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Abstract

With the aid of a generalized variational method, in this paper, a theoretical model for soft ferromagnetic shells is

derived to describe their magnetoelastic behavior in an applied magnetic field. Having made a quantitative comparison

between the numerical predictions given by several theoretical models and the experimental results on strains of a

cylindrical shell, we find that the predictions got by our model are in good agreement with the experimental data. It is

also found that the Moon�s model is a special case of the model derived in this paper when the relative magnetic

permeability lr > 104, which confirms that it is reasonable for the Moon�s model to calculate strains of the soft ferro-

magnetic shells. Having displayed the distribution of the equivalent magnetic force in the length of the cylindrical shell

and its circumferential bending strains with different elastic end constraints, we give an explanation for the discrepancy

between Moon�s analytical results and his experimental ones.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many devices made of soft ferromagnetic materials and worked in electromagnetic field, such

as fusion reactors, magnetically levitated vehicles and magnetic forming devices. When a ferromagnetic

structure is placed in a magnetic field, it will be magnetized, and then deformed under a magnetic force

system arisen from the magnetization. In general, the deformation of the ferromagnetic structure will also

influence the magnetic force system subjected on the structure. It is complicated to describe this kind of
coupled magnetoelastic problem since the magnetic force on the structure cannot be directly measured and

this coupled problem is inherently nonlinear.

Moon and Pao (1969) firstly found that when a ferromagnetic beam-plate is in a transverse magnetic

field, the natural frequency of the plate decreases with an increasing magnetic-field intensity and becomes
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near zero as the field attains a critical value, which causes the same plate to buckle statically. Twenty-four

years later, Takagi et al. (1993) conducted another interesting experiment and found that when a ferro-

magnetic beam-plate is in an in-plane magnetic field, the natural frequency of the plate increases with an

increasing magnetic-field intensity. There exist several famous theoretical models in magnetoelasticity, such
as the Pao and Yeh�s model (1973), the Eringen and Maugin�s model (1990) as well as the Moon and Pao�s
model (1968). These models can qualitatively predict the Moon–Pao�s experiment of the plate in a trans-

verse magnetic field. However, Zhou and Miya (1998) found that when these models are used to describe

the Takagi et al.�s experiment (1993) of the beam-plate in an in-plane magnetic field, the predicted natural

frequency of the plate decreases. It states that all existing theoretical models are not suitable to describe the

magnetoelastic behavior of the plate in an in-plane magnetic field. Zhou and Miya subsequently suggested a

new theoretical model so that the Tagaki et al.�s experiment is qualitatively simulated well. For a ferro-

magnetic plate in complex magnetic fields, Zhou and Zheng (1997) derived a general expression of the
magnetic force which was used by Zheng et al. (1999) to describe the bending and buckling of a rectangular

ferromagnetic plate in an oblique magnetic field.

Besides the researches on ferromagnetic plates, soft ferromagnetic shells have also been paid more at-

tention to since the shell is often used to shield a volume containing sensitive electronic equipment from

magnetic field. Moon (1984) experimentally displayed that a thin, soft ferromagnetic cylindrical shell

supported at its ends by circular nylon plates could produce bending in a uniform magnetic field. He

analyzed that a distribution of body couples acts to bend the shell and calculated the magnetic forces with

magnetic tension as they exert on the rigid and infinite cylindrical shell. An expression of the solution was
obtained to predict stresses and strains of the cylindrical shell. However, there exist some discrepancies

between the theoretical results and the experimental data. For example, the predicted maximum stress at

0.05 T was 990 N/cm2 and the measured stress was 520 N/cm2. Moon (1984) suggested that ‘‘more-refined

experiments as well as more sophisticated shell analysis, taking into account the finite-length and end

constraints, are need to assess the accuracy of the analytical method.’’ Miyata and Miya (1988) conducted a

similar experiment, in which a tube was in an applied magnetic field and was supported with fixed condition

at both ends. They also gave some numerical results by the body pole model in which the shell experiences

only the torque. Their numerical results are lower than their measured data, the maximum relative dis-
crepancy is about 40%.

In this paper, a variational principle for soft ferromagnetic shells is suggested and an expression of the

magnetic force subjected on the shell is derived. The finite element method is adopted to respectively

calculate the deformation of a finite-length cylindrical shell and the magnetic fields in and out of the shell.

