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Abstract: The propagation of a dispersive shock wave is studied in a quintic-derivative nonlinear Schrödinger (Q-DNLS)
equation, which may describe, for example, the wave propagation on a discrete electrical transmission line. It is shown
that a physical system described by a Q-DNLS equation without a dissipative term may support the propagation of shock
waves. The influence of the derivative nonlinearity terms on the shock is analyzed. Using the found exact shock solutions
of the Q-DNLS equation as the initial input signal, we investigate numerically the spatiotemporal stability of the shock
signal in the network.
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Résumé : Nous étudions la propagation d’une onde de choc dispersive à l’aide d’une équation différentielle quintique non
linéaire de Schrödinger (équation Q-DNLS), qui peut décrire, par exemple, la propagation d’onde sur une ligne de trans-
mission électrique discrète. Nous montrons qu’un système physique décrit par une équation Q-DNLS sans terme dissipatif
peut permettre la propagation d’onde de choc. Nous étudions l’influence des termes non linéaires en dérivée sur l’onde de
choc. Utilisant comme signal de départ, la solution exacte pour l’onde de choc obtenue de l’équation Q-DNLS, nous étu-
dions la stabilité spatiotemporelle du signal de choc dans la ligne.

[Traduit par la Rédaction]

1. Introduction
Since the pioneering works by Hirota and Suzuky [1] on

electrical transmission lines simulating the Toda lattice, a
growing interest has been devoted to the use of the nonlin-
ear transmission lines (NLTLs), in particular, for studying
nonlinear wave propagation. In fact, NLTLs are convenient
tools for studying wave propagation in nonlinear dispersive
media. In particular, they provide a useful way to check
how the nonlinear excitations behave inside a nonlinear me-
dium and to model the exotic properties of new systems [1–
17]. Theoretical studies on the NLTLs show that the system
of equations governing the physics of the network can be re-
duced to a complex cubic/cubic-quintic Ginzburg–Landau
equation (with or without a derivative in the cubic term) or
a pair of coupled Ginzburg–Landau equations (see for exam-
ple refs. 15, 18, 19).

Most recently, Kengne and Liu [20] presented a model for
wave propagation on a discrete electrical transmission line
based on the modified complex Ginzburg–Landau (MCGL)
equation, derived in the small-amplitude and long-wave-
length limit using the standard reductive perturbation techni-
que and complex expansion [21] on the governing nonlinear

equations. This MCGL equation is also referred to as the
‘‘derivative-nonlinear Schrödinger (Q-DNLS) equation’’ or
the ‘‘real cubic-quintic Ginzburg–Landau equation’’ and can
take the form
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where P, g, and qj (j = 1, 2, 3) are real transmission line
parameters, and u* stands for the complex conjugate of u.
The two terms |u|2(q/q)u and u2(q/q)u* in (1) are called de-
rivative nonlinear terms, and appear in the asymptotic deri-
vation. Their coefficients Q2 + 2Q3 and Q3 represent the
relative magnitudes of the nonlinear dispersion. Because all
parameters of (1) are real, we henceforth call it the ‘‘quintic-
derivative nonlinear Schrödinger equation’’. Deissler and
Brand [22] showed numerically that these two terms can sig-
nificantly slow down the propagating speed of the pulses
and also cause the nonsymmetry of pulses. Because g is a
real number, the term gu can be removed from (1) using
the substitution u(x, t) = w(x, t)exp(–igt). Thus, without loss
of generality, we henceforth suppose that g = 0 Modula-
tional instability of partially coherent signals in electrical
transmission lines that are governed by the Q-DNLS equa-
tion (1) is investigated in ref. 23, and the following condi-
tion on the modulational instability has been found:

PQ1 > 0 ð2Þ

It has been shown that the derivative nonlinearity Q3 de-
creases the instability region, while the higher order nonli-
nearity coefficient Q1 tends to increase the instability region.
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The Q-DNLS equation (1) is a well-known dynamical
model with numerous physical applications ranging from
nonlinear optics to the theory of molecular vibrations. The
Q-DNLS equation demonstrates a rich variety of dynamical
behaviors, including bright and dark solitary waves and
shock waves (SWs), that is, sharp expanding fronts followed
by localized excitations and background oscillations.

