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Abstract
YbRh2Si2 is a model system for quantum criticality. In particular, Hall effect measurements
helped identify the unconventional nature of its quantum critical point. Here, we present a
high-resolution study of the Hall effect and magnetoresistivity on samples of different quality.
We find a robust crossover on top of a sample dependent linear background contribution. Our
detailed analysis provides a complete characterization of the crossover in terms of its position,
width, and height. Importantly, we find in the extrapolation to zero temperature a discontinuity
of the Hall coefficient occurring at the quantum critical point for all samples. In particular, the
height of the jump in the Hall coefficient remains finite in the limit of zero temperature. Hence,
our data solidify the conclusion of a collapsing Fermi surface. Finally, we contrast our results to
the smooth Hall effect evolution seen in chromium, the prototype system for a
spin-density-wave quantum critical point.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A quantum critical point (QCP) marks a continuous phase
transition at zero temperature. A non-thermal parameter, such
as pressure or magnetic field, is used to tune a material from
one state to another. Experimentally, QCPs are often accessed
by suppressing a finite temperature phase transition. At zero
temperature, quantum effects become dominant. Surprisingly,
the quantum fluctuations between the two incompatible ground
states lead to a rich variety of phenomena even at finite
temperatures. In fact, quantum critical phenomena are believed
to be relevant for a large variety of correlated materials, such
as quantum magnets, heavy-fermion materials, and even high-
temperature superconductors [1].

5 Present address: Cavendish Laboratory, University of Cambridge,
JJ Thomson Avenue, Cambridge, CB3 0HE, UK.

Heavy-fermion materials play a major role in the study
of quantum critical phenomena [2]. These intermetallic
compounds appear to be model systems, because two
competing interactions leading to two different ground states
may be shifted relative to each other allowing one to tune
the material from one ground state to another. Both,
the Kondo interaction and the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction arise from the interplay between
conduction electrons and magnetic f electrons, the latter
being provided by rare earth elements. The Kondo effect
marks the screening of f electrons by conduction electrons,
leading to composite quasiparticles with largely enhanced
effective masses. These quasiparticles arise in the Kondo-
screened spin-singlet ground state. Whereas the Kondo effect
favors a paramagnetic Landau–Fermi-liquid (LFL) ground
state, the RKKY interaction mediates a magnetic exchange
between f electrons and, hence, favors long range magnetic
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order. The different dependences of the Kondo effect and
the RKKY interaction on the coupling strength of conduction
electrons and f electrons provides the basis for tuning heavy-
fermion materials to quantum criticality in a controlled fashion:
pressure for instance increases the hybridization of conduction
electrons and f moments, hence, increasing the Kondo coupling
strength. The Kondo effect dominates in the strong coupling
regime, whereas the RKKY interaction dominates in the weak
coupling regime. At an intermediate coupling strength, both
balance each other such that a magnetic transition arising at
weak coupling due to the RKKY interaction is suppressed to
zero temperature, giving rise to the QCP.

The conventional description of a QCP is based on the
Ginzburg–Landau concept of order parameter fluctuations.
It generalizes its counterpart for classical critical points by
incorporating the quantum fluctuations. For the metallic
heavy-fermion systems the magnetism is treated itinerantly
as a spin-density-wave (SDW) [3–5]. Within this picture,
the composite quasiparticles are assumed to stay intact at
the QCP: they form both the magnetically ordered ground
state on one side of the QCP as well as the paramagnetic
heavy Fermi liquid on the other side. In addition, the fact
that the QCP corresponds to a Gaussian fixed point implies
that the fluctuations violate energy over temperature, E/T ,
scaling [6]. In disagreement with this fundamental property of
a conventional QCP, the magnetic fluctuations in CeCu5.9Au0.1

were observed to obey an E/T scaling [7]. This stimulated
new theoretical approaches.

