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Abstract
In this paper a novel boundary method is proposed for lattice Boltzmann
simulations of electric potential fields with complex boundary shapes and
conditions. A shifted boundary from the physical surface location is employed
in simulations to achieve a better finite-difference approximation of the
potential gradient at the physical surface. Simulations are presented to
demonstrate the accuracy and capability of this method in dealing with complex
surface situations. An example simulation of the electrical double layer and
electro-osmotic flow around a three-dimensional spherical particle is also
presented. These simulated results are compared with analytical predictions
and are found to be in excellent agreement. This method could be useful for
electro-kinetic and colloidal simulations with complex boundaries, and can also
be readily extended to other phenomena and processes, such as heat transfer
and convection-diffusion systems.

PACS numbers: 02.60.Cb, 47.11.−j, 47.57.jd, 47.61.Fg, 68.08.De

(Some figures may appear in colour only in the online journal)

1. Introduction

The lattice Boltzmann method (LBM) has been generally accepted as a useful simulation
method for complex flows [1–3]. By recognizing the mathematical connection between
the propagation-collision particulate dynamics in the lattice Boltzmann algorithm and the
corresponding differential equations from the Chapman–Enskog analysis, LBM models have
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also been developed for various phenomena and processes, including the convection-diffusion
processes, heat transfer, shallow water flows, flows in porous media, electric field and
magnetic field [2]. For example, He and Li [4] have proposed an LBM model for the electric
potential field in electrochemical processes with ion transport considered. In combination
with a multiple-component LBM model, this scheme has also been utilized to study the
electrohydrodynamic drop deformation in an electric field [5]. More extensively, electro-
kinetic flows in microchannels and even porous structures have been investigated by integrating
various LBM models for fluid flows, electric fields, heat transfer and even convection-diffusion
processes [6–8]. When compared with other more traditional numerical methods (for example,
the finite-difference method) for solving partial differential equations, the LBM approach is
advantageous in dealing with complex boundary geometries and could be potentially more
efficient with advanced computational technologies, such as GPU (graphics processing unit)
computing [2, 9–11].

As with other numerical methods, boundary conditions play crucial roles for the simulation
validity and stability. However, unlike the tremendous efforts in developing accurate boundary
treatments for the LBM models of fluid flows [12–15], boundary methods for the LBM models
of electric field have not been addressed adequately. Typical electric field LBM simulations
are performed in regular domains with flat boundaries aligned along the lattice grid lines.
Several studies have considered rough surfaces [8, 16, 17]; however, the rough surfaces were
actually modeled as flat, stair-like patches. In addition, most of the previous studies have only
considered the Dirichlet BCs (with surface potential given), while Neumann (with surface
charge given) and even Robin (with surface charge regulation relationship given) BCs are
frequently encountered in electro-kinetic and colloidal systems [18].

In this paper, we extend an LBM boundary method for fluid flows [14] to simulations
of electric fields with arbitrary boundary shapes. A novel scheme is also proposed to
impose Neumann or Robin BCs of electric potential on curved surfaces by introducing
a shifted boundary. Numerical simulations demonstrate that the boundary treatments have
accurately represented the spatial geometry as well as the surface potential/charge conditions.
Our simulations with different relaxation parameter values suggest that a larger relaxation
parameter is preferable for a faster convergence and a better numerical stability. A three-
dimensional (3D) example calculation is also performed to illustrate the application of our
boundary method for electro-kinetics studies. This study could be useful for LBM simulations
of electric fields in systems with complex surface geometry and surface conditions, including
porous and particulate flows. The method proposed here can also be readily extended to
other LBM formulations for electric fields (three dimension models, multi-relaxation-time
models, etc) as well as other phenomena and processes (convection-diffusion processes, heat
transfer, etc).