The numerical simulation on the Miyata and Miya�s experiment shows that the predicted results are in good

agreement with the experimental data. In addition, the expression of the magnetic force suggested by Moon

(1984) is confirmed to be a special case involved in our theoretical model. Having analyzed the effect of an

elastic constant of the end constraints on the stresses of the cylindrical shell, we find that the difference
between the actual end constraints and Moon�s idealized treatment may be main reason which leads to the

discrepancies between Moon�s predicted results and his measured ones.
2. Fundamental equations

In this section, we first give out an expression of a total energy functional for a soft ferromagnetic

thin shell in a magnetic field. Then, the first-order variation of the energy functional is derived and

an expression of the magnetic force subjected on the shell is obtained. Finally, two sets of fundamen-

tal governing equations are respectively established for the shell and the magnetic fields in and out of the
shell.
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Fig. 1. Sketch of ferromagnetic shell in applied magnetic filed.
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2.1. Energy functional

Consider a thin soft ferromagnetic shell with thickness h placed in a stationary magnetic field B0, without

electric field, charge distribution and conducting current on and in the shell (as shown in Fig. 1). For linear,

homogeneous and isotropic magnetic materials, we have the magnetic constitutive relationships as follows
Mþ ¼ vmH
þ in Xþ ð1Þ

Bþ ¼ l0lrH
þ in Xþ ð2Þ

M� ¼ 0 in X� ð3Þ

B� ¼ l0H
� in X� ð4Þ
in which Xþ and X� are the inside and outside region of the shell, respectively; Mþ and M� are respectively

the magnetization vectors in the shell and in vacuum; Bþ, Hþ, and B� as well as H� are the magnetic
induction intensity vectors and magnetic intensity vectors inside and outside the shell; lr and l0 are the

magnetic permeability in the shell and in vacuum, respectively; vm is the susceptibility of the ferromagnetic

shell and vm ¼ lr � 1.

Taking u ¼ fu; v;wg as the displacement vector of thin shell, S0 as a surface which encloses and is far

away from the region of the ferromagnetic shell, we can write the magnetic-energy functional for the system

as follows
P1f/; ug ¼ 1

2

Z
XþðuÞ

l0lrðr/þÞ2 dvþ 1

2

Z
X�ðuÞ

l0ðr/�Þ2 dvþ
Z
S0

n � B0/
� ds ð5Þ
where / is a magnetic scalar potential which satisfies �r/ ¼ H, r is a 3D gradient operator (i.e.,

r ¼ o=oxiþ o=oyjþ o=ozk, in which i, j, and k are unit vectors along the x-, y-, and z-axis, respectively).
When external mechanical forces on the ferromagnetic shell and the effect of shear deformation of the

shell are neglected, the mechanical strain energy for the system can be expressed as
P2f/; ug ¼ 1

2

Z
Xþ
ðeara þ ebrb þ eabrabÞdv

¼ 1

2

Z
Sþ

C e2a

��
þ e2b þ 2meaeb þ

1

2
ð1� mÞe2ab

�
þ D½v2a þ v2b þ 2mvavb þ ð1� mÞv2ab�

�
ds ð6Þ
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in which a, b are principal curvature lines on the middle surface Sþ of the thin shell (as shown in Fig. 1);

C ¼ Yh=1� m2 and D ¼ Yh3=12ð1� m2Þ are the tensile rigidity and the flexural rigidity of the shell, re-

spectively; Y is the Young�s modulus, m the Poisson�s ratio, h the thickness of the shell; fea; eb; eab;
va; vb; vab; ra; rb; rabg are respectively the strains and stresses of the thin shell (Timoshenko and Woinow-
sky-Krieger, 1959).

The total energy functional of the magnetoelastic system can be obtained by adding P1 for the magnetic

energy and P2 for the elastic strain energy. That is
Pf/; ug ¼ P1f/; ug þP2f/; ug ð7Þ
2.2. Generalized variational principle