Dispersive shock waves (DSWs), also called unsteady un-
dular bores [24, 25], are nonlinear wave-like structures,
which are generated in the breaking profiles of large-scale
nonlinear waves propagating in dispersive media. The
DSWs have been observed experimentally or their existence
has been theoretically predicted in various nonlinear me-
dia — water [26], plasma [27], optical fibers [28], lattices
[29], and more recently in Bose–Einstein condensates [30,
31]. In contrast to the usual dissipative shocks where the
combined action of nonlinear and dissipation effects leads
to sharp jumps of the wave intensity, accompanied by abrupt
changes in other wave characteristics, in dispersive shocks
the viscosity effect is either absent or negligibly small com-
pared with the dissipative one, and, instead of intensity

jumps, the combined action of nonlinear and dispersion ef-
fects leads to the formation of an oscillatory wave region
(for a review, see, for example, ref. 32). Dispersive shock
waves (DSWs) have yielded novel dynamics and interesting
interaction behavior that has only recently begun to be
studied theoretically (see, for example, ref. 33). It is well
known (see, for example, ref. 26) that if the initial pulse is
strong enough, so that the nonlinear term dominates over
the dispersive one in the initial stage of the pulse evolution,
then the dispersive shock wave develops after the wave
breaking point.

The aim of this paper is to show the possibility for a
shock wave to propagate in a system described by a Q-
DNLS equation without a dissipative term. If Deissler and
Brand [22] have shown that the derivative nonlinear terms
of a complex Ginzburg–Landau equation can significantly
slow down the propagating speed of the pulses and also
cause the nonsymmetry of pulses, we show in this work
that these two terms for a Q-DNLS equation also cause the
propagation of a dispersive shock wave.

The paper is organized as follows. In Sect. 2, we find two

Fig. 1. Velocity h of the shock wave (1) and group velocity UK (2) versus (a) the derivative nonlinearity Q3 for P = 0.4, Q1 = 0.2, Q2 = 1.3
and (b) versus the derivative nonlinearity Q2 for P = 0.4, Q1 = 0.2, Q3 = 0.7.

Fig. 2. Plots (1) of V and (2) r versus the derivative nonlinearity Q3 (a), and dependence of V on r (b) for P = 1 and Q1 = –0.5. (plotted
quantities are dimensionless).
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classes of exact stationary-phase modulated-shock-wave sol-
utions of (1); the first class contains the solutions with one
free parameter, while the second class consists of either
two-parameter solutions or zero-parameter solutions. In
Sect. 3, we investigate numerically the stability of the shock.
Section 4 concludes the paper.

2. Dispersive-shock-wave solutions of the Q-
DNLS equation (1)

The shock-wave type solutions of the Q-DNLS equa-
tion (1) can be sought in the generic form

uðx; tÞ ¼ aðxÞexp ½i
�
jðxÞ � ut

�
� ð3Þ

where x = x – nt and the phase function j(x) is in general a
function of amplitude a(x).

2.1. Class of one-parameter solutions
Following Nozaki and Bekki [34], we seek the first class

of the shocklike solution of (1) in the form

uðx; tÞ ¼ a exp ½iðKx�UtÞ�
f1þ exp ½�2mðx� htÞ�gð1=2Þþia

; ma 6¼ 0 ð4Þ

where a, K, U, m, h, and a are real parameters. Inserting re-
lation (4) into (1) results in the following set of equations.