2. Method description

2.1. Lattice Boltzmann model for electric potential field

The electric field is governed by the well-known Poisson equation

∇2ψ = −ρe/ε, (1)

where ψ is the electric potential, ρe is the net electric charge density, and ε is the medium
permittivity. Here, to solve this equation, we adopt an LBM algorithm originally proposed for
the convection-diffusion processes for its good numerical accuracy [19]. The Poisson equation
can be considered as a diffusion-convection equation at the steady state and with no flows.
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A lattice distribution function fi is introduced, and its evolution is described by the following
lattice Boltzmann equation

fi(x + ci�t, t + �t) − fi(x, t) = − fi(x, t) − f eq
i (x, t)

τ
+ �tFi + �t2

2
D̄iFi, (2)

where x is the location, τ is a relaxation parameter, and �t is the simulation time step. Fi is
related to the net charge term ρe/ε in equation (1) by

Fi = −ωiαρe/ε, (3)

and the operator D̄i = ∂t +θci ·∇, with θ ∈[0, 1] as a parameter for different difference schemes
[19]. Both the minimum and maximum values of θ (0 and 1) have been tested with diffusion
and convection-diffusion systems, and no significant influence on the solution accuracy is
found [19]. In this work we set θ = 1 for simplicity. For a D2Q9 (2D, 9 lattice velocities)
lattice structure utilized in this work, the lattice velocities are

c0 = (0, 0); (4)

ci = [cos(i − 1)π/2, sin(i − 1)π/2]�x/�t, i = 1 − 4; (5)

ci = [cos(2i − 9)π/4, sin(2i − 9)π/4]�x/�t, i = 5 − 8, (6)

and the lattice weight factors are ω0 = 4/9, ω1−4 = 1/9, and ω5−8 = 1/36. �x is the lattice
grid resolution. The parameter α in equation (3) is given by

α = (2τ − 1)�x2

6�t
. (7)

The electric potential ψ can be calculated from the distribution functions by

ψ =
∑

i

fi (8)

and the equilibrium distribution f eq
i is related to the local potential value ψ via

f eq
i = ωiψ. (9)

Through a Chapman–Enskog analysis, the following differential equation can be derived [19]:
∂ψ

∂t
= α∇2ψ − αρe/ε, (10)

and the solution to the original Poisson equation (1) can be obtained at the steady state of the
simulation when the partial differential term on the left-hand side approaches zero.

2.2. Boundary treatment for arbitrary surface geometry

Recently, Xiong and Zhang have modified the extrapolation method for boundary velocity
by Guo et al [14] to study the momentum diffusion in uniform channel flows [20]. Here,
we follow their modification and apply it to the electric field simulations. Consider a lattice
link connecting a fluid node x f and a solid node xs and intersecting with the boundary at xb

(figure 1). The distribution function f +
i (xs, t), which is leaving the solid node xs after collision

in the ci direction (i = 8 in figure 1) and will arrive at the fluid node x f at next time step, can
be expressed as [14]

f +
i (xs) = f eq

i (xs) +
(

1 − 1

τ

)
f neq
i (xs), (11)

where the equilibrium part is given by

f eq
i (xs) = ωiψ(xs) (12)
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Figure 1. Boundary treatment for general surface geometry. A lattice link (dashed line) intersecting
with the boundary (thick line) at xb connects a fluid node x f and a solid node xs. The next fluid
node x f f may be used if the first fluid node x f is too close to the surface xb. See text for details.

and the non-equilibrium part f neq
i will be discussed soon. Since the solid node xs is outside

of the fluid domain, the potential ψ and distribution functions at this position are in fact only
fictitious values. We assume a linear variation of ψ along the lattice direction (dashed line in
figure 1) and then the unknown ψ(xs) is approximated as

ψ(xs) = 1

�ψ(xb) + � − 1

� ψ(x f ),� � 0.75; (13)

ψ(xs) = 2

� + 1
ψ(xb) + � − 1

� + 1
ψ(x f f ),� < 0.75. (14)

Here � = |x f −xb|/|x f −xs| and x f f is the fluid node on the opposite of x f , i.e., x f f = 2x f −xs

(figure 1). Following the process of Guo et al [14], we estimate the unknown non-equilibrium
distribution f neq

i at the solid node xs as:

f neq
i (xs) = f neq

i (x f ),� � 0.75; (15)

f neq
i (xs) = � f neq

i (x f ) + (1 − �) f neq
i (x f f ),� < 0.75, (16)

with f neq
i (x) = fi(x)− f eq

i (x) as the non-equilibrium part of the density distribution fi. Through
equations (11)–(15), once we have the surface potential ψ(xb), we are able to estimate the
incoming distributions f +

i (xs) across the boundary to the fluid domain, and the collision step
(the right-hand side of equation (2)) at the boundary fluid node x f can be performed.