Here, we take d/ as one admissible variation on magnetic potential function of the system and du as

another admissible variation on displacement of the shell. It is obvious that we have
d/ ¼ d/þ ¼ d/� on S ð8Þ

du ¼ 0 on Cu ð9Þ

in which S is the enclosed surface of the shell region Xþ; Cu denotes the boundary of the shell on which

displacements are known. By a generalized variational principle of magnetoelastic system, we have
dPf/; ug ¼ d/Pf/; ug þ duPf/; ug ð10Þ

where
d/Pf/; ug ¼ �
Z
XþðuÞ

l0lrðr2/þÞd/þ dv�
Z
X�ðuÞ

l0ðr2/�Þd/� dvþ
I
S
l0 lr

o/þ

on

�
� o/�

on

�
d/ds

þ
Z
S0

n � ½l0r/� þ B0�d/� ds ð11Þ
and
duPf/; ug ¼ �
Z
Sþ

1

AB
o

oa
ðBNaÞ

��
� Nb

oB
oa

þ o

ob
ðANabÞ þ Nab

oA
ob

�
duþ o

ob
ðANbÞ

�
� Na

oA
ob

þ o

oa
ðBNabÞ þ Nab

oB
oa

�
dvþ o

oa
1

A
o

oa
ðBMaÞ

��
þ o

ob
ðAMabÞ þ

oA
ob

Mab �
oB
oa

Mb

�

þ o

ob
1

B
o

ob
ðAMbÞ

�
þ o

oa
ðBMabÞ þ

oB
oa

Mab �
oA
ob

Ma

�
� AB

Na

Ra

�
þ Nb

Rb

��
dw

�
ds

þ 1

2

Z
Sþ
½l0lrðHþÞ2 � l0ðH�Þ2�n¼h=2

n¼�h=2dwdsþ
Z
Cu

� � �
�

þ
Z
Ct

� � �
�

ð12Þ
where A and B are respectively the Lame�s constants along the directions of a and b, Ra and Rb are the

principal curvature radii, respectively; f
R
Cu
� � � þ

R
Ct
� � �g means the integration associated with the dis-

placement and stress boundary conditions of the shell; Na, Nb, Nab and Ma, Mb, Mab respectively represent

membrane stress and bending stress resultants of the thin shell and are defined by
Na ¼ Cðea þ mebÞ; Nb ¼ Cðeb þ meaÞ; Nab ¼
C
2
ð1� mÞeab ð13Þ

Ma ¼ Dðva þ mvbÞ; Mb ¼ Dðvb þ mvaÞ; Mab ¼ Dð1� mÞvab ð14Þ



X. Zheng, X. Wang / International Journal of Solids and Structures 40 (2003) 6897–6912 6901
Having considered jumping conditions of the magnetic field on the surface of the ferromagnetic shell,

that is
n � ðBþ � B�Þ ¼ 0; n� ðHþ �H�Þ ¼ 0 on S ð15Þ

or
H�
n ¼ lrH

þ
n ; B�

s ¼ 1

lr

Bþ
s on S ð16Þ
an expression of the equivalent magnetic force exerted on the shell qemn ða; bÞ, which can be regarded as a

transformation from the magnetic energy to the mechanical energy of the system, is obtained by
qemn ða; bÞ ¼ l0lrvm
2

f½Hþ
n ða; b; h=2Þ�

2 � ½Hþ
n ða; b;�h=2Þ�2g � l0vm

2
f½Hþ

s ða; b; h=2Þ�
2

� ½Hþ
s ða; b;�h=2Þ�2g ð17Þ
where n denotes the normal direction of the shell middle surface, together with a and b to constitute an

orthogonal curvilinear coordinate system; Hþ
n and Hþ

s are the normal and tangential component vectors of

magnetic field Hþð¼ Hþ
n þHþ

s Þ on the surface S.

2.3. Fundamental governing equations

By dPf/; ug ¼ 0, one can derive all fundamental equations and boundary conditions for a ferromag-

netic shell in an applied magnetic field B0 as follows

Governing equations for magnetic field
r2/þ ¼ 0 in XþðuÞ ð18aÞ

r2/� ¼ 0 in X�ðuÞ ð18bÞ

with jumping conditions
/þ ¼ /�; lr

o/þ

on
¼ o/�

on
on S ð18cÞ
and the boundary condition
�r/� ¼ 1

l0

B0 at 1 or on S0 ð18dÞ
Equilibrium equations for thin shell
o

oa
ðBNaÞ þ

o

ob
ðANabÞ þ

oA
ob

Nab �
oB
oa

Nb ¼ 0 ð19aÞ

o

ob
ðANbÞ þ

o

oa
ðBNabÞ þ

oB
oa

Nab �
oA
ob

Na ¼ 0 ð19bÞ

� o

oa
1

A
o

oa
ðBMaÞ

�
þ o

ob
ðAMabÞ þ

oA
ob

Mab �
oB
oa

Mb

�
� o

ob
1

B
o

ob
ðAMbÞ

�
þ o

oa
ðBMabÞ þ

oB
oa

Mab �
oA
ob

Ma

�

þ AB
Na

Ra

�
þ Nb

Rb

�
¼ ABqemn ða; bÞ ð19cÞ
the boundary conditions on displacements and stresses of the shell can be obtained from the term

