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Abstract
A continuous current model of fully-depleted symmetric double-gate (DG) MOSFETs which
can reflect a wide range (from intrinsic to heavy doping) of the body doping concentrations
was developed based on an approximated analytic potential solution of Poisson’s equation.
The model was compared with the results of device simulation, and showed very good
agreement in all operation regions such as subthreshold, turn-on, linear and saturation.

1. Introduction

Double-gate (DG) FETs have been considered as candidates
for next generation logic devices and memory cells due to
their better performance and better scalability than those of
single-gate FETs. In order to gain a physical insight of DG
FETs and provide a fundamental basis for circuit simulation
software, an analytical (or a compact) model should be derived.
Models for undoped channel DG FETs have been reported
[1–6]. Continuous drain current models are very attractive
[3]. The body doping (Nb) in multi-gate FETs (a sort of DG
FETs) for the application of memory cells can be increased
[7, 8]. Therefore, a new continuous current model needs
to be developed to consider Nb from nearly intrinsic to high
doping. A closed form model has been given in [9]. However,
this model needs a fitting parameter which should satisfy
an empirical expression. A model considering partially and
fully depleted body has been given in [10] where models are
quite complicated and the channel potential is not analytic.
A model for short channel DG devices with various Nbs has
been reported in [11] where some fitting parameters are needed
and the channel potential is not continuous. If those models
become simpler, then these models are more useful for readers.

A model which can reflect the body doping on the threshold
voltage and channel potential of symmetric DG MOSFETs has
been reported [12]; however, a continuous current model has
not been given. In this work, we focus on the modeling of
channel potential and drain current in fully-depleted (FD) DG
FETs because the fully depletion is imperative in DG devices
to improve scalability and performance. By using a reasonable
initial guess and an appropriate boundary condition, we
derive continuous channel potential for Poisson’s equation
considering both Nb and electron concentration in long channel
DG devices. The continuous drain current model is derived
based on the potential model and is verified by comparing with
simulation results using the SILVACO tool [13].

2. Device structure

Figure 1 shows the schematic cross-sectional view of a DG
MOSFET and the coordinate system. The fin body can
be doped from intrinsic to high doping concentration with
p-type impurity. The source and drain were heavily doped with
n-type impurity. tox is the thickness of the oxide layer and
Lg represents the gate length. The channel width and body
thickness are marked as W and tb, respectively. Since it
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Figure 1. The schematic cross-sectional view of the DG MOSFET
and the coordinate system. The gate length and body thickness are
given by Lg and tb, respectively.

is assumed that there are no oxide charges and no work-
function difference between the gate and the body, the flat-
band voltage (Vf b) is zero although the expression is given. A
constant mobility of 200 cm2 V−1 s−1 is used throughout this
work.

3. Model and comparison with simulation results

According to the analysis of the quantum effect by numerical
calculations [14], the classical model is basically valid for
tb = 5 nm. Therefore, in our derivation, we neglected the
inversion layer quantum effect and use Poisson’s equation to
derive the expression of potential distribution. The parasitic
source/drain series resistance was also not considered in our
model.

Since the thin p-type body is fully depleted, the hole
concentration in the body is also negligible. So we consider
the acceptor concentration assuming that it is equal to Nb and
the electron concentration in solving Poisson’s equation as
given in the following:

∇2ψ(x) = q

εsi

(
Nb + ni e

q(ψ−ψf )

kT

)
. (1)

For the undoped case, the analytical solution has been given in
[3]. To obtain analytic channel potential for various Nbs (from
undoped to highly doped), a new approach is used as follows.
In order to solve (1), we use the solution of the undoped case
as an initial guess. The solution is given by

ψ (x) = ψf − 2kT

q
ln

⎡
⎣ tb

2β

√
q2ni

2εsikT
cos

(
2βx

tb

)⎤
⎦ , (2)

where β is an integral constant, εsi is the permittivity of Si and
ψf is the quasi-Fermi potential [3]. Substituting (2) back into
Poisson’s equation (1), we obtain the following expression:

∇2ψ (x) = q

εsi

[
Nb +

8β2εsikT

t2
b q2

sec2

(
2βx

tb

)]
. (3)

Integrating (3) about x twice, the solution of (3) is given by

ψ(x)= q

εsi

{
Nbx

2

2
− 2εsikT

q2
ln

[
cos

(
2βx

tb

)]}
+ C1x + C2,

(4)

where C1 and C2 are both integral constants. Due to symmetry,
(4) should be an even function with x; then C1 should be 0.
Using the boundary condition (ψ(x = ±tb/2) = ψs) below

ψs = Vgs − Vf b +
εsiξstox

εox
, (5)

where ψs and ξ s are the surface potential and electric field,
respectively, we can obtain C2 as follows:

C2 = Vgs − Vf b − qNbtbtox

2εox
− 4βεsitoxkT

tbqεox
tan(β)

− qNbt
2
b

8εsi
+

2kT

q
ln[cos(β)]. (6)