2.3. Boundary treatment for potential gradient

The boundary method described above requires the surface potential value at xb. For Dirichlet
BCs with surface potential available, the formulation is already complete. However, for
Neumann and Robin BCs with the potential gradient on the surface involved, the surface
potential is not explicitly specified and has to be obtained from the given BCs. A straightforward
approach is to assume a forward finite-difference (FD) relationship from the boundary point
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Figure 2. Boundary treatment for the potential gradient at a surface. (a) For the first-order FD
approximation equation (17), the simulation considers the physical surface location (thick curve)
and the potential value at point x∗ is used to estimate the potential gradient at the boundary point
xb. (b) For the second-order FD approximation equation (22), the simulation considers a shifted
surface (thick curve) of δ/2 from the physical surface location (thin dashed curve), and the potential
value at point x∗ is used to estimate the potential gradient at the boundary point x′

b. In both cases,
the point x∗ locates at a δ-distance from the simulation surface (thick curve) in the normal direction
n. The inset in (a) illustrates the interpolation of potential value at x∗ from the neighboring lattice
nodes via equation (18).

xb to a point in the fluid domain x∗ of a distance δ in the normal direction n to the surface
(figure 2(a)): (

∂ψ

∂n

)
(xb) ≈ ψ(x∗) − ψ(xb)

δ
, (17)

and the potential at x∗ can be estimated via an appropriate interpolation scheme, for example,
for our current D2Q9 lattice structure,

ψ(x∗) ≈
∑4

i=1 Aiψ(xi)

(�x)2
, (18)

with xi the four nearest lattice nodes and Ai the corresponding fractional areas in the lattice
cell (see figure 2(a) inset). As a result, the boundary potential ψ(xb) can be evaluated as

ψ(xb) ≈ ψ(x∗) − δ

(
∂ψ

∂n

)
(xb) (19)

for the Neumann BCs with ∂ψ/∂n available on the surface, and similarly

ψ(xb) ≈ aψ(x∗) − cδ

a − bδ
(20)

for the mixed Robin BCs given by

a
∂ψ

∂n
+ bψ = c, (21)

with a, b and c as prescribed constants or variables (for example, for heterogeneous surfaces
or dynamic charge regulation processes).

The FD approximation in equation (17) is only of the first-order accuracy of δ [21].
To achieve a better accuracy, in general FD methods, a fictitious node on the solid side
of the boundary xb is introduced, and then the discrete FD relationship from the original
differential equation is applied to xb with its neighboring nodes involved [21]. This method
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has a second-order accuracy of δ in estimating the boundary gradient; however, the algorithm
is relatively complicated. Potential values at the locations in the tangential direction (both
sides) are necessary, and it is difficult to be employed for general curved surfaces. Here, in
the simulation, we propose to consider, instead of the real boundary location, a surface shifted
by a distance δ/2 from the real physical surface location into the solid side (figure 2(b)).
The forward FD approximation in equation (17) now can be considered as a central FD
approximation of the potential gradient at x′

b on the physical boundary with a second-order
accuracy of δ: (

∂ψ

∂n

)
(x′

b) ≈ ψ(x∗) − ψ(xb)

δ
, (22)

since x′
b is the midpoint between xb and x∗. The right-hand side terms of equations (17) and

(22) appear identical, and the linear slope between points x∗ and xb is both adopted as an
approximation of the potential gradient on the surface. However, the linear slope in equation
(17) is considered as the gradient at the interval end xb (i.e., the forward FD scheme), while the
slope in equation (22) is considered as the gradient at the center of the interval x′

b = (xb+x∗)/2
(i.e., the central FD scheme). By shifting the physical surface from x′

b into the solid domain by
δ/2 to the computational surface xb, now we have a better estimation of the potential gradient
on the physical boundary location. The corresponding expression for ψ(xb) for the Neumann
BC is almost identical to that in equation (19), i.e.,

ψ(xb) ≈ ψ(x∗) − δ

(
∂ψ

∂n

)
(x′

b); (23)

however, here xb is on the shifted boundary and (∂ψ/∂n)(x′
b) is the potential gradient given at

the physical boundary x′
b. For a mixed Robin BC, the potential value at the physical boundary

x′
b is also needed, and we assume it as the mean value of those at points xb and x′

b, since xb is
the midpoint between them:

