + 1, if k = 0

(p−2)(q−2)−1
e , otherwise.

Proof From item (1) of Lemma 4, we have

e−1∑

i=0

(k + i, i) =
e−1∑

i=0

(e − k − i,−k) =
e−1∑

i=0

(i,−k)

Then the assertion follows from item (2) of Lemma 4. �
Lemma 6 ([4]) For any k ∈ Ze\{0}, we have

(1)
∑e−1

i=0 |(Di + w) ∩ Di | =
⎧
⎨

⎩

e f1( f2 − 1), if w ∈ P
ef2( f1 − 1), if w ∈ Q
(p−2)(q−2)−1

e + 1, if w ∈ Z∗
L ;
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(2)
∑e−1

i=0 |(Di+k + w) ∩ Di | =
{

e f1 f2, if w ∈ P ∪ Q
(p−2)(q−2)−1

e , if w ∈ Z∗
L .

Lemma 7

|((Q ∪ R) + w) ∩ (Q ∪ R)| =
{

0, if w ∈ P ∪ Z∗
L

p, if w ∈ Q ∪ R

and

|(P + w) ∩ P| =
⎧
⎨

⎩

q − 2, if w ∈ P
q − 1, if w = 0
0, otherwise.

Proof This lemma is obvious, so we omit the proof. �
Lemma 8 Given 0 ≤ i ≤ e − 1, then

|(Di + w) ∩ (Q ∪ R)| =
{

0, if w ∈ Q
f1, if w ∈ P ∪ Z∗

L

and

|(Di + w) ∩ (P ∪ R)| =
{

0, if w ∈ P
f2, if w ∈ Q ∪ Z∗

L .

Proof We only prove the first equation since the second one is similar.
When w ∈ Q, |(Di + w) ∩ (Q ∪ R)| = 0 is clear. As for w ∈ P ∪ Z∗

L , an element
z = gs xi + w ∈ (Q ∪ R), 0 ≤ s < d, 0 ≤ i ≤ e − 1, if and only if

gs + w ≡ 0(mod q) (6)

in which we make use of the fact that x ≡ 1(mod q). Obviously, only one s1 in Zq satisfies
(6). Then, there are f1 solutions 0 ≤ s < d to (6), i.e., s = s1 + t (q − 1), 0 ≤ t < f1,
0 ≤ s1 < q .

Lemma 9 ([11]) Let m1, . . . , mt be positive integers. For a set of integers a1, . . . , at , the
system of congruences

y ≡ ai (mod mi ) for i = 1, . . . , t

has solutions if and only if

ai ≡ a j (mod gcd(mi , m j )), i �= j, 1 ≤ i, j ≤ t. (7)

If (7) is satisfied, the solution is unique modulo lcm(m1, . . . , mt ). �
Lemma 10 Let p = e f1 + 1 and q = e f2 + 1, then −1 ∈ D0 if | f1 − f2| is even, and
−1 ∈ De/2 if | f1 − f2| is odd.

Proof Suppose that −1 ∈ Di , where 0 ≤ i ≤ e − 1, then there exists an integer s with
0 ≤ s ≤ d − 1,

gs xi ≡ −1(mod pq). (8)

By the Chinese Remainder Theorem, (8) is equivalent to

gs+i ≡ −1(mod p) and gs ≡ −1(modq)
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which further implies

s + i ≡ (p − 1)/2(mod p − 1) and s ≡ (q − 1)/2(mod q − 1) (9)

According to Lemma 9, (9) has a solution if and only if

i ≡ (p − q)/2(mod e) ⇔ i ≡ ( f1 − f2)e/2(mod e).

Therefore, we have −1 ∈ D0 if | f1 − f2| is even and −1 ∈ De/2 otherwise. �

Lemma 11 For any 0 ≤ i ≤ e − 1, we have

(1)

|(Di + w) ∩ P| =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if w ∈ P
f2, if w ∈ Q
f2 − 1, if w ∈ Di and | f1 − f2| is even
f2, if w ∈ Z∗

L\Di and | f1 − f2| is even
f2 − 1, if w ∈ De/2+i and | f1 − f2| is odd
f2, if w ∈ Z∗

L\De/2+i and | f1 − f2| is odd;
(2)

|(P + w) ∩ Di | =
⎧
⎨

⎩

0, if w ∈ P
f2, if w ∈ Q ∪ (Z∗

L\Di )

f2 − 1, if w ∈ Di .