Q1a
4 � KðQ2 þ Q3Þa2 � ðUþ K2PÞ ¼ 0

hþ 2PðK þ 2amÞ ¼ 0

hþ ðQ2 þ 3Q3Þa2 þ 2PðK � 2amÞ ¼ 0

Pðm2 � K2Þ �U� 2ham� 4PmaðK þ amÞ ¼ 0

2Uþ 2PðK2 þ m2Þ þ 2hamþ 4KPam

� a2Q3ðK þ 2amÞ þ a2ðK þ 2amÞðQ2 þ 2Q3Þ ¼ 0 ð5Þ

It is important to notice that a necessary condition for sys-
tem (5) under condition ma = 0 to admit a nontrivial solu-
tion is that |Q3| + |Q2 + 2Q3| > 0. This means that the

derivative nonlinear terms in (1) are responsible for the dis-
persive shock-wave propagation in the network.

Solving system (5), we obtain

K ¼ 8PQ1 � Q3ðQ2 þ 3Q3Þ
6PðQ2 þ Q3Þ

a2

h ¼ � 16PQ1 þ ðQ2 þ 3Q3ÞðQ3 þ 3Q2Þ
6ðQ2 þ Q3Þ

a2

m2 ¼ � 16PQ1 þ ðQ2 þ 3Q3ÞðQ3 þ 3Q2Þ
48P2

a4

a ¼ ðQ2 þ 3Q3Þ
8Pm

a2

U ¼ 6½Q3ðQ2 þ 3Q3Þ � 2PQ1�ðQ2 þ Q3Þ2
��
� ½8PQ1 � Q3ðQ2 þ 3Q3Þ�2Þ= 36PðQ2 þ Q3Þ2

� �
�a4 ð6Þ

a being a free real parameter. Since m2 > 0, the transmission
line parameters P and Qj (j = 1, 2, 3) must satisfy the rela-
tionship

16PQ1 þ ðQ2 þ 3Q3ÞðQ3 þ 3Q2Þ < 0 ð7Þ

Inequality (7) is then the condition under which the prop-
agation of shock waves is possible on the NLTLs. Hence,
the SW exists only with both positive and negative velocity
h, depending on the sign of Q2 + Q3 (see the second equa-
tion in (6)). It should be noted that condition Q2 + Q3 = 0
follows from our assumption m = 0 (see (5)). It follows
from (2) and inequality (7) that the motion of shock waves
is possible in the modulational instability domain only when
the derivative nonlinearity coefficients Q2 + 2Q3 and Q3 sat-
isfy the relationship

Q2 þ 2Q3

Q3

� 2 < 0 ð8Þ

As we can see from (6), SWs in the Q-DNLS equation
move at a constant velocity that explicitly depends on the
dispersive coefficient P, on the higher order nonlinearity co-
efficient Q1, and on the two derivative nonlinearity coeffi-

Fig. 3. Velocity V of the shock (1) and asymptotic continuous wave amplitude r (2) versus the parameter Q3 (a) and dependence of V on r

(b). The equation parameters are taken to be P = 1 and Q1 = –0.5, while the derivative nonlinearities are related by Q2 + 3Q3 = 0 (plotted
quantities are dimensionless).
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cients Q2 and Q3. Using (6), one obtains the following group
velocity:

@U

@K
¼ �2KP� ðQ2 þ Q3Þa2

4

¼ � 32PQ1 þ 3Q2
2 þ 2Q2Q3 � 9Q2

3

12ðQ2 þ Q3Þ
a2 ð9Þ

In Fig. 1, we plot the shock-wave velocity (1) and the
group velocity (2) as functions of derivative nonlinearity.