ψ(x′
b) ≈ ψ(x∗) + ψ(xb)

2
. (24)

Substituting equations (23) and (24) in the Robin BC equation (21) and solving ψ(xb) yields

ψ(xb) ≈ (2a + bδ)ψ(x∗) − 2cδ

2a − bδ
. (25)

3. Validation and demonstration simulations

3.1. Electric potential distributions between parallel plates

First, we consider a very simple system: two parallel plates with constant surface potentials.
The plates are placed in a 20 × 5 domain along the y-direction. The centerline locates at
x = 10.5, and the surface potentials are ψ1 = 1 and ψ2 = 2 at the left and right walls,
respectively. Periodic BCs are applied at the top and bottom domain boundaries. Here, we
consider no net charge between the plates (i.e., ρe = 0), and the Poisson equation (1) reduces
to a Laplace equation for the electric potential ψ :

∇2ψ = 0. (26)

The analytical solution of this system is

ψ(x) = ψ1 + ψ2 − ψ1

x2 − x1
(x − x1), (27)

where x1 and x2 are the left and right wall locations, respectively.

6
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Figure 3. Electric potential distributions between two parallel plates with different separations
calculated from our boundary treatment (a) and the method in [16] (b). The potential results for
a separation of 6.8 with different relaxation parameter values are also presented in (c) and the
inset there shows the differences between the simulated and analytical values. In these graphs,
the symbols are from LBM simulations, and straight lines are from the analytical solution. Since
the profiles are symmetric about the point of x = 10.5 and ψ = (ψ1 + ψ2)/2 = 1.5, only the
right-top half-parts of the profiles are displayed for clarity. The converging processes at location
x = 11 using different τ values from τ = 0.6, 0.8, 1, 1.5 to 2.0 (in the arrow direction) are displayed
in (d) and its inset shows more details in the early simulation period. The dashed line indicates the
theoretical value ψ = 1.5735 at x = 11.

In our simulations, different plate separations H = x2 − x1 have been considered with
H = 5, 5, 5, 6, 6.5 and 7. The relaxation parameter τ is set to 1 in all simulations in this study,
unless specified otherwise. Simulation results from our method are presented in figure 3(a)
as symbols, with the theoretical solutions from equation (27) displayed as lines. Clearly,
excellent agreement can be observed there for all separations. For comparison, figure 3(b)
displays the simulation results for the same systems with a boundary method utilized in
previous studies for rough surfaces [16]. It is not surprising to see that method is not sensitive
to the boundary location change, since the accurate surface position is not considered in the
boundary formulations there [16]. For separations H = 5.5, 6, 6.5 and 7, the left and right
walls locate, respectively, at (x1, x2) = (7.75, 13.25), (7.5, 13.5), (7.25, 13.75) and (7, 14).
In these cases, the left wall is between 7 (solid node) and 8 (fluid node), while the right wall
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is between 13 (fluid node) and 14 (solid node). The boundary method in [16] cannot tell the
exact boundary location and it always assumes the first solid node along the boundary lattice
link as the surface position. As a result, the left and right walls in these cases with different
separations are all assumed as at (x1, x2) = (7, 14). Clearly, this is only true for the case with
H = 7. For the case with separation H = 5, the left wall locates at x1 = 8 and right wall is at
x2 = 13. They are exactly at the solid node locations, and the method in [16] yields correct
results again.