In unconventional theories of the QCP additional quantum
modes are assumed to become critical. These additional
critical modes may lead to an interacting fixed point for which
the fluctuations satisfy E/T scaling in contrast to the SDW
scenario, hence, explaining the observations in CeCu5.9Au0.1.
For the case of the heavy-fermion materials these additional
modes are associated with the breakdown of the Kondo
effect [8–10]. As a consequence, the composite quasiparticles
are expected to disintegrate at the QCP, leaving the f electrons
decoupled from the conduction electron sea on the weak
coupling side. Consequently, the Fermi surface is expected to
change from ‘large’, with the f states incorporated on the strong
coupling side, to ‘small’, with the f states decoupled from the
conduction electron sea on the weak coupling side. As such
a Fermi surface collapse is not expected in the conventional
scenario, measurements of the Fermi surface evolution were
suggested to unveil the nature of a particular heavy-fermion
QCP [8, 9]. In fact, Hall effect measurements gave indications
of a discontinuous evolution across the QCP in YbRh2Si2 [11].
Here, a crossover of the Hall coefficient is observed at finite
temperatures. As the temperature is lowered this crossover
sharpens. With the width of the crossover vanishing in the
extrapolation to zero temperature an abrupt jump of the Hall
coefficient at the QCP is suggested. Consequently, these
measurements indicate a reconstruction of the Fermi surface
at the QCP. However, this Hall effect study was discussed
controversially, particularly in view of sample dependences in
the low temperature Hall coefficient [12]. The Hall coefficient
is extremely sensitive to small changes in the relative scattering
rates of the two dominant bands, which almost compensate

each other [13]. These changes in the scattering rates seem
to originate from tiny variations in the chemical composition,
as they only affect samples from different batches.

In order to identify the influence of the sample
dependences on the behavior at the QCP, a high-resolution
Hall effect study on different samples of YbRh2Si2 was
carried out [14]. This study revealed the crossover in the
Hall coefficient to be robust against sample dependences.
Moreover, the results gave indications for the electronic
fluctuations to obey E/T scaling. Consequently, YbRh2Si2
seems to be the first material in which both the fundamental
signatures of a Kondo breakdown QCP are seen, i.e., the
Fermi surface reconstruction and E/T scaling. Given this key
role of YbRh2Si2 for the understanding of quantum critical
phenomena, it is important to carefully scrutinize the picture
of a Fermi surface reconstruction.

Here, we present extended measurements and a detailed
analysis of the magnetotransport properties across the QCP
surveying different samples. Our detailed analysis of the data
at very low temperatures allows one to establish a proper
extrapolation of the characteristics of the Hall coefficient to
zero temperature. We show that these characteristics are
distinct from the theoretical predictions for a SDW QCP and
the experimental observations in the canonical SDW QCP
system, chromium.

2. Experimental setup

Pronounced non-Fermi-liquid behavior of YbRh2Si2, such as a
linear temperature dependence of the resistivity and a divergent
specific heat, were interpreted in terms of its proximity to
a QCP. In zero-field, YbRh2Si2 orders antiferromagnetically
below the Néel temperature TN = 70 mK [15]. The
application of a small magnetic field of Bc2 = 60 mT applied
perpendicular to the crystallographic c direction, or of Bc1 =
660 mT applied along the crystallographic c axis, suppresses
the magnetic order to zero temperature, thus accessing the field
induced QCP [16]. For fields exceeding the critical field a
paramagnetic LFL ground state is observed.

Single crystals of YbRh2Si2 were grown in indium flux,
as described earlier [15]. By optimizing the growth procedure,
the quality of the crystals was advanced. Two different samples
were chosen: sample 1 possessing a residual resistivity ratio
RRR = 70 was taken from [11]. Sample 2 with RRR = 120
was taken from the highest quality batch available.

We utilize three different magnetotransport techniques
to study the Fermi surface evolution of YbRh2Si2. First,
the crossed-field Hall effect geometry is used to measure
the linear-response Hall coefficient. Here, two different
magnetic fields allow one to disentangle the two responses
to the magnetic field (cf inset in figure 1): a small field B1

oriented along the c direction, and perpendicular to the current
I , is used to induce a transverse Hall voltage. A second
field B2 within the ab plane and parallel to the current is
used to tune the sample across the QCP. The tuning effect
of B1 is negligible thanks to the magnetic anisotropy, seen
for instance in the ratio of the critical fields. The Hall
resistivity ρH is calculated as the antisymmetric part of the
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Figure 1. Exemplary Hall resistivity isotherms for sample 2. Solid
lines mark linear fits to the data, with the slope of these lines
corresponding to the linear-response Hall coefficient RH. The inset
sketches the crossed-field Hall effect setup.