f
R
Cu
� � � þ

R
Ct
� � �g in Eq. (12).
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It should be noted from Eqs. (18a) and (18b) that the magnetic-field distribution of the shell is depended

on the deformation u of the shell. On the other hand, the equivalent magnetic force exerted on the shell is

depended on the magnetic-field distribution. So the magnetic-field distribution and the deformation of the

ferromagnetic shell are coupled and influenced each other. In this case, the magnetoelastic problem is
nonlinear even if the linear theory for magnetic materials and the shell is adopted.
3. Analyses and reviews on several models

There are lots of theoretical models which can be used to describe the magnetoelastic behavior of fer-

romagnetic structures. Some of them are famous, such as the Pao–Yeh�s model, the Eringen–Maugin�s
model, and the Moon–Pao�s model. From these models, the corresponding expressions of equivalent

magnetic forces exerted on ferromagnetic structures are derived to predict magnetoelastic behavior of

ferromagnetic structures. Zhou and Zheng (1997) found that all of them can qualitatively simulate the
Moon�s experiment (1968) of magnetoelastic buckling well, but cannot be used for the Takagi et al.

one(1993). Here, we will firstly verify that the model suggested in this paper, by generated to the ferro-

magnetic plate in applied magnetic fields, is suitable to simulate not only the Moon�s experiment, but also

the Tagaki et al.�s one. Then, the equivalent magnetic force system by other models are derived for a thin

ferromagnetic shell, and the distribution of the magnetic forces from these models to show the differences

among these existing theoretical models is furthermore displayed. Finally, a discussion about the Moon�s
model (1984) is given to demonstrate that it is a special case of the model given in this paper when lr > 104.
3.1. The model in this paper

In our model, the equivalent magnetic force (only in normal direction n) subjected on the middle surface

of the shell is given by Eq. (17). Once we use it for a soft ferromagnetic plate, it will be rewritten as follows
qemn ðx; yÞ ¼ l0lrvm
2

f½Hþ
n ðx; y; h=2Þ�

2 � ½Hþ
n ðx; y;�h=2Þ�2g � l0vm

2
f½Hþ

s ðx; y; h=2Þ�
2

� ½Hþ
s ðx; y;�h=2Þ�2g ð20Þ
where x, y represents the coordinate axes on the mid-plane of thin plate.

For a transverse magnetic field, we have Hþ
n � Hþ

s , and the magnetic force acted on the plate is sim-

plified as
qemn ðx; yÞ ¼ l0lrvm
2

f½Hþ
n ðx; y; h=2Þ�

2 � ½Hþ
n ðx; y;�h=2Þ�2g ð21aÞ
which is just same as the model suggested by Zhou and Zheng (1997) to predict the Moon and Pao�s ex-
periment (1968) not only in quality, but also in quantity well.

For an in-plane magnetic field, we have Hþ
s � Hþ

n , so the magnetic force subjected on the plate becomes
qemn ðx; yÞ ¼ � l0vm
2

f½Hþ
s ðx; y; h=2Þ�

2 � ½Hþ
s ðx; y;�h=2Þ�2g ð21bÞ
It is just the Zhou and Miya�s model (1998), which can simulate the Tagaki et al.�s experiment, that is, the

predicted natural frequency of ferromagnetic beam-plate increases with an increasing magnetic-field in-

tensity. Consequently, when the model suggested in this paper is used for a ferromagnetic thin plate, it can
simulate the magnetoelastic behavior of the plate not only in a transverse but also in an in-plane magnetic

field.
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3.2. The Moon–Pao’s model