Figure 1a shows the plot versus Q3 for the equation parame-
ters P = 0.4, Q1 = 0.2, Q2 = 1.3, while Fig. 1b corresponds
to the plot versus Q2 for the parameters P = 0.4, Q1 = 0.2,
Q3 = 0.7. The plots in Fig. 1 show that the shock-wave ve-
locity as the group velocity decreases as the derivative non-
linearities increase. We can then conclude that the two
derivative nonlinearity terms can significantly slow down
the propagating speed of the shock wave. Figure 1a shows
that the shock-wave velocity is always greater than the
group velocity and this suggests that there may exist many

Fig. 4. Wave evolutions in the modulational instability region. The initial condition is taken from the first class of shock-wave solutions
with P = 0.4, Q1 = 0.2, Q2 = 1.3, and Q3 = –1. Plots of rows (a) and (b) show the wave evolutions at given times along the x-direction and
at given point along the t-direction, respectively. Here, we used a = 1.
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types of structures evolving behind the shock wave for the
given equation parameters for –1.29 £ Q3 £ –0.78757. As
can be seen from Fig. 1b, the group velocity is always
greater that the front’s speed, meaning that for the given set
of equation parameters and for –0.69 £ Q2 £ –0.5, there may
exist many types of structures evolving in front the shock
wave.

2.2 Class of zero-parameter and two-parameters
solutions

For both zero-parameter and two-parameters solutions, it
is preferable to write solution (3) in the following generic
form:

uðx; tÞ ¼ Rðx� Vt ¼ zÞexp
�
i

Z z

0

FðzÞdz� ir2t
�

ð10Þ

Fig. 5. Wave propagation in the modulational stability region with equation parameters P = 0.4, Q1 = –0.2, Q2 = 1.3, and Q3 = –1 The
initial condition has been taken from the first class of shock-wave solutions with a = 1. Plots of rows (a) and (b) show the wave evolutions
at given times along the x-direction and at given point along the t-direction, respectively.
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where V is the SWs velocity, R(z) is the real amplitude with
boundary values R(–?) = 0, Rðþ1Þ ¼

ffiffiffi
2

p
r, r being the

asymptotic continuous wave amplitude, and F(z) takes the
boundary values F( ± ?) = –[(Q2 + 3Q3)r2 + V](2P)–1. We
limit ourselves to the shock waves with positive velocity
(V > 0) corresponding to a situation where the zero-state do-
main expands into the energy-carrying one. As in Sect. 1,
we will see below that dispersive shock-wave propagation
in the network is possible only if |Q3| + |Q2 + 2Q3| > 0 that
is, in the presence of at least one derivative nonlinear term
in (1).

Inserting (10) into (1) and taking the boundary conditions
into account, we obtain

R00 þ ðPþ 1ÞV � 2r2P

2P2
R

þ ðPþ 2V þ 1ÞQ2 þ ð3Pþ 2V þ 3ÞQ3

4P2
R3

þ 4PQ1 þ 4Q2Q3 þ Q2
2 þ 3Q2

3

4P2
R5 ¼ 0 ð11Þ

Fig. 6. Wave evolution in the modulational stability region with equation parameters P = 0.4, Q1 = –0.2, Q2 = 1.3, and Q3 = –3. Plots of
rows (a) and (b) show the wave evolutions at given times along the x-direction and at given point along the t-direction, respectively.
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FðzÞ ¼ � V

2P
� Q2 þ 3Q3

4P
R2ðzÞ ð12Þ

Equation (11) makes its presence felt in many contexts: it
appears as a reduction equation of various nonlinear equa-
tions such as the Rangawala–Rao equation, the Ablowitz
equation, and the Gerdjikov and Ivanov equation (see Kong
[35] and Dey et al. [36] for references). Many new solitary

wave solutions are obtained by mapping this equation into
the field equation of f6 as in field theory (see Behera and
Khare [37]).

The shock-wave solution of (11) is sought in the form

RðzÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhmz

p
ð13Þ

where m is a real parameter. If we substitute (13) into (11),

Fig. 7. Wave profile in the modulational instability region. The initial condition is taken from the first class of shock-wave solutions with P
= 0.4, Q1 = 0.2, Q2 = 1.3, and Q3 = –3. Plots of rows (a) and (b) show the wave evolutions at given times along the x-direction and at given
point along the t-direction, respectively.
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we can obtain, after long calculations a system of equations
in V, m, and r. The different cases when the equation is sol-
vable are analyzed below.