For the LBM model for flows with a single relaxation parameter, it has been observed
that the relaxation parameter τ can induce artificial slip over boundaries. Here we examine the
τ -effect on the calculated electric field, and the simulation results of a separation of H = 6.8
with τ = 0.6, 0.8, 1, 1.5 and 2 are displayed in figure 3(c) with different symbols. We find that
the results are exactly identical to each other and the symbols overlap, all agreeing excellently
with the analytical prediction. This is even more evident by looking at the differences between
the simulated and analytical potential distributions in the inset of figure 3(c). Here, symbols
with different shapes have been utilized for different τ values; however, they completely
overlap on top of each other, indicating that τ has no influence on the simulated potential
field. The tiny difference values (∼10−12) are mainly from the inevitable computer round-off
errors. However, the relaxation parameter τ indeed participates in the computation in equation
(2) and it is involved in the governing equation equation (10) via equation (7). According
to equation (10), the parameter α, and therefore the relaxation parameter τ , is related to the
temporal potential variation. When using such an LBM method to solve the electric potential
field, we are only interested in the solution at the steady state when ∂ψ/∂t = 0. We then look
at the time evolution of the potential value at a particular position x = 11 for the separation
H = 6.8 (left wall x1 = 7.1; right wall x2 = 13.9). The simulations start with an initial potential
distribution as ψ = 1. Figure 3(d) shows how the potential value at x = 11 approaches the
theoretical value 1.5735 (dashed line) as simulations process, with the inset there displaying
the early simulation period. It take a much longer simulation time for the simulation with
a low τ value to reach the steady state than that with a higher τ value, and even numerical
oscillations could occur at very low τ values. The faster converging speed associated with a
higher τ value is also consistent to equations (10) and (7): a higher τ value yields a larger α,
which in turn implies a faster change in ψ . The results in figure 3(d) suggest that a higher τ

value is preferable in simulations for fast convergence speed and good numerical stability.

3.2. Electric potential between coaxial circular surfaces

Next, to examine the performance of our method for more complex boundary shapes and
conditions, we consider the electric field between two coaxial circular surfaces with inner and
outer radii R1 and R2, respectively. With no net charge, the general solution to the Laplace
equation (26) is given as

ψ(r) = C1 ln r + C2, (28)

where the constants C1 and C2 can be determined by BCs on the surfaces. Three boundary
situations are investigated in this section.

(1) Case DD: Dirichlet BCs on both surfaces with ψ(R1) = ψ1 and ψ(R2) = ψ2.
(2) Case DN: Dirichlet BC on the inner surface with ψ(R1) = ψ1, and Neumann BC on the

outer surface with ∂ψ

∂n (R2) = ψ ′
2.

(3) Case RD: Robin BC on the inner surface as given in equation (21), and Dirichlet BC on
the outer surface with ψ(R2) = ψ2.
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Figure 4. Electric potential distributions between two coaxial circular surfaces of R1 = 15 and
R2 = 30 with different boundary situations: (a) case DD, (b) case DN and (c) case RD. The symbols
are LBM simulated data, and the red dashed curves are the theoretical solutions. In (b) and (c), the
black squares are results obtained by using the first-order FD scheme, and the blue circles are from
the second-order FD approximation. The relative error for each case is also provided in the legend
text. More details can be seen in the inset graphs.

The corresponding exact solutions for these cases are:

ψ(r) = ψ1 + (ψ2 − ψ1)
ln(r/R1)

ln(R2/R1)
for case DD, (29)

ψ(r) = ψ1 + R2ψ
′
2 ln(r/R1) for case DN, (30)

and

ψ(r) = ψ2 + bψ2 − c

b ln(R2/R1) − a/R1
ln(r/R2) for case RD. (31)

In our first group of simulations, we set R1 = 15 and R2 = 30 for all the three cases. The
BC parameters are: ψ1 = 1.5 and ψ2 = 1 for case DD; ψ1 = 1.5 and ψ ′

2 = 0.025 for case
DN; and a = 18, b = 0.5, c = −0.1 in equation (21) on the inner surface and ψ2 = 1 on the
outer surface for case RD. The domain size is 101×101 and the surfaces are put at the center
of the domain. For cases DN and RD, both the first-order and second-order FD schemes for
the boundary gradient have been considered with δ = 1.5, and the effect of different δ values
will be examined later. The relative error is defined as

E2 =
{∑

[ψLBM(x) − ψtheory(x)]2∑
[ψtheory(x)]2

}1/2

(32)

to quantify the simulation deviation from the analytical solution. Here, ψLBM(x) and ψtheory(x)

are, respectively, the calculated and theoretical potential values at the lattice node x, and both
summations are taken over all lattice nodes between the two circular surfaces. Simulation
results for these systems are plotted in figure 4 with relative errors also provided in the graph
legends. First of all, we see the simulation data symbols for each case exhibit a clear trend
instead of scatters. This indicates that our boundary method can produce a good isotropy in
different lattice directions and boundary orientations, which is a fundamental concern in the
LBM methods. In general, the results for case DD and cases DN and RD using the second-order
FD schemes (blue circles) agree well with theory (red dashed lines). The lowest relative error