For a soft ferromagnetic thin plate, Moon and Pao (1968) neglected the magnetic field arisen from

magnetization of the materials, and gave the magnetic body force fem and body couple c as follows
fem ¼ 0; c ¼ Mþ � B0 ð22Þ
Having simplified the force system to the middle surface of the shell, we have the equivalent normal

magnetic force
qemn ¼
Z h=2

�h=2
½r � ðMþ � B0Þ� � ndn ð23aÞ
and tangential magnetic force
qems ¼
Z h=2

�h=2
½r � ðMþ � B0Þ� � ndn ð23bÞ
3.3. The Pao–Yeh’s model

Based on the Maxwell�s stress tensor
Tem ¼ BþHþ � 1

2
l0ðHþ �HþÞI ð24Þ
in which I is a unit matrix, Pao and Yeh (1973) derived the magnetic force system subjected on a ferro-

magnetic body as follows
fem ¼ r � Tem ¼ l0vm
2

rðHþÞ2 in Xþ ð25aÞ

Fem
S ¼ �n � ½Tem� ¼ l0

2
ðvmHþ

n Þ
2
n on S ð25bÞ
Once we simplify this force system to the middle surface of the shell, we have
qemn ¼ l0vm
2

Z h=2

�h=2
rðHþÞ2 � ndnþ l0v

2
m

2
f½Hþ

n ða; b; h=2Þ�
2 � ½Hþ

n ða; b;�h=2Þ�2g

¼ l0lrvm
2

f½Hþ
n ða; b; h=2Þ�

2 � ½Hþ
n ða; b;�h=2Þ�2g þ l0vm

2
f½Hþ

s ða; b; h=2Þ�
2

� ½Hþ
s ða; b;�h=2Þ�2g ð26aÞ
and
qems ¼ l0vm
2

Z h=2

�h=2
rðHþÞ2 � ndn ð26bÞ
3.4. The Eringen–Maugin’s model

Eringen and Maugin (1990) chose the Maxwell�s stress tensor in another form
Tem ¼ BþHþ � 1

2
ðBþ � Bþ=l0 �Mþ � BþÞI ð27Þ
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so a corresponding magnetic force system is taken as
fem ¼ r � Tem ¼ l0lrvm
2

rðHþÞ2 in Xþ ð28aÞ

Fem
S ¼ �n � ½Tem� ¼ � l0

2
ðvmHþ

s Þ
2
n on S ð28bÞ
Having simplified this system to the middle surface of the shell, we have
qemn ¼ l0lrvm
2

Z h=2

�h=2
rðHþÞ2 � ndn� l0v

2
m

2
f½Hþ

s ða;b; h=2Þ�
2 � ½Hþ

s ða; b;�h=2Þ�2g

¼ l0lrvm
2

f½Hþ
n ða; b; h=2Þ�

2 � ½Hþ
n ða; b;�h=2Þ�2 þ l0vm

2
f½Hþ

s ða; b; h=2Þ�
2 � ½Hþ

s ða; b;�h=2Þ�2g

ð29aÞ
and
qems ¼ l0lrvm
2

Z h=2

�h=2
rðHþÞ2 � ndn ð29bÞ
3.5. The Moon’s model

Moon (1984) gave an analytical solution to a cylindrical shell in a uniform magnetic field. He firstly

determined the magnetic field distribution on the rigid cylindrical shell, and then calculated the magnetic
force acted on it by
qemn ¼ 1

2l0

f½Bþ
n ða; b; h=2Þ�

2 � ½Bþ
n ða; b;�h=2Þ�2g ð30Þ
which he called as magnetic tension. In fact, it is not difficult to find that Eq. (30) just means the magnetic

pressure difference between the outer and the inner surface of the cylindrical shell, and also that we can get

the magnetic pressure difference from Eq. (17) once the case lrH
þ
n � Hþ

s is considered. By calculating and

comparing the magnetic forces respectively from Eqs. (17) and (30), we find that there is almost no dif-
ference between two models for the case lr > 104. Consequently, the Moon�s model (1984) is just a special

case of the model suggested in this paper (see Section 5).
4. Computation formulations

In order to calculate the deformation of a cylindrical shell with finite-length and end constraints in a

uniform magnetic field, a computation program is suggested in this section. The finite element method is

respectively used to get the deformation of the cylindrical shell and the magnetic-field distributions both in
and out of the shell. An iterative method is used in the program to solve the nonlinearity arising from the

interaction between the deformation and the magnetic fields.

4.1. FEM analysis for magnetic field

Here, we will numerically analyze the magnetic-field distribution in regions Xþ and X� that are influ-
enced, respectively, by the magnetization of the ferromagnetic cylindrical shell and its deformation. For a

given deformation state of the shell, the magnetic field distribution, that is the solution of the Eqs. (18a)–
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(18d), minimizes the functional of Eq. (5). One can discretize the 3D regions of Xþ and X� into finite ele-

ments, and set the surface and the middle surface of the shell being located on the surface of the elements.