1. Case Q2 + Q3 = 0
When

Q2 þ Q3 ¼ 0; PQ1 < 0; ðPþ 1ÞQ3 > 0 ð14Þ

one obtains

m2 ¼ � 3½Q3ðPþ 1Þ�2
64P3Q1

; r2 ¼ � 3ðPþ 1ÞQ3

16PQ1

;

V ¼ 3Q3½4P� ðPþ 1ÞQ3�
2ð5Q2

3 � 16PQ1Þ
ð15Þ

We then find that shock-wave solutions exist under the
condition Q2 + Q3 = 0 only in the modulational stability re-
gion PQ1 < 0. Using (15), one can express the shock-wave
velocity in terms of the asymptotic continuous wave ampli-
tude r as follows:

Fig. 8. Wave evolution in modulational stability region for equation parameters P = 2, Q1 = –27, Q2 = –2, and Q3 = 2. Plots of rows (a) and
(b) show the wave evolutions at given times along the x-direction and at given point along the t-direction, respectively.
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V ¼ VðrÞ ¼ � 13ðPQ3 þ Q3 � 4PÞr2

2ð3þ 3Pþ 5Q3r2Þ ð16Þ

2. Case 4PQ1 þ Q2
2 ¼ Q3 ¼ 0

In the present case one obtains

V ¼ �Pþ 1

2
ð17Þ

and solution (15) is governed by the two free parameters m

and r. For the shock-wave velocity to be positive, we must
have P + 1 < 0. The resulting two-parameter shock-wave so-
lution holds only in the stability (PQ1 < 0) domains. It
should be noted that in the present case, the shock-wave ve-
locity does not depend on the asymptotic continuous-wave
amplitude r; moreover, it is free from Q1, Q2, and Q3..

3. Case ðj4PQ1 þ Q2
2j þ jQ3jÞðQ2 þ Q3Þ > 0

In this case, we have
ðQ2 þ Q3Þð4PQ1 þ 4Q2Q3 þ Q2

2 þ 3Q2
3Þ 6¼ 0 and

Fig. 9. Wave evolution in modulational instability region for equation parameters P = 1, Q1 = 1.9716 � 10–3, Q2 = 0.85439, and Q3 = –
0.3079. Plots of rows (a) and (b) show the wave evolutions at given times along the x-direction and at given point along the t-direction,
respectively.
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m2 ¼ b
2
r2

r2 ¼ � 6ðQ2 þ Q3ÞV þ 3ðPþ 1ÞðQ2 þ 3Q3Þ
8ð4PQ1 þ 4Q2Q3 þ Q2

2 þ 3Q2
3Þ

ð18Þ

where

b ¼ ½ðPþ 2V þ 1ÞQ2 þ ð3Pþ 2V þ 3ÞQ3�ð4P2Þ�1

and V is any positive solution of the quadratic equation

�12ðQ2 þ Q3Þ2V2

þ 4½ðPþ 1Þð32PQ1 þ 20Q2Q3 þ 5Q2
2 þ 5Q2

3Þ
þ 12PðQ2 þ Q3Þ�V

þ 3ðPþ 1ÞðQ2 þ 3Q3Þ½8P� ðPþ 1ÞðQ2 þ 3Q3Þ� ¼ 0 ð19Þ

To obtain the conditions of validity of solution (13), one
may first find the positive solution of (19), secondly insert
the expression for V in b and into (18), and lastly, one may
impose the condition of positivity of b and r2.