9



J. Phys. A: Math. Theor. 46 (2013) 475501 O Oulaid et al

is found for case DD with the Dirichlet BCs on both surfaces, where no FD approximation
is involved. The relative error increases when an FD scheme is employed, and it is smaller
when the second-order scheme is adopted (blue circles versus black squares). It is also evident
in figures 4(b) and (c) (see the inset graphs) that the major deviation from analytical solution
occurs near the surface where the potential gradient is estimated by the FD schemes. In
addition, for the same FD scheme, the relative error in case RD is slightly larger than that
in case DN, since the potential gradient approximation is conducted near the inner surface
with a higher curvature (less flat) in case RD.

In the above simulations, the value of δ is set as 1.5. Intuitively, one will anticipate a better
numerical accuracy with a smaller δ distance, over which the FD approximation is performed.
However, too small a δ value may result in an interpolation point x∗ too close to the boundary
with some of its neighboring lattice nodes xi even in the solid domain (see figure 2(a) inset).
This situation should be avoided since it will damage the correct interpolation of ψ(x∗) via
equation (18). For flat surfaces, the low limit of δ is

√
2�x, the diagonal length of the square

lattice cell. For curved surfaces, this limit value usually would be larger, depending on the
particular boundary shape and location. For our simulations here, δ = 1.5 is good enough to
avoid any solid nodes being involved in the interpolation. Nevertheless, it would be interesting
to examine the δ effect on the simulation results. Here, in addition to the results from δ = 1.5
in figures 4(b) and (c), we re-do these simulations with δ = 2.0 and 2.5, for both the cases
DN and RD and using both the first-order and second-order FD approximations. These results
are presented in figure 5 with the relative errors provided in the legend texts. When the
first-order FD approximation is employed, we indeed see that the numerical error increases
with δ, approximately linearly (figures 5(a) and (c)). This confirms our initial intuition and
implies that the relatively larger errors are mainly from the less accurate FD evaluations. On
the other hand, when the second-order FD approximation is adopted, the numerical error is
much less sensitive to the δ change. It actually decreases slightly with the increase in δ for
the DN case (figure 5(b)), and the E2 ∼ δ relationship is even not monotonic for the case RD
(figure 5(d)). One fact we should be aware of is that, with the second-order FD scheme, the
physical boundary location has shifted by a δ/2 distance toward the solid domain (figure 2(b)).
When a larger δ is employed, the boundary treatment is implemented at a location farther
away from the physical boundary, and the regular LBM calculation is less disturbed near the
physical boundary. This is helpful to reduce the numerical errors calculated over the physical
domain only up to the physical boundary. The insensitive response of relative errors might be a
compromise between the counter-effects from the decreasing FD accuracy and the increasing
simulation accuracy as δ increases. Based on these simulations, we will only consider the
second-order FD scheme with δ = 1.5 in the next simulations.

Furthermore, the dependence of relative error on the grid resolution �x is also examined
for cases DD and DN by varying the outer radius R2 with the radius ratio R1/R2 = 1/2 kept
constant. For the case DD, the surface potentials do not change with the system size (i.e.,
ψ1 = 1.5 and ψ2 = 1). For cases DN, we hold the surface potential on the inner surface
constant with ψ1 = 1.5 but vary the potential gradient on the outer surface according to
ψ ′

2 = 0.025R2/30, such that the resulting surface potential on the outer surface does not
change with the system size. The relative error changes with the outer radius R2 are plotted in
figure 6 in logarithmic scales. For the same size, the relative error for the case DN is always
larger than that for the case DD. When the radii change, approximately linear trends are
observed, and the negative slopes from linear fittings are 1.986 and 1.352, respectively, for the
cases DD and DN. For the case DD with surface potential directly available and no further FD
schemes involved, our boundary method has preserved well the basic second-order accuracy
of the LBM algorithm [19]. The larger errors and lower accuracy order for the case DN are due
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Figure 5. Effect of the FD distance δ on simulation accuracy for cases DN (a) and (b) and RD (c)
and (d) with the first-order (a) and (c) and second-order (b) and (d) FD schemes. The symbols are
LBM simulated data (blue circles for δ = 1.5, green squares for δ = 2.0, and black triangles for
δ = 2.5), and the red dashed curves are the theoretical solutions. The relative error for each case
is also provided in the legend text. More details can be seen in the inset graphs.