Here the 3D 20-node hexahedral element is chosen. A typical mesh for the ferromagnetic shell region and

outside region of the shell is shown in Fig. 3a. Having taken ½Nðx; y; zÞ�e as a shape function, we can write the
value of the magnetic potential / in compact matrix form as follows
/ðx; y; zÞ ¼ ½Nðx; y; zÞ�e½U�e ð31Þ
where ½U�e is a column matrix which consists of the value of / on each node of the element e. Integrating
Eq. (5) in the subregion of each element, and substituting Eq. (31) into it, we can obtain
P1f/; ug ¼
X
e

1

2
½U�Te ½Kem�e½U�e �

X
e0

½U�Te0 ½P�e0 ð32Þ
where e0 is the element on S0; ½Kem�e is a magnetic stiffness matrix of the element e and ½P�e0 is a inhom-

ogenous term on S0, which are respectively in following forms
½Kem�e ¼
R
Xe
l0lr½rN�Te ½rN�e dv Xe 2 XþðuÞR

Xe
l0½rN�Te ½rN�e dv Xe 2 X�ðuÞ

(
ð33aÞ
½P�e0 ¼ �
Z
Se0

l0n � B0½N�Te ds Se0 2 S0 ð33bÞ
From d/P1f/; ug ¼ 0, the global stiffness equation for the magnetic field is achieved by the form
½Kem�½U� ¼ ½P� ð34Þ
Since the region XþðuÞ or X�ðuÞ denotes the inside or outside region of the deformed ferromagnetic shell,
the coordinates of a point in the region Xþ and on the surface S must be considered in the configuration of

the deformed shell for calculations of Eq. (33a), the coordinates x̂x ¼ fx̂x; ŷy; ẑzg for deformed shell is expressed

by x̂x ¼ xþ u, where x ¼ fx; y; zg is the coordinates for unformed shell. Consequently, the magnetic rigidity

matrix ½Kem� should be a function of the displacement u, that is
½Kem� ¼ ½KemðuÞ� ð35Þ
which states the effect of the deformation of the shell on the deformation of the magnetic field or the

magnetic potential /ðx; y; zÞ.

4.2. FEM analysis for deformation of cylindrical shell

For a ferromagnetic cylindrical shell as shown in Fig. 2, taking the areas of those 3D hexahedral ele-
ments in the middle surface of shell as the shell elements, that is, a kind of eight-node shell element is chosen

for analysis of its deformation. The typical mesh of shell and the shell element are shown in Fig. 3b. We

take the global coordinate at a node of a shell element e as ðri; hi; ziÞ ði ¼ 1; 2; . . . ; 8Þ and a local coordinate

system for the element as focgfg. The displacements at each node of the element are denoted as

½Ui�e ¼ fui; vi;wi;xiz;xihg, which represent the displacements along the three axes and the rotations round

the z-axis and h-axis, respectively. Consequently, the displacements at an arbitrary point in the subregion of

shell element can be expressed as
u ¼ ½Nðc; g; fÞ�e½U�e ð36Þ
where ½Nðc; g; fÞ�e is the shape function.
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Fig. 2. Sketch of a ferromagnetic cylindrical shell in a uniform magnetic field.
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With the aid of the FEM, the deformation of the cylindrical shell governed by the differential Eqs. (19a)–
(19c) with the corresponding boundary conditions can be reduced into a matrix equation
½Kme�½U� ¼ ½Q� ð37Þ

where ½Kme� is the stiffness matrix for the deformation of the shell; [U] is a column matrix which consists of

the displacements and rotations of each node on the middle surface of shell. [Q] is a column matrix related

to the equivalent magnetic forces, it is obvious that [Q] is the function of ½U�, that is

½Q� ¼ ½Qð½U�Þ� ð38Þ
4.3. Iterative arithmetic for nonlinearity

From Eqs. (34), (35) and (37), (38), we can get the following formula
½U� ¼ ½Kme��1½Qð½KemðuÞ��1½P�Þ� ð39Þ