It should be noted that it is also possible to express the
shock-wave velocity V in terms of the asymptotic continu-
ous wave amplitude r

V ¼ VðrÞ

¼ � 4ð4PQ1 þ 4Q2Q3 þ Q2
2 þ 3Q2

3Þ
3ðQ2 þ Q3Þ

r2

� ðPþ 1ÞðQ2 þ 3Q3Þ
2ðQ2 þ Q3Þ

ð20Þ

2.3 Some characteristics of the established DSW
The most essential characteristics of the established DSW

is the dependence of its velocity V on the parameter r and
derivative nonlinearities. As mentioned above, the velocity
V is independent of r and of the derivative nonlinearities in
the case 4PQ1 þ Q2

2 ¼ Q3 ¼ 0.
In the case of solution (15) with parameters (13), results

demonstrating the (i) V(Q3) and (ii) r(Q3) dependence are
displayed in Fig. 2a for the the parameter values P = 1 and
Q1 = –0.5. Figure 2b, obtained from Fig. 2a, shows the de-
pendence of V(r) for the above values of the equation pa-
rameters. An obvious inference suggested by Fig. 2 is that
the dependence V(r) or V(Q3) is neither linear nor mono-
tone. This implies that the derivative nonlinear terms in (1)
cannot be neglected. Another conclusion from Fig. 2 is that,
depending on the parameter values in the equations, the de-
rivative nonlinearity terms in (1) may either increase or de-
crease the speed of the shock wave. For the chosen
parameter values P = 1 and Q1 = –0.5, the asymptotic con-
tinuous-wave amplitude increases with the derivative nonli-
nearity Q3 and its maximal and minimal values are obtained
for V = 0, corresponding to two critical values of Q3 =
0.42265 and Q3 = 1.5774, respectively.

Plots of Fig. 3 correspond to the shock-wave solution (15)
with parameters (18) and (19). Curves (1) and (2) of Fig. 3a
show the dependence of V and r on Q3, respectively, while
Fig. 3b shows the evolution of V versus r. The two plots are
obtained with the equation parameters P = 1 and Q1 = –0.5
when the derivative nonlinearities satisfy the relationship
Q2 + 3Q3 = 0. As in the above case, Fig. 3b is obtained

from Fig. 3a. Neither the shock velocity V nor the asymp-
totic continuous-wave amplitude r is monotone as a func-
tion of Q3 for –10 £ Q3 £ 0, so that for a specific choice of
equation parameters, the derivative terms in (1) can either
increase or decrease the propagating speed of the shock.
The two plots correspond to a shock wave moving in the
modulational stability domain (PQ1 = –0.5 < 0).

3. Numerical simulations of the dispersive
shock wave

Numerical simulations are carried out on the above exact
shock-wave solutions within the framework of the Q-DNLS
equation (1). Many sets of the equation parameters are
chosen in our simulations. There exist a number of algo-
rithms suitable for the numerical solution of this type of
problem but some methods must be used with caution if
convergence is to be assured. For now, it should be noted
that one of the best-known methods to solve the Q-DNLS
equation numerically is the Crank–Nicolson method, as it is
stable and accurate to second order in space and time [38].
Hence, the numerical simulations of (1) are performed using
this method. The accuracy of our numerical computations is
checked by testing different time and space steps. The vari-
ables t and x are measured in units of time (second (s)) and
space (centimetre (cm)), respectively.

Using the Q-DNLS equation (1) as a model equation of
wave propagation in a semi-infinite network it is easy to ob-
serve the major features of dispersive shock-wave propaga-
tion. Progressive transformation of the initial dispersive
shock-wave signal into various type of waves is show in
Figs. 4–9. In all these figures, plots in row (a) show the
wave propagation along the x-direction for different times t,
while plots in row (b) give the wave propagation along the
t-direction for different x.

Plots of Fig. 4 show the wave evolution in the modula-
tional instability region with the input shock signal taken
from the first class of shock-wave solutions (4). The equa-
tion parameters used are P = 0.4, Q1 = 0.2, Q2 = 1.3, and
Q3 = –1. Plots of row (a) show that the waves propagate
from the left to the right, while plots of row (b) show that
the amplitude of the wave decreases as x increases.