Proof For (1), note that

|(Di + w) ∩ P| = |(Di + w) ∩ (P ∪ R)| − |(Di + w) ∩ R|.

By Lemma 10, we have

|(Di + w) ∩ R| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if w ∈ P ∪ Q
0, if w ∈ Z∗

L\Di and | f1 − f2| is even
0, if w ∈ Z∗

L\De/2+i and | f1 − f2| is odd
1, if w ∈ Di and | f1 − f2| is even
1, if w ∈ De/2+i and | f1 − f2| is odd

(10)

Then the conclusion follows from Lemma 8 and Eq. (10).
For (2), we have

|(P + w) ∩ Di | = |P ∩ (Di − w)| = |(P ∪ R) ∩ (Di − w)| − |R ∩ (Di − w)|.

Applying Lemma 8, we arrive at the conclusion. �

Lemma 12 ([11])

|(P + w) ∩ (Q ∪ R)| =
{

0, if w ∈ Q
1, if w ∈ P ∪ Z∗

L .
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5 New construction of FH sequences based on Whiteman’s generalized cyclotomy

In this section, we construct a new set of FH sequences with optimal average Hamming
correlation property.

Let

C0 = D0 ∪ Q ∪ R,

Ci = Di , for 1 ≤ i < e and i �= e/2,

Ce/2 = De/2 ∪ P.

Then,
⋃e−1

i=0 Ci = ZL and Ci ∩ C j = ∅ for i �= j .
Let X = {x0, x1, . . . , xL−1} be a sequence of length L over a frequency slot set F . Then

suppX (k) = {t |xt = k, 0 ≤ t ≤ L − 1} is called the support of k ∈ F in the sequence X .

Definition 2 Define a FH sequence set U = {X (i), i = 0, 1, . . . , e − 1} of length L = pq ,
where X (i) = {x (i)

0 , x (i)
1 , . . . , x (i)

L−1} is defined by

suppX (i) ( j) = C j+i , 0 ≤ j < e,

where j + i is reduced modulo e.

Based on the lemmas in the last section, we are now ready to determine the Hamming
correlation properties of the FH sequence set U .

Theorem 1 Let p and q be different odd primes with gcd(p − 1, q − 1) = e. Define
p = e f1 + 1 and q = e f2 + 1, then the FH sequence set U over F have the following
properties:

(1) The family size is M = e, the sequence length L = pq, and |F | = e;
(2) The Hamming autocorrelation function of X (k) ∈ U for 0 ≤ k < e is given by

HX (k),X (k) (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pq−1
e + p−q

e + q − p − 1, if w ∈ P
pq−1

e + q−p
e + p − q + 1, if w ∈ Q

pq−1
e − 1, if w ∈ De/2 and | f1 − f2| is even

pq−1
e , if w ∈ D0 ∪ De/2 and | f1 − f2| is odd

pq−1
e + 1, if w ∈ D0 and | f1 − f2| is even

pq−1
e + 1, if w ∈ Di for i �= 0, e/2.

(3) The Hamming crosscorrelation function of any two distinct FH sequences X (k), X (l) ∈
U for k �= l is given by

(3.1) When l − k ≡ e/2(mod e)

HX (k),X (l) (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if w = 0
pq−1

e + p−q
e + 2, if w ∈ P

pq−1
e + q−p

e , if w ∈ Q
pq−1

e + 2, if w ∈ De/2 and | f1 − f2| is even
pq−1

e + 1, if w ∈ D0 ∪ De/2 and | f1 − f2| is odd
pq−1

e , if w ∈ D0 and | f1 − f2| is even
pq−1

e + 2, if w ∈ Di for i �= 0, e/2.
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(3.2) When 2(l − k) ≡ e/2(mod e),

HX (k),X (l) (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if w = 0
pq−1

e + p−q
e , if w ∈ P

pq−1
e + q−p

e , if w ∈ Q
pq−1

e − 1, if w ∈ Dl−k ∪ Dl−k+e/2 and | f1 − f2| is even
pq−1

e − 2, if w ∈ Dl−k and | f1 − f2| is odd
pq−1

e , if w ∈ Dl−k+e/2 and | f1 − f2| is odd
pq−1

e , if w ∈ Di for i �= l − k, l − k + e/2.