To solve the above nonlinear equation, an iterative arithmetic (Zhou et al., 1996; Zheng et al., 1999) is

employed and Eq. (39) will be taken as
½U�mþ1 ¼ ½Kme��1½Qð½KemðumÞ��1½P�Þ� ð40Þ
The iterative procedure is mainly shown as following. (i) Assuming an initial displacement ½U�0 of shell for
an applied magnetic field B0, with the interpolation function of Eq. (36) we can get the displacement u0 at

the arbitrary point in the ferromagnetic medium, (ii) taking into account the effect u0 on the magnetic
stiffness matrices and solving for magnetic field distribution Hþ, one can further calculate the magnetic

force acted on the shell by Eq. (17), (iii) with the aid of solving Eq. (40), the new displacement ½U�1 of shell
will be gotten and (iv) having substituted ½U�1 for the initial value ½U�0 and repeating above procedure until

a pre-specified precision condition
k½U�mþ1 � ½U�mk=k½U�mk < e ð41Þ



Fig. 3. The finite element meshes for magnetoelastic shell analysis: (a) magnetic field analysis and (b) deformation field analysis for

cylindrical shell.
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being satisfied, finally, the magnetoelastic solution ½U� ¼ lim
m!1

½U�m of the deformation for ferromagnetic

shell under an applied magnetic field B0 can be obtained. Here, k � k is defined the infinite vector norm, m is

the number of iterations and 0 < e � 1 denotes a prescribed limit.

It is obviously that above iteration process is sensitive to the initial displacement ½U�0 of the shell. In order

to improve the convergence of iteration, we make the magnitude of the applied magnetic field B0 increase

step-by-step, and take the iterative initial displacement ½U�0 for a given magnetic field B0 as the one for the

last applied magnetic field B0 � DB0. The validity of this method is confirmed in our numerical simulation.
5. Numerical results and discussions

In this section, two kinds of experiments conducted by Moon (1984) and Miyata and Miya (1988) are
respectively simulated with the theoretical mode and FEM computation program proposed in this paper.



Table 1

Material and geometric parameters for experiments

Parameter Miyata and Miya�s experiment (1988) Moon�s experiment (1984)

Length L (mm) 80 76

Radius R (mm) 15 12.7

Thickness h (mm) 0.5 0.254

Young�s modulus Y (MPa) 2.15· 105 2.0· 105
Poisson�s ratio m 0.3 0.3

Relative permeability lr 1000 10,000
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All material and geometric parameters for these two kinds of experiments used by the authors are adopted

in our numerical program and given in Table 1. Since it is not easy to simulate the end constraints of the

cylindrical shell in Moon�s experiment, here, we will take Miyata and Miya�s experiment as an example to

verify the theoretical model suggested in this paper. Then, by introducing the effect of an elastic constant of

the end constraints on the stresses of the cylindrical shell, we calculated the magnetoelastic stress of fer-
romagnetic shell used in Moon�s experiment and tried to give a reason why there exhibited the discrepancies

between Moon�s predicted results and his measured ones.

Firstly, for the convergence and verification of the coupled FEM of magnetic field and deformation of

ferromagnetic shell, two finite element meshes were used for the magnetic field and shell. One having 2880

magnetic elements and 13,481 points (the corresponding shell elements being of 64 and points of 225), and

another having 3344 magnetic elements and 15,577 points (the corresponding shell elements being of 80 and

points of 277) are examined for the evaluations magnetic force and displacement of the cylindrical shell as a

typical mesh presented in Fig. 3. For the magnetic force distribution and displacement of shell, the dif-
ference in the results between two meshes varied in change of 1–3%. The results in this paper were generated

from the second mesh scheme.

Secondly, with adopting the geometrical and material parameters of Miyata and Miya�s experiment, we

respectively calculated the equivalent normal and tangential (i.e., the direction in h) magnetic forces given by

several theoretical models for a cylindrical thin shell before the shell deforms. The distributions of magnetic

forces are plotted in Fig. 4a–d. It is obvious that the distributions of the magnetic forces given by Eqs. (17),

(23), (26) and (29) are different, which will lead to the different predictions on the strain of the cylindrical

shell. The circumferential bending strain versus angle for the cylindrical shell is plotted in Fig. 5, in which the
angle h is from 0� to 90� because of the symmetry of shell. From Fig. 5a, it can be found that the theoretical

results got by the model and the numerical program suggested in this paper are in good agreement with