In Fig. 5, we showed the wave evolution in the modula-
tional stability zone with the input shock signal taken from
the class of shock-wave solutions (4). Equation parameters
P = 0.4, Q1 = –0.2, Q2 = 1.3, and Q3 = –1 are used. The
plots of this Fig. 5 show that the wave amplitude decreases
as x increases.

To show that the wave amplitude decreases as time in-
creases, we plot, in Figs. 6 and 7, the wave profile in the
modulational stability and modulational instability regions,
respectively. For these plots, we used the exact dispersive
shock-wave solution (4) for the input signal. Plots of Fig. 6
are obtained with the same equation parameters as in Fig. 5,
but with derivative coefficient Q3 = –3. This same value of
Q3 has been used for Fig. 7 where the other equation param-
eters are the same as in Fig. 4. These two figures, Figs. 6
and 7, show that the amplitude of the wave decreases as a
function of time t when it propagates either in the modula-
tional stability region or in the modulational instability re-
gion. Figures 6 and 7 also show how much the derivative
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parameter Q3, and consequently the derivative coefficients
Q2 + 2Q3 and Q3 of (1) affect the wave amplitude: Compar-
ing the plots of Figs. 4 and 5 with those of Figs. 7 and 6,
respectively, it is seen that the wave amplitude increases as
the derivative coefficient Q3 decreases (for Figs. 4 and 5, we
took Q3 = –1 while Q3 = –3 was used for Figs. 6 and 7). It
is also seen from the plots of Figs. 4–7 that the wave ampli-
tude slowly decreases as function of space variable x when
Q3 decreases (compare the plots of rows (b) of Figs. 4 and
5 with those of Figs. 7 and 6, respectively). Finally, a simple
comparison of Figs. 4 and 5 with Figs. 7 and 6, respectively,
shows that the DSW oscillates more as Q3 decreases.

In Figs. 8 and 9 we present the numerical solutions of (1)
obtained with the use of solution (13) for the input signal, but
with different equation parameters. For Fig. 8, we used P = 2,
Q1 = –27, Q2 = –2, and Q3 = 2, while for Fig. 9 we used
P = 1, Q1 = 1.9716 � 10–3, Q2 = 0.85439, and Q3 = –0.3079.
These two sets of equations parameters satisfy condition (14)
and (15) and condition (18) and (19), respectively. Therefore
Figs. 8 and 9 show the wave propagation in modulational
stability region and in modulational instability region, re-
spectively. These two figures show that the wave amplitude
decreases as function of time t (see plots of column (a)) and
increases as function of x (see plots of column (b)) when the
input signal is taken from the second class of dispersive
shock-wave solution (13).

The combined action of dispersion and derivative nonli-
nearity in (1) leads to the generation of an expanding non-
linear oscillatory structure. This fact is confirmed by
numerical plots in Figs. 6–9, which present oscillatory struc-
ture of stable dispersive shock wave propagating in either
the modulational stability region or modulational instability
zone. From these figures, it is seen that dispersive shock
waves of (1) are generated which manifest themselves as un-
dular structures [39].

4. Conclusion
In this work we have studied dispersive shock waves in a

derivative cubic-quintic nonlinear Schrödinger equation
without dissipative term, which is derived in the small-am-
plitude and long-wavelength limit using the standard reduc-
tive perturbation technique and complex expansion, and can
describe wave propagation in nonlinear electrical transmis-
sion lines. Seeking for dispersive shock-wave solutions of
the equation, we found that the derivative nonlinearity terms
in the equation is responsible for dispersive shock-wave
propagation in the network. Using the exact dispersive
shock-wave solutions as input signal, wave propagation in
semi-infinite network has been numerically investigated.
The numerical study shows that dispersive shock waves
manifest themselves as undular structures.
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