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Abstract. A novel chirped intra-bit polarization diversity modulation (C-IPDM) signal format is proposed. The transmission performance of
C-IPDM is compared to NRZ, RZ and the common IPDM in terms of the PMD tolerance by simulation in a 40 Gb/s system. The results show
that the C-IPDM format can reduce the effects of second-order PMD significantly due to the chirping characteristic and the system Q-factor is

increased especially in high PMD systems.
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1 Introduction

Polarization mode dispersion (PMD) has emerged as
one of the critical hurdles for next-generation high
bit rate transmission systems [1,2]. Consequently,
there is a large interest in the techniques compen-
sating or mitigating the effects of PMD, and a
number of methods have been proposed. One simple
method of making first-order PMD compensation is
to transmit the signal at one of the input principal
states of polarization (PSPs) [3,4] or receiving the
signal on one of the output PSPs [3-5], which is
called the principal-state-transmission  (PST)
method. However, in practice, a feedback signal
must be connected back to the transmitter, which
makes this method critically limited by control
speed and operational complexity. Pan et al. [6,7]
proposed the intra-bit polarization diversity modula-
tion (IPDM) technique, the response time of which
is orders of magnitude faster than the PST method.
This scheme may eliminate differential group delays
(DGD) as large as the bit period but it is able to
compensate the PMD only to the first order. In the

literature there have been several reports on the
limitation of first-order PMD compensation and the
necessity of higher-order PMD compensation [8,9].
Previous reports of second- or higher-order PMD
compensators have used two or more sections before
the receiver with each section requiring feedback
control [10-13]. This scenario may produce a
complex software algorithm for the control feedback
signal, in which the DGD sections are correlated
and changing one element may perturb the optimal
solution on the other element. Many regions of local
power-penalty minimum will appear for the feed-
back control loop [13,14], thereby making optimal
system performance tracking extremely difficult.

In this paper, we propose a novel chirped-IPDM
(C-IPDM) signal format. This format not only has the
same advantages of IPDM, but also can reduce the
effects of second-order PMD due to the chirping
characteristic. To confirm the effectiveness of the
novel C-IPDM signal, we have compared it with non-
return to zero (NRZ), return to zero (RZ) and the
common IPDM in terms of the PMD tolerance by
simulation in a 40 Gb/s system.
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Fig. 1. Generation of proposed C-IPDM signals.

2 Proposal of Novel Chirped IPDM Signal
Format

Fig. 1 shows the block diagram of the transmitter to
generate the proposed signal. Using the intensity
modulator, the LD output is modulated by 40 Gb/s RZ
data. The phase modulator is used to generate chirp
and then the chirped signal is sent through a piece of
polarization maintaining fiber (PMF) with a half bit
period of DGD. The chirp character of this modula-
tion format can be set by controlling the clock
frequency. In the figure, P.C. represents the polariza-
tion controller used to keep the polarization state of
the signal.

3 Analysis Models

3.1 Modulation Format

The C-IPDM format contains two orthogonal polar-
ization states per bit interval. These two orthogonal
signals are staggered so that they do not overlap in the
time domain and cause interference. We model this
format by splitting an RZ signal, rotating the
polarization in one arm and then delaying it by half
a bit time prior to recombination. In our scheme, the
electrical modulation signal imposes a frequency
chirp on the optical carrier. Therefore, a g-bit pulse
sequence of the C-IPDM format can be mathemati-
cally described as

Ec_ppm (1) = Zd(t) *[Ec(t = nTy)

n=1

cos 0 + Eq(t —nT, —Ty/2)sin 0], (1)

where d(t) represents the input binary data, T}, is one
bit period time, 0 is the angle between the input signal
and the PSPs of the fiber link, and E(¢) is the output

signal of the phase modulation block which can be

written as
3]
cic-k0(1) ] )

where A is the peak amplitude of the RZ pulse, o is
pulse width parameter, C is the chirp factor, and k(¢) is
the chirp inserting function. Considering different
chirp inserting mode, k() can be expressed by

Ec-(r) =Aexp

* exp

e Chirp inserted in every bit: k() = 1.

e Chirp inserted in every two bits:
k(t) = S (e — 2mT,) — ot — 2mT,—
T,)], where &(¢) represents the step function, and
m=20,1,2,...,whichleads to k() = 1 in every
odd bit period and k() =0 in every even bit
period.

e Chirp inserted randomly: k(r) = > [e(t — mT,)
—¢&(t—mTy, —T,)], where m is randomly
selected between 1 and q.