Miyata and Miya�s measured data. The relative errors are, respectively, 22.4% at h ¼ 0� and 15.1% at

h ¼ 90�, lower than Miyata and Miya�s ones which are 40% at h ¼ 0� and 34.2% at h ¼ 90�, respectively.
Therefore, the model and the program suggested in this paper are effective to describe the magnetoelastic

problem of soft ferromagnetic structures in magnetic field. In Fig. 5b, we plot the circumferential bending

strain versus the magnetic field intensity B2
0 for different h, which shows that the deformation is almost

proportional to a squared applied magnetic-field intensity, and the strain at h ¼ 0� increases fast with an
increasing magnetic-field intensity B0 so that more attention should be paid to due to high stress even for a

small applied field. With the aid of the numerical program, the circumferential bending strains of the cy-

lindrical shell taken by Miyata and Miya in their experiment are also calculated by the Moon–Pao�s model

(i.e., Eq. (23)), the Pao–Yeh�s model (i.e. Eq. (26)) and the Eringen–Maugin�s model (i.e. Eq. (29)), re-

spectively. The circumference stains at h ¼ 0� and 90� as well as the relative errors between the predicted

result and the measured one list in Table 2. From Table 2, it is can be found that the predicted results given

by this paper�s model are in better agreement with the experiment data than that given by other models.

For the Moon�s model (1984), it should be got a good prediction for the cylindrical shell according to the
discussion given in Section 3 since the magnetic permeability of soft ferromagnetic materials lr usually is
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Fig. 4. The distribution of equivalent magnetic force in circumference (z ¼ L=2, B0 ¼ 1:0 T): (a) the model in this paper, (b) Moon–

Pao�s model, (c) Pao–Yeh�s model and (d) the Eringen–Maugin�s model.
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greatly high. Fig. 6 plots the magnetic forces respectively from Eqs. (17) and (30) along with the relative

permeability lr of soft ferromagnetic material, which displays there is almost no difference between two

models for the case lr > 104. However, the predicted maximum stress at 0.05 T, given by Moon (1984), was

990 N/cm2 and the measured stress was 520 N/cm2. We try to analyze the discrepancy from two hands. On

the one hand, we firstly calculate the distribution of the magnetic force at h ¼ 90� in the length z of the shell,
shown in Fig. 7. It is clear that the magnetic forces at the ends are larger than those in the middle part of the

shell. So, it may not be reasonable to treat a finite-length cylindrical shell as an infinite one. On the other
hand, since the cylindrical shell in Moon�s experiment was supported at its ends by circular nylon plates, we

introduce an elastic constant K based on the Winkler�s model into the boundary conditions in which the

cylindrical shell was not clamped or simply supported ðK ! 1Þ and also not free ðK ! 0Þ. The circum-

ferential strains at different angles for a given magnetic field B0 ¼ 0:05 T and several cases of the elastic

constant K are shown in Fig. 8. From Fig. 8, one can find that the effect of the end constraint on the

deformation of the cylindrical shell is obvious. When K ¼ 3:0� 103, the strain is about 500 N/cm2, which is

very close to Moon�s measured one.
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Table 2

The circumferential strain at the middle section of a ferromagnetic cylindrical shell in magnetic field (B0 ¼ 1:0 T)

Strain ehð�10�6Þ Experiment result

Miyata and Miya

(1988)

This paper result Moon and Pao

(1968)

Pao and Yeh

(1973)

Eringen and

Maugin (1990)

h ¼ 0� 250 306 531 397 489

Relative error (%) – (22.4) (112.4) (58.5) (95.6)

h ¼ 90� )152 )175 )576 )203 )7134
Relative error (%) – (15.1) (278.9) (33.6) (4593.4)
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6. Conclusions

In this paper, an expression of equivalent magnetic forces exerted on a soft ferromagnetic shell in a

magnetic field is derived by a variational principle. This expression not only can be used to describe the

magnetoelastic buckling of a magnetoelastic plate in a uniform transverse magnetic field, but also can be

used to describe the magnetoelastic vibrating of a magnetic plate in a uniform in-plane magnetic field, which

cannot be realized by other existing models. A computation formulation combined the finite element method

with the iterative method is suggested to calculate the deformation of the cylindrical shell. The numerical
simulation for the cylindrical shell, which was experimentally measured by Miyata and Miya (1988), shows

that our predictions on the circumferential strains are in good agreement with the experimental data. In
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addition, theMoon�s model (1984), which was used to predict the stress of the shell, is studied in this paper. It

is found that there is almost no difference between the Moon�s model and the model suggested in this paper

when the magnetic permeability lr > 104. The discrepancy between the theoretical results given by Moon

(1984) and his experimental data is from the simplification of the infinite-length cylindrical shell for the finite-
length one and the effect of the end constraints of the cylindrical shell.
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