to the necessary FD approximation on the outer surface via equation (22). It should be noted
that although the FD scheme equation (22) has a second-order accuracy of the FD length δ, the
boundary potential value required in the LBM calculation is still an approximation from the
given potential gradient at boundary. This inaccuracy in the input boundary value will certainly
downgrade the overall simulation accuracy, both in error magnitude and accuracy order. As
shown in a recent study, the overall LBM simulation accuracy is a complex phenomenon
and several factors (including the LBM algorithm, boundary conditions, systems simulated,
and even the relative error definition) play roles [22]. Similar reduced accuracy has also been
reported in previous studies, for example, when combining the LBM method for flows with
the FD method for the Nernst–Planck and Poisson equations [23].

3.3. Example application in electro-osmotic flows

So far our simulations have not considered the net charge density term in the Poisson equation,
and the system geometry is relatively simple. Finally, as an example to illustrate the usefulness
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Figure 6. Relative errors between the simulated and theoretical potential distributions for cases
DD (circles) and DN (squares) with different outer radius R2. Linear fittings in this logarithmic
graph for the symbols are also displayed as straight lines.

of our model in electro-kinetic microfluidics, we apply our method to simulate the electric
potential distribution around a charged spherical particle immersed in an electrolyte solution.
The particle has a radius of R and a constant potential ψ0 on the surface. Near the charged
surfaces, ions in the electrolyte solution will be redistributed and the electrical double layer
(EDL) will be established. The ion charge density can be related to the local potential via the
Boltzmann distribution,

ρi = ρ0
i e−zieψ/kBT (33)

and the Poisson equation is then re-written to the classical Poisson–Boltzmann equation [18]

∇2ψ =
∑

i zieρi

ε
. (34)

Here ρi is the density of ion i, of which the valency is zi and the bulk density with no electric
potential is ρ0

i . e is the electron charge, kB is the Boltzmann constant and T is the absolute
temperature. For surfaces with low surface potentials, the Debye–Huckel approximation [18]
can be applied and the Poisson–Boltzmann equation can be linearized to

∇2ψ = κ2ψ, (35)

where

κ =
√∑

i z2
i e2ρ0

i

εkBT
(36)

and its reciprocal κ−1, the so-called Debye length, is usually used as a measure of the EDL
thickness. The solution of this linearized Poisson–Boltzmann equation around a spherical
particle with thin EDL layers (i.e., κR 
 1) is given as

ψ(r) = ψ0
R

r
e−κ(r−R), (37)

where r is the distance to the sphere center. We use ψ0 = 1 and κ = 0.2 in our simulation.
The particle has a radius of R = 30, and its center (xc, yc, zc) locates at the center of
the 101×101×101 cubic domain. Periodic boundary conditions are applied in all the three
directions, and hence the simulated system actually represents a cubic array of spheres
uniformly distributed in space, with a center-to-center distance of 101 in each direction.
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(a)
(b)

(c) (d )

Figure 7. The electric potential distribution (a) and (b) and electro-osmotic flow (c) and (d) around
the spherical particle in the y = yc plane. The analytical solution of electric potential (red curve) is
compared to that from our LBM simulation (blue circles) in (b), and its inset displays the potential
deviations near the particle surface. See text for detailed discussions.

The algorithm and boundary method described in previous sections have also been extended
to the D3Q19 (three-dimensional and 19-velocity) lattice model to simulate this 3D system.
The calculated potential distribution at the y = yc plane is presented in figure 7(a). For a more
quantitative examination, in figure 7(b), we also plot the electrical potential ψ as a function
of the distance r to the particle center. The blue circles are from our LBM calculation and
the red curve is the analytical solution according to equation (37). Good agreement can be
observed between them, and the few deviations near the particle surface are due to the large
potential gradient as well as the particular assumption of thin EDL κR 
 1 (κR = 6 in our
system) in the theoretical solution equation (37). The distribution appears circularly symmetric
in figure 7(a), and this is confirmed by the fact that all the simulated ψ ∼ r data points fall
approximately on a single curve in figure 7(b). Again this shows that the system isotropy
(since the EDL thickness is much smaller than the gap distance between surfaces) has been
well preserved.