Finally the potential expression reflecting a wide range of Nb

can be expressed as

ψ(x) = qNb

(
4x2 − t2

b

)
8εsi

+
2kT

q

×
{

ln [cos (β)] − ln

[
cos

(
2βx

tb

)]}

+ Vgs − Vf b − qNbtbtox

2εox
− 4βεsitoxkT

tbqεox
tan (β) . (7)

From one-dimensional Gauss’s law:

2εsiξs = Qi + Qd, (8)

where

Qd = qNbtb (9)

is the depletion charge density. The inversion charge density
Qi can be calculated as

Qi = 2qni

∫ tb/2

0
e

q(ψ−ψf )

kT dx. (10)

Substituting (9) and (10) into (8), the quasi-Fermi potential
can be expressed as

ψf = −kT

q
ln

[
4βεsikT tan (β)

tbq2ni

∫ tb/2
0 e

qψ

kT dx

]
. (11)

This is the relationship between the quasi-Fermi potential and
the integral constant β. From the source to drain, ψf shifts
from 0 to Vds . βs and βd correspond to the ψf s which are
0 and Vds at the source and drain, respectively, and both of
them are determined from (11). Finally, the current can be
calculated as

Id = μn

W

Lg

∫ βd

βs

dβ
∂ψf

∂β

∫ tb/2

0
2qni e

q(ψ−ψf )

kT . (12)

In figure 2, Id–Vgs curves from our compact model are
compared with those from numerical simulation results (open
symbols) as a parameter of Nb. The model I–V curve (solid
line) when Nb is undoped is plotted as a reference [3] and
shows excellent agreement with simulation data represented
by open rectangular symbols. Here, since we assumed that the
work-function of the gate electrode is the same as that of the
body, the gate has a mid-gap work-function for the intrinsic Nb.
The model I–V curves when the body is doped are represented
by other solid lines and match very well with the simulated

2



Semicond. Sci. Technol. 25 (2010) 055018 X Jin et al

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

8.0x10-5

9.0x10-5

1.0x10-4

0.0 0.2 0.4 0.6 0.8 1.0
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Simulation
N

b
= 2x1018 cm-3

N
b

= 1018 cm-3

N
b

= 1017 cm-3

N
b

= 0 cm-3

ModelI d
(A

)

V
gs

(V)

V
ds

=1V

t
ox

= 1.5nm

t
b

= 10nm

L
g

= 1µm

W = 1µm

Figure 2. Comparison of Id–Vgs curves between the compact model
and simulation results with different body doping concentrations.
The dotted line and solid lines represent the Id–Vgs curves from the
model when the body doping concentrations are intrinsic and doped,
respectively. Simulation data are represented by open symbols. The
same currents are plotted on both logarithmic (left) and linear (right)
scales.

data represented by open symbols in all operation regions.
For the Nbs less than 1 × 1017 cm−3, Nb has no appreciable
effect in threshold voltage. As shown in figure 2, our compact
current model based on the analytical potential model explains
very well the I–V behavior of DG devices with various Nbs
from nearly undoped case to heavily doped case to 2 ×
1018 cm−3, which means our model clearly advances the model
in [3].

Figure 3(a) shows the comparison of Id–Vds curves
between the compact model and simulation results with
different body doping concentrations when Vgs is 1 V and the
tb is 5 nm. The open symbols represent simulation data. Form
this figure, we can clearly see that in both linear and saturation
regions, the model gives very good agreement with simulation
results. Also, we can see that even when the body doping
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Figure 3. Comparison of Id–Vds curves between the compact model and simulation results with different body thicknesses.
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Figure 4. Comparison of Id–tb correlation between the model and
simulation results with different body doping concentrations. Vgs is
0.9 V at a fixed Vds of 1 V.

concentration is increased to 5 × 1018 cm−3, the accuracy of
this model is maintained. Figure 3(b) shows the comparison
of Id–Vds curves between the compact model and simulation
results with different body thicknesses when Vgs is 1 V and Nb

is 5 × 1018 cm−3. The accuracy is maintained when the body
thickness shifts from 30 nm to 5 nm.

Figure 4 shows the comparison of Id–tb correlation
between the model and simulation results with different Nbs
at a given Vds of 1 V · Vgs is 0.9 V (turn-on). In general,
heavier Nb gives smaller drain current at the same external
biases. When Nb is heavy, increasing tb increases the threshold
voltage so that the drain current decreases. However, the drain
current of the devices with lightly doped body increases with
increasing tb because the channel potential slightly increases
under the same bias condition. In the case of moderate Nb,
for example, Nb = ∼1017 cm−3, the current behavior with tb
is not monotonic. For the moderate channel doping, we can
optimize tb to maximize the current drivability.
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4. Conclusion

A continuous compact current model of fully-depleted
symmetric DG MOSFETs with various body doping
concentrations (from intrinsic to high doping) has been
developed by solving Poisson’s equation approximately. The
total current model which consists of both drift and diffusion
components was compared with simulation results and showed
very good agreement in subthreshold, turn-on, linear and
saturation regions at different body doping concentrations.
We believe our model provides fundamentals in understanding
fully-depleted DG devices with various body dopings and can
be used in circuit simulation.
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