transverse voltage Vy with respect to B1 in order to separate
magnetoresistance contributions, ρH(B1, B2) = t/(2I ) ×
[Vy(B1, B2)−Vy(−B1, B2)]. The Hall resistivity obeys a linear
field dependence, as displayed in figure 1. The initial-slope
Hall coefficient RH was subsequently numerically extracted as
the slope of linear fits to the Hall resistivity

RH(B2) ≡ lim
B1→0

ρH(B1, B2)

B1
(1)

at fixed tuning field B2 for Hall fields B1 � 0.4 T.
Consequently, the decrease of the slope in ρH(B1) as the field
B2 is increased, as seen in figure 1, corresponds to a decrease
of the Hall coefficient. Second, the results are corroborated
by measurements in the standard single-field setup. Here, only
the magnetic field B1 (parallel to c) is used to perform both
tasks of tuning the sample and generating the Hall response.
By analyzing the differential Hall coefficient

R̃H(B1) = ∂ρH(B1, 0)

∂ B1
(2)

we subsequently disentangle these two effects. Third,
longitudinal magnetoresistivity with current flowing in the ab
plane was monitored over an extended temperature range and
provides increased statistics.

For the electrical transport measurements, rectangular
platelets with a thickness t between 25 and 80 μm were
used. Spot-welded gold wires provided contacts with
resistances well below 1 �. An alternating current I up to
100 μA flowed within the ab plane. Voltages arising from
magnetoresistance and the Hall effect were amplified with
low temperature transformers and subsequently monitored via
a standard lock-in technique. For YbRh2Si2, the anomalous
contributions to the Hall coefficient [17] are negligible at low
temperatures [18, 14].

3. Results and discussion

Low temperature isotherms of the linear-response Hall
coefficient as a function of B2 are displayed in figure 2.
Both samples show a similar qualitative behavior consisting
of two features: at small fields, the Hall coefficient decreases
in a pronounced crossover, and at higher fields and low
temperatures this crossover is succeeded by a linear increase.
The crossover was already earlier recognized as being part of
the intrinsic quantum critical behavior [11], whereas the linear
increase is only apparent in the extended field and temperature
range studied here. Both the crossover and the linear high-
field behavior obey temperature dependences: the crossover
in RH(B2) is shifted towards smaller fields approaching the
QCP and becomes sharper as the temperature is lowered.
Hence, the linear behavior is revealed over an increasing
field range as the temperature is lowered. This suggests that
the linear behavior represents a background contribution that
presumably originates from Zeeman splitting. The slope of
this background contribution is reduced above 100 mK and
becomes slightly negative for sample 1 at 300 mK. Despite
the robust characteristics of the curves, the absolute values
of the Hall coefficient differ for the two samples. This is in
accordance to the above mentioned sample dependences.

Differential Hall coefficient and magnetoresistivity are
depicted in figure 3 for both samples. As in the linear-

Figure 2. Field dependence of the initial-slope Hall coefficient, RH(B2), for sample 1 (a) and 2 (b). Sample 1 was taken from [11]. Solid lines
represent fits of equation (3) to the data.
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Figure 3. Differential Hall coefficient (left) and magnetoresistivity (right) isotherms of sample 1 (upper panels) and sample 2 (lower panels).
Solid lines mark fits of equation (3) to the data. In the case of the magnetoresistivity the linear term (m = 0) was omitted, as it better describes
the data.

response Hall coefficient, we can identify a crossover and a
linear background contribution. Again, the crossover shifts
to smaller fields and becomes sharper as the temperature is
lowered. Also, a decrease of the crossover height is seen
in both differential Hall coefficient and magnetoresistivity.
Nevertheless, the absolute height of the crossover in the
differential Hall coefficient is larger compared to the linear-
response Hall coefficient. Finally, the signatures are seen in
both samples, with the absolute values varying according to
the sample dependences of the Hall coefficient and the different
residual resistivity of the samples, respectively.

The presence of the crossover in both samples and in
various transport properties suggests that this signature of the
QCP is not affected by sample dependences. Rather, the
sample dependences seem to be exclusively related to the
background contribution [13]. In order to check this we
shall quantitatively analyze the crossover for its position and
width. In addition, our high-resolution study over an extended
temperature range reveals the height of the crossover to become
smaller with decreasing temperature. This motivates a careful
analysis of the limiting parameters of the Hall crossover in
order to check if the change of the Hall coefficient is retained at
the QCP, i.e., in the extrapolation to zero temperature. In order
to scrutinize this, we analyze the Hall coefficient by fitting the

empirical crossover function

RH(B2) = R∞
H + m B2 − R∞

H − R0
H

1 + (B2/B0)p
(3)

to the data. Here, R0
H and R∞

H parametrize the zero-field and
high-field value, respectively. The position of the crossover is
represented by B0 and its sharpness is determined by p. The
superposed linear term m B2 is added to reflect the background
behavior. Analogous fitting procedures lead to the zero-
field and high-field values of the single-field Hall experiment
(R̃0

H and R̃∞
H ) and of the magnetoresistivity experiment (ρ0

and ρ∞), respectively. Equation (3) allows us to analyze
the characteristics of the crossover separately from the linear
background.

First, we examine the position of the crossover. Figure 4
depicts the crossover field B0 extracted from the three
experiments and for both samples in the low temperature–
magnetic field phase diagram. We note that in the case
of the single-field Hall experiment, the magnetic anisotropy
ratio Bc2/Bc1 = 1/11 is used to convert the results to an
equivalent B2 scale. For both samples and the complete set
of experiments, B0 is seen to shift to lower fields as the
temperature is decreased. In the limit of zero temperature it
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Figure 4. Position of the crossover fields from the Hall effect
RH(B2) and R̃H(B1) and magnetoresistivity ρ(B2) in the magnetic
field–temperature phase diagram (cf figures 2 and 3). Single-field
results are scaled by Bc2/Bc1 = 1/11, accounting for the magnetic
anisotropy of YbRh2Si2 [16]. The inset magnifies the low
temperature range. Dotted and dashed lines respectively represent the
boundary of the magnetically ordered state and the boundary of the
regime with LFL behavior as deduced from resistivity
measurements [16].

extrapolates to 60 mT, i.e., to the QCP as illustrated in the
inset of figure 4. This emphasizes the robust assignment of
the crossover to quantum criticality.

Second, in order to quantify the width of the crossover
the derivative of the fitted function is analyzed. The crossover
in RH(B2) corresponds to a (negative) peak in the derivative
dRH/dB2 and analogously in dR̃H/dB1 and dρ/dB2. We
examine the full width at half maximum (FWHM) of this peak
as plotted in figure 5. The analysis reveals that also the width
of the crossover is unaffected by the sample dependences:
within the experimental resolution the data of the two samples
match. Moreover, the different experiments yield identical
results within experimental accuracy. The FWHM decreases
as the temperature is lowered. Importantly, FWHM(T ) is best
described by a proportionality to temperature extrapolating to
zero for T = 0. In fact, no signature is seen at the Néel
temperature, in contrast to the height of the crossover discussed
below. At temperatures below 30 mK the crossed-field data
show a slight trend towards saturation, which is however absent
in the single-field data. This might indicate that the classical
fluctuations play a role at these lowest temperatures where
the Hall crossover significantly interferes with the classical
transition at TN. The difference between the crossed-field and
single-field results might arise from differently strong classical
fluctuations. They are presumably strongly enhanced for the
crossed-field orientation with the field in the magnetic easy
plane, as here the magnetization is one order of magnitude
larger compared to the single-field orientation. Finally, we
note that within experimental accuracy the data are well
described over the complete range 18 mK � T � 1 K by
a proportionality to temperature. This implies a vanishing
width at T → 0 meaning that the crossover becomes infinitely

Figure 5. Full width at half maximum (FWHM) of the crossovers in
the Hall coefficient and magnetoresistivity. Single-field results are
scaled by Bc2/Bc1 = 1/11. The FWHM was extracted from the
derivative of equation (3) fitted to the linear-response Hall coefficient
RH(B2), differential Hall coefficient R̃H(B1), and magnetoresistivity
ρ(B2) (cf figures 2 and 3). The solid line represents a linear fit to all
data sets. Within the error this line intersects the origin. The inset
magnifies data at the lowest temperatures. The arrow indicates the
Néel temperature.

sharp in the zero temperature limit, with such an abrupt change
suggesting a sudden reconstruction of the Fermi surface at the
QCP.

Finally, for a full characterization of the crossover in
the Hall coefficient we examine its height. The limiting
values of the crossover in the linear-response Hall coefficient,
i.e., R0

H and R∞
H are plotted in figure 6(a). For a proper

evaluation we first analyze the low temperature behavior of
the measured initial-slope Hall coefficient in zero tuning field,
i.e., RH (T, B2 = 0). The representation against T 2 in
figure 6(a) reveals a quadratic temperature dependence, setting
in just below the Néel temperature, as previously observed for
the electrical resistivity [16]. Such a quadratic temperature
dependence of the Hall coefficient is likely to arise from finite
temperature corrections within a Fermi-liquid description. An
enhancement, as for the corresponding term in the resistivity,
might render this term observable in heavy-fermion materials.
In fact, we observe a quadratic temperature dependence of
RH not only in the magnetically ordered phase, but also
in the field induced Fermi-liquid state of YbRh2Si2 and in
the paramagnetic ground state of the heavy-fermion material
YbIr2Si2, as shown in figures 6(d) and (e). The quadratic form
of RH(T ) is limited to the regime where also resistivity obeys
a quadratic temperature dependence.

As a next step we compare the zero-field Hall coefficient
R0

H extracted from the analysis of the crossover with the
truly measured zero-field (B2 = 0) Hall coefficient. This
comparison is non-trivial, as R0

H was allowed to vary during the
fitting procedure. Nevertheless, we find a perfect agreement,
proving the consistency of our analysis. Consequently, we
can utilize the power law found for RH(T ) to extrapolate R0

H
to zero temperature. This is highlighted by the solid lines in
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Figure 6. Low temperature behavior of the Hall coefficient and resistivity. (a) The initial-slope Hall coefficient is plotted against temperature
squared. The zero-field Hall coefficient R0

H and high-field Hall coefficient R∞
H extracted from the fits to the field dependence of the

linear-response Hall coefficient are included (cf figure 2). (b) Resistivity of both YbRh2Si2 samples, together with the zero-field value ρ0 and
ρ∞ extracted from the fits to the magnetoresistivity (figures 3(c) and (d)). (c) Analog parameter of the differential Hall coefficient: R̃0

H and
R̃∞

H are plotted against T 2, together with the initial-slope Hall coefficient for both samples. Arrows in (a)–(c) mark the Néel temperature.
(d) Initial-slope Hall coefficient of YbRh2Si2 against T 2 measured at a constant tuning field B2 = 4 T, i.e., in the field induced Fermi-liquid
state. (e) Hall coefficient of YbIr2Si2 against T 2. Arrows in (d) and (e) mark the Fermi-liquid temperature below which the resistivity obeys a
quadratic temperature dependence [2, 19]. Solid lines in (a)–(e) represent fits of a quadratic temperature dependence to the data. Dashed lines
are a guide to the eye.

figure 6(a). The evolution of R0
H is to be compared with that

of the high-field value R∞
H . A distinct power law cannot be

established for R∞
H due to the limited statistics. Nevertheless,

the fact that R∞
H features only a small temperature dependence

allows a proper extrapolation of this parameter, as indicated by
the dashed lines in figure 6(a). Importantly, the finite difference
between R0

H and R∞
H persists down to zero temperature

for both samples. Complementary conclusions can be
derived for the parameters extracted from the analysis of the
magnetoresistivity and differential Hall coefficient. In fact, ρ0

and ρ∞ plotted in figure 6(b) behave very similar to R0
H and

R∞
H . A quadratic form of ρ(T ) and ρ0(T ) sets in just below TN.

Also, the high-field value ρ∞ resembles the behavior of R∞
H .

On this basis a proper extrapolation of both ρ0 and ρ∞ yields a
persistent finite difference in the limit of zero temperature. For
the case of the differential Hall coefficient the zero-field value
R̃H depicted in figure 6(c) follows the very same quadratic
form of the initial-slope Hall coefficient as R0

H, thus further
proving the consistency of our analysis. The only difference

between the crossed-field and single-field results affects the
high-field values R∞

H and R̃∞
H . Whereas R∞

H is seen to increase
with increasing temperature, R̃∞

H decreases. In addition, the
absolute values of both differ, R̃∞

H appears to be reduced and
negative for both samples, whereas R∞

H is only negative for
sample 2 at the lowest temperatures. As a consequence, the
difference R̃0

H − R̃∞
H is larger than R0

H − R∞
H , reflecting the

larger step height seen in the single-field experiment (compare
figures 2, 3(a) and (b)). For the extrapolation of the parameters
of the single-field experiment, we again take advantage of the
quadratic form for R̃0

H and the smooth evolution of R̃∞
H . As for

the crossed-field results, the finite difference R̃0
H − R̃∞

H persists
in the zero-temperature limit. In summary, the difference
between the zero-field value and the high-field value of the
crossover in all three quantities remains finite down to zero
temperature for both samples. Together with the vanishing
FWHM and the position of the crossover converging to the
QCP, this difference marks a finite jump of the Hall coefficient.
Consequently, the data strongly suggest that the Fermi surface

6
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undergoes a severe reconstruction at the QCP. The difference
between R0

H and R∞
H is associated with the different Fermi

surfaces of the different adjacent ground states (cf [13]).
We can rule out that the discontinuity of RH at the

QCP originates from a change in scattering rates only. In
fact, a slight shift in the balance of scattering rates for the
two dominant bands is invoked to explain the strong sample
dependences of the background contribution in RH. The
sample dependences in RH(T ) arise for different samples
with minute differences in composition and different values
of disorder. However, the (extrapolated) jump in RH across
the QCP is a property associated with criticality; moreover,
it occurs as a function of a continuous variation of the
control parameter—the magnetic field—at a continuous phase
transition. In fact, magnetostriction measurements show that
the phase transition remains continuous down to at least
15 mK [20]. Without a jump of Fermi surface, a change in
RH resulting from a variation of scattering rates per se across a
continuous phase transition must be continuous with respect to
the control parameter and cannot have a jump across the QCP.

These strong indications for a Fermi surface reconstruc-
tion at the QCP in YbRh2Si2 provide the basis for the scaling
analysis of the Hall crossover width. The linear-in-temperature
form of the FWHM was found to point towards an E/T
scaling of the critical fluctuations [14]. Our magnetoresistivity
measurements establish the proportionality of the FWHM with
temperature persists up to 1 K, i.e., over almost two decades.
Consequently, these results underpin the conclusion of an
unconventional QCP in YbRh2Si2.

4. Comparison with spin-density-wave quantum
critical point

A canonical SDW QCP is realized in pure and V-doped
Cr [21]. The evolution of the Hall coefficient across the
pressure-driven QCPs has been systematically studied in both
cases [22, 23], and is shown in figure 7 for the lowest measured
temperatures. These temperatures (5 and 0.5 K for pure Cr
and Cr0.968V0.032) are already small compared to the natural
temperature scales of the system, yet the Hall coefficient is seen
to be smoothly evolving as a function of the control parameter.
Such a smooth evolution is expected theoretically [9, 24, 25].
The Fermi surface of a SDW state is reconstructed from
that of the paramagnetic state through a band folding, which
is more pronounced for a system such as Cr whose Fermi
surfaces are nested. However, when the SDW order parameter
is adiabatically switched off, the folded Fermi surface is
smoothly connected to the paramagnetic one. As a result, the
Hall coefficient does not show a jump, provided the nesting is
not perfect [25].

In a magnetic field-driven QCP, the nonzero critical field
can give rise to a small discontinuity in the magnetotransport
coefficients, even in the case of an SDW QCP [26].
Approaching the QCP, the energy scale associated with the
vanishing order parameter becomes smaller than the scale
associated with the Lorentz force, leading to a non-linearity
in the system’s response to the Lorentz force, reflected in a
breakdown of the weak-field magnetotransport. The linear

Figure 7. Inverse of the Hall coefficient of Cr0.968V0.032 (upper panel)
and Cr (lower panel