(3.3) When 2(l − k) �= e/2(mod e) and l − k �= e/2(mod e),

HX (k),X (l) (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if w = 0
pq−1

e + p−q
e , if w ∈ P

pq−1
e + q−p

e , if w ∈ Q
pq−1

e , if w ∈ Dl−k and | f1 − f2| is even
pq−1

e − 1, if w ∈ Dl−k and | f1 − f2| is odd
pq−1

e − 1, if w ∈ Dl−k+e/2 and | f1 − f2| is even
pq−1

e , if w ∈ Dl−k+e/2 and | f1 − f2| is odd
pq−1

e , if w ∈ Di for i �=l − k, l − k+e/2, k − l+e/2
pq−1

e − 1, if w ∈ Dk−l+e/2.

Proof (1) is clear.
Concerning (2), the Hamming autocorrelation of X (k) at shift w is

HX (k),X (k) (w) =
e−1∑

i=0

|(Di + w) ∩ Di | + |(D0 + w) ∩ (Q ∪ R)|

+|((Q ∪ R) + w) ∩ D0| + |(P + w) ∩ P| + |(De/2 + w) ∩ P|
+|(P + w) ∩ De/2| + |((Q ∪ R) + w) ∩ (Q ∪ R)|.

Then by Lemmas 6, 7, 8, and 11, the result follows.
Regarding (3), for any FH sequences X (k), X (l) ∈ U with k �= l and 0 ≤ k, l ≤ e − 1,

their Hamming crosscorrelation function at shift w is given by

HX (k),X (l) (w) =
e−1∑

i=0

|(Ci+l + w) ∩ Ci+k |.

When l − k ≡ e/2(mod e), we have

HX (k),X (l) (w) =
e−1∑

i=0

|(Di+e/2 + w) ∩ Di | + |((Q ∪ R) + w) ∩ De/2|

+|((Q ∪ R) + w) ∩ P| + |(D0 + w) ∩ P| + |(De/2 + w) ∩ (Q ∪ R)|
+|(P + w) ∩ (Q ∪ R)| + |(P + w) ∩ D0|.

Applying Lemmas 6, 8, 11 and 12 to the above equation, the conclusion in (3.1) follows.
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While for any FH sequences X (k), X (l) ∈ U with l − k �= e/2(mod e), their Hamming
crosscorrelation function at shift w is given by

HX (k),X (l) (w) =
e−1∑

i=0

|(Di+l−k + w) ∩ Di | + |(Dl−k + w) ∩ (Q ∪ R)|

+|(Dl−k+e/2 + w) ∩ P| + |((Q ∪ R) + w) ∩ Dk−l |
+|(P + w) ∩ Dk−l+e/2|.

When 2(l − k) ≡ e/2(mod e), it is easily verified that |(P + w) ∩ Dk−l+e/2| = |(P +
w) ∩ Dl−k |. Therefore, the equation in (3.2) follows immediately from Lemmas 6, 8, and
11. Similarly, when 2(l − k) �= e/2(mod e), from Lemmas 6, 8, and 11, the desired result in
(3.3) follows, which completes the proof. �
Theorem 2 The average Hamming autocorrelation and average Hamming crosscorrelation
of the FH sequence set U are respectively as follows

Aa(U) = Sa(U)

M(L − 1)

= (pq − 1)2 + e(q2 + p2)

e(pq − 1)
+ e(1 − pq) − 2eq − (q − 1)2 − (p − 1)2

e(pq − 1)
, (11)

Ac(U) = 2Sc(U)

L M(M − 1)

= (e − 1)(pq − 1)2 + 2ep(q − 1)

pqe(e − 1)
− (e − 1)((q − 1)2 + (p − 1)2)

pqe(e − 1)
. (12)

The FH sequence set U is optimal with respect to the average Hamming correlation bound.

Proof When | f1 − f2| is even, according to the definitions of Sa and Sc, we have

Sa =
∑

0≤i≤e−1, 1≤τ≤L−1

HX (i) (τ )

= e

{
(q − 1)

(
pq − 1

e
+ q − p + p − q

e
− 1

)
+ (p − 1)

(
pq − 1

e
+ p − q

+q − p

e
+ 1

)
+ d

(
pq − 1

e
− 1

)
+ d

(
pq − 1

e
+ 1

)
+(e − 2)d

(
pq − 1

e
+ 1

)}

= (pq − 1)2 + e(q2 + p2) + e(1 − pq) − 2eq − (q − 1)2 − (p − 1)2

and

2Sc =
∑

0≤i, j≤e−1,
0≤τ≤L−1, i �= j

HX (i),X ( j) (τ )

=
∑

0≤i, j≤e−1, 0≤τ≤L−1,
i− j≡e/2( mod e)

HX (i),X ( j) (τ ) +
∑

0≤i, j≤e−1, 0≤τ≤L−1,
2(i− j)≡e/2( mod e)

HX (i),X ( j) (τ )

+
∑

0≤i, j≤e−1, 0≤τ≤L−1,2(i− j)
�=e/2( mod e), i− j �=e/2( mod e)

HX (i),X ( j) (τ )
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From Theorem 1, then

2Sc =
∑

0≤i, j≤e−1, 0≤τ≤L−1,
i− j≡e/2( mod e)

{
(q − 1)

(
pq − 1

e
+ p − q

e
+ 2

)

+(p − 1)

(
pq − 1

e
+ q − p

e

)

+d

(
pq − 1

e
+ 2

)
+ d

pq − 1

e
+ (e − 2)d

(
pq − 1

e
+ 2

)}

+
∑

0≤i, j≤e−1, 0≤τ≤L−1,
2(i− j)≡e/2( mod e)

{
(q − 1)

(
pq − 1

e
+ p − q

e

)
+ (p − 1)

(
pq − 1

e
+ q − p

e

)

+2d

(
pq − 1

e
− 1

)
+ (e − 2)d

pq − 1

e

}

+
∑

0≤i, j≤e−1, 0≤τ≤L−1, 2(i− j)
�=e/2( mod e), i− j �=e/2( mod e)

{
(q − 1)

(
pq − 1

e
+ p − q

e

)

+(p − 1)

(
pq − 1

e
+ q − p

e

)
+ 2d

(
pq − 1

e
− 1

)
+ (e − 2)d

pq − 1

e

}

= (e − 1)(pq − 1)2 + 2epq − 2ep − (e − 1)(q − 1)2 − (e − 1)(p − 1)2.

Applying (2) and (3), we obtain (11) and (12).
Similarly, when | f1 − f2| is odd, we obtain the same average Hamming autocorrelation

and average Hamming crosscorrelation. By applying (11) and (12) to (4), it follows that

Aa

L(M − 1)
+ Ac

L − 1
= (pq − 1)2 + e(q2 + p2) + e(1 − pq − 2q) − (q − 1)2 − (p − 1)2

e(e − 1)pq(pq − 1)

+ (e − 1)(pq − 1)2 + 2epq − 2ep − (e − 1)((q − 1)2 + (p − 1)2)

e(e − 1)pq(pq − 1)

= 1

e − 1
≥ L M − v

v(L − 1)(M − 1)
= pqe − e

e(pq − 1)(e − 1)
= 1

e − 1
.

Thus, the FH sequence set U is an optimal average Hamming correlation set. This finishes
the proof. �
Example 1 For p = 5, q = 17, then e = 4, d = 16, f1 = 1, f2 = 4 and | f1 − f2| = 3. The
FH sequences of U are

X (0) = {0010221030212112001020223220212311022211211332330020331230202100222

302233032212320232};
X (1) = {1121332101323223112131330331323022133322322003001131002301313211333

013300103323031303};
X (2) = {2232003212030330223202001002030133200033033110112202113012020322000

120011210030102010};
X (3) = {3303110323101001330313112113101200311100100221223313220123131033111

231122321101213121}.
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The Hamming autocorrelation of X (i) for i = 0, 1, 2, 3 is

HX (i)

= {85, 21, 22, 21, 21, 29, 22, 21, 22, 21, 29, 22, 21, 22, 22, 29, 21, 13, 22, 21, 29, 21, 21,

21, 22, 29, 21, 21, 21, 22, 29, 22, 22, 22, 13, 29, 21, 21, 22, 22, 29, 22, 22, 22, 22, 29,

22, 22, 21, 21, 29, 13, 22, 22, 22, 29, 22, 21, 21, 21, 29, 22, 21, 21, 21, 29, 21, 22, 13,

21, 29, 22, 22, 21, 22, 29, 21, 22, 21, 22, 29, 21, 21, 22, 21}.

The Hamming crosscorrelation is

HX (0),X (1)

= {0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21, 18, 21,

21, 21, 21, 18, 21, 21, 21, 19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19, 18, 19, 19, 21,

21, 18, 21, 21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21, 18, 19, 21, 21, 21, 18,

21, 21, 24, 21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21, 18, 21, 21, 21, 21};
HX (0),X (2)

= {0, 22, 23, 22, 22, 20, 23, 22, 23, 22, 20, 23, 22, 23, 23, 20, 22, 24, 23, 22, 20, 22,

22, 22, 23, 20, 22, 22, 22, 23, 20, 23, 23, 23, 24, 20, 22, 22, 23, 23, 20, 23, 23, 23,

23, 20, 23, 23, 22, 22, 20, 24, 23, 23, 23, 20, 23, 22, 22, 22, 20, 23, 22, 22, 22,

20, 22, 23, 24, 22, 20, 23, 23, 22, 23, 20, 22, 23, 22, 23, 20, 22, 22, 23, 22};
HX (0),X (3)

= {0, 21, 21, 21, 21, 18, 21, 21, 19, 21, 18, 21, 21, 21, 21, 18, 21, 24, 21, 21, 18, 21,

21, 21, 19, 18, 21, 21, 21, 21, 18, 19, 21, 21, 24, 18, 21, 21, 21, 21, 18, 21, 21, 19,

19, 18, 19, 19, 21, 21, 18, 24, 19, 19, 21, 18, 19, 21, 21, 21, 18, 21, 21, 21, 21, 18,

21, 19, 24, 21, 18, 19, 19, 21, 19, 18, 21, 21, 21, 19, 18, 21, 21, 19, 21};
HX (1),X (2)

= {0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21, 18, 21,

21, 21, 21, 18, 21, 21, 21, 19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19, 18, 19, 19, 21,

21, 18, 21, 21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21, 18, 19, 21, 21, 21, 18,

21, 21, 24, 21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21, 18, 21, 21, 21, 21};
HX (1),X (3)

= {0, 22, 23, 22, 22, 20, 23, 22, 23, 22, 20, 23, 22, 23, 23, 20, 22, 24, 23, 22, 20, 22,

22, 22, 23, 20, 22, 22, 22, 23, 20, 23, 23, 23, 24, 20, 22, 22, 23, 23, 20, 23, 23, 23,

23, 20, 23, 23, 22, 22, 20, 24, 23, 23, 23, 20, 23, 22, 22, 22, 20, 23, 22, 22, 22, 20,

22, 23, 24, 22, 20, 23, 23, 22, 23, 20, 22, 23, 22, 23, 20, 22, 22, 23, 22};
HX (2),X (3)

= {0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21, 18, 21,

21, 21, 21, 18, 21, 21, 21, 19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19, 18, 19, 19, 21,

21, 18, 21, 21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21, 18, 19, 21, 21, 21, 18,

21, 21, 24, 21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21, 18, 21, 21, 21, 21}.
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The average Hamming auto- and cross-correlation are 473/21 and 5248/255 respectively.
The sequence set U is optimal with respect to the average Hamming correlation bound.
However, U is not optimal with respect to the maximum Hamming correlation bound.
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