When an external electric field is applied, an electric force Fe will be generated in
the electrolyte solution near the surface due to the non-zero net charge in that region, and
this electrostatic force can thus induce fluid flows along the electric field direction. This
phenomenon is called the electro-osmosis and such flows are called the electro-osmotic flows.
In addition to the Poisson–Boltzmann equation for the electric field, the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (38)
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and Navier–Stokes equation with the electric force Fe as a forcing term
∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + μ

ρ
∇2u + Fe

ρ
(39)

for fluid mechanics also need to be solved. Here u is the flow velocity, ρ is the fluid density,
P is the pressure and μ is the fluid viscosity. Here the classic single-relaxation-time (SRT)
LBM model with the improved bounce-back boundary method for flow fields [15] has been
utilized. To simulate the electro-osmotic flow through the 3D sphere array studied here, we
calculate the net charge density ρe from the electric potential field ψ obtained in our above
calculation according to the Debye–Huckel approximation ρe = −εκ2ψ . The electric force
on fluid Fe can be calculated from ρe by multiplying it with the applied electric field strength
E0, i.e., Fe = E0ρe = −E0εκ

2ψ . The resultant electric force is then implemented in the LBM
flow simulation to drive the fluid flow passing over the sphere particle. In this study, we have
E0ε = −0.01, and the electric field E0 is considered in the x-direction.

Figure 7(c) displays the electro-osmotic flow streamlines around the particle in the y = yc

plane, and the background color indicates the velocity magnitude (red for large and blue
for small magnitudes). The flow pattern is symmetric about both x = xc and z = zc due to
the symmetric system geometry and the creeping electro-osmotic flow. The no-slip boundary
condition on the circular particle surface has been well preserved as indicated by the flow
pattern and the dark blue color near the surface. Also, the streamwise velocity component u in
the x-direction of this flow at x = 50 (particle center), 75 and 100 (right boundary) are plotted
in figure 7(d). Only the upper half (z > zc = 50) is shown for these symmetric curves. At
x = 50 (black solid line), the velocity increases from 0 at the surface to a plateau value near
the top boundary. This is similar to the typical plug-like velocity profile of electro-osmotic
flows in straight channels, since the electric force only exists in the thin EDL near the surface.
Away from this particular location, the cross-sectional area for the flow passage increases,
and therefore the flow velocity decreases due to the mass conservation. This simulation
demonstrates the potential usefulness of our method for electro-kinetic flows in porous and
particulate systems.

4. Summary

We have proposed to extend the extrapolation boundary method for LBM flow simulations to
electric field simulations, and a novel, accurate method to approximate the potential gradient
at surfaces with Neumann and Robin BCs by using a shifted boundary. Simulations have also
been performed to examine our boundary methods in terms of spatial accuracy, ability to
deal with various boundary situations, relaxation parameter effect and the accuracy-resolution
relationship. Although the relaxation parameter has no impact on final potential solution at
the steady state, a larger relaxation parameter (e.g., τ = 2) provides a faster convergence
and a better numerical stability. A 3D example simulation of the EDL structure near charged
surfaces in electrolyte solutions and the electro-osmotic flow induced by an external electric
field has also been presented. The sphere array system simulated here can be considered as a
representative of particulate and porous flow systems, and it illustrates the potential usefulness
of our boundary model in such applications. Comparisons with theoretical predictions show
excellent agreement for all simulations, and our methods therefore could be useful for
future electro-kinetic simulations with complex boundary geometries (rough surfaces, porous
materials, colloid suspensions, etc) and/or various BC situations (constant-potential, constant-
charge, dynamic charge regulation, heterogeneous surfaces, etc).

Although all method descriptions and most simulations here are for a SRT LBM scheme
with the simple D2Q9 lattice structure, there are no technical difficulties in extending them
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to other LBM algorithms (for example, multiple-relaxation-parameter models) and lattice
structures. Furthermore, since the LBM simulation here is actually solving a convection-
diffusion equation, the boundary treatments presented in this work can also be applied to LBM
simulations for other processes and phenomena that can be described by similar differential
equations, including heat transfer and convection-diffusion processes.
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