In this paper, we only discuss the case that the chirp
is inserted in every bit and compare its performance
with NRZ, RZ, and IPDM formats. Fig. 2 shows the
input pulses and eye diagram of different modulation
formats. It can be seen that the input pulse shape of
C-IPDM is almost the same as that of [IPDM. But due
to the phase difference between them, the frequency
spectrum of C-IPDM is wider than that of IPDM,
which is shown in Fig. 3.

3.2 Fiber Modeling
The coupled nonlinear Schrodinger equations
describing a fiber with relatively high birefringence
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Fig. 2. The input pulses and eye diagrams of NRZ, RZ, IPDM and C-IPDM formats.
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Fig. 3. The frequency spectrum of NRZ, RZ, IPDM and C-IPDM formats.

are Khosravani and Willner [15] and Matsumoto et al.

[16].
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where A,,A, are slowly varying amplitudes of

the two polarization components, [, — B'y is the
wave-vector mismatch due to linear birefringence,
B" is the group velocity dispersion parameter, o
is the absorption coefficient, y = n,wq/Agc 1is
the nonlinearity coefficient, with the Kerr coeffi-
cient ny, =2.6x 107 '9cm?/W, the effective
mode area A= 52um?, and ¢ the speed of
light.

Defining &' = (f8, — f8,)/2, the linear part of (3) in
the Fourier domain may be written in the form
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oA
o T ibswA - % B'oPA =0, (4)

where A = (4,,A,)",s = [,_{]. In the k-th interval
Az, the fiber is modeled as a concatenation of a
number of N randomly oriented birefringent segments
of length 4, which results in a frequency-dependent,
complex transfer matrix T, (w) = e/2/ @AM, (w),
where M, (w) is represented by

N —i(Ap/2+ ¢y) 0
e
M, () :H[ 0 ei(A¢/2+¢kn>]
cos0, sin0,
1= -
—sinf, cos0y,

where Ag = \/37h/8Dpypw is the differential
phase delay (DPD) of each segment [17],
Dpyp(ps/km'/?) is the PMD coefficient of the fiber
and may be written as Dpy,, = 2b'\/8h/3m, 0, and
¢, denote the random polarization and phase angle in
the n-th segment of the k-th interval respectively, and
are randomly generated following a uniform distribu-
tion with 0,,€[0,2x) and ¢,, €[— /2, /2.

Therefore, the solution to Equation (4) may be
written as

Az + Az, 0) = T (0)A(z, 0). (6)

Dealing with the nonlinear terms in the time
domain is quite straightforward, and we use the
split-step Fourier method [18].

3.3 PSP Transmission Method

In the PST method, a PC is introduced before
transmission, which is represented by the Jones
matrix B, and results in a total Jones matrix of the fiber

In our calculation, the columns of B are determined
by the input PSPs at the carrier frequency w,. Since
the output PSPs can be calculated analytically as the
eigenvectors jo to the matrix product T'T ~'(wy)
[19], where T is the derivative of the Jones matrix
T(w) with respect to the angular frequency @ and
T ! is the inverse of T(w). The input eigenvectors

are then obtained by j'I =T ' (w,)j%", from which

the input polarization state should be chosen for PSP
transmission.

4 Results and Discussion

4.1 Output Pulses and Eye Diagrams

Fig. 4 shows the shape of output pulses and eye
diagrams for different modulation formats in 40 Gb/s
systems at 10ps and 17 ps total accumulated PMD.
All simulations reported here are run without fiber
losses, chromatic dispersion, and nonlinear effects.
When the total PMD of the system is not very large
(10 ps) as in Fig. 4(a), the eyes of NRZ, RZ and IPDM
formats are still open, but the pulses are broadened
and adjacent pulses merge together. For the C-IPDM
format, pulse compression can be observed, and the
received data pattern shows two or more distinct
peaks in each time slot. If we only choose the highest
peak for sampling and detection, the Q-factor can be
improved compared to chirp-free IPDM. As the total
PMD increased to 17ps as in Fig. 4(b), the eye
diagrams of NRZ and RZ are almost closed. For
IPDM pulses, the eye is distorted but it is open wider
than in the NRZ and RZ cases. For the C-IPDM
format, compression helps the pulses cancel out part
of the broadening caused by PMD and a widest open
eye is observed.

4.2 Second-Order PMD Tolerance

To demonstrate the advantage of C-IPDM for
suppressing the second-order PMD effects, we use
the simplified model described in Rao et al. [20]. Here
the depolarization is not taken into account, and it is
assumed that there is no power coupling between the
two modes of a birefringent fiber. This is a real case
only for fibers shorter than the coupling length
between the principal axes, or whenever the principal
axes can be assumed constant over the signal
spectrum. In these cases, the first-order PMD is
compensated completely and the second-order PMD
becomes the main limiting factor to the transmission
performance. Fig. 5 shows the output pulses and the
QO-factor penalty of the IPDM and C-IPDM formats.
In the C-IPDM case, pulse compression can be
observed and the performance is better than [IPDM
apparently. As we know, the second-order PMD
represents the DGD linear frequency dependence
and the signal chirp leads to the different frequency
between the edges of the pulse. Therefore, the pulse
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Fig. 4. The output pulses and eye diagrams for different modulation formats in 40 Gb/s systems. Average accumulated DGD is (a) 10 ps;

(b) 17 ps.

will be compressed if the transmission speed of
leading edge is slower than that of the trailing edge.
The results can be obtained on the condition that the
chirp sign is set opposite to that of the chirp induced
by second-order PMD.

4.3 The Effect of Chirp

Fig. 6 shows the output pulses and eye diagram for
different chirp parameter (C=0,1,2,3) with 8ps
average accumulated PMD. The chirp character has
significant impact on the C-IPDM format transmis-
sion performance. When C =2 the format has the
largest eye opening and apparent pulse compression.
But this also increases the difficulty of choosing the

sampling time for the receiver. On the other hand, the
signal with larger chirp has wider frequency spectrum.
Therefore, the chirp parameter should be selected
appropriately.

4.4 Q Distribution

Fig. 7 shows the Q-factor probability density function
for different modulation formats in a 40 Gb/s system
with 20 ps of average DGD. For all the cases, the O-
factor is assumed to be ~ 17.8 dB with no PMD in the
link. The Q-factor can vary over a wide range
depending on the birefringence of different segments
of the transmission fiber. The Q-factor of the IPDM
format is larger than the NRZ and RZ formats due to
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Fig. 6. The output pulses and eye diagram for different chirp parameter (C =0, 1,2, 3) with 8 ps average accumulated DGD.

the first-order PMD compensation. The effect of the
second-order PMD and the pre-chirp is to broaden the
Q-factor distribution and move to higher values.
Therefore, the C-IPDM format has a larger average Q-
factor than the IPDM format.

4.5 Q penalty

Fig. 8 shows the Q-factor penalty vs. distance for
40 Gb/s systems with different modulation formats.
The PMD induced Q-factor penalty is defined as
Po = —2010g(Q/Qy), and Qy is the Q-factor without

PMD and is assumed to be ~ 17.8 dB for all formats.
Here Dpyp is assumed to be 0.3 ps/kml/ 2 and the O-
factor is obtained by averaging over 100 orientations
of PMD. As a result of PMD pulse broadening and
intersymbol interference, the Q-factor penalty grows
fast in the NRZ and RZ cases. But RZ pulses perform
better than the NRZ because they have shorter duty
cycles with a wider margin that allows them to retain
their pulse power during a bit time. For the C-IPDM
format, the pulses compression caused by chirping
and second-order PMD leads to better performance
than IPDM.
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5 Conclusion

A novel chirped-IPDM signal format is proposed. The
transmission performance of C-IPDM is compared to
NRZ, RZ and the common IPDM in terms of the PMD
tolerance by simulation in 40 Gb/s system. The results
show that the C-IPDM format can reduce the effects
of second-order PMD significantly due to the chirping
characteristic and the system Q-factor is increased
especially in high PMD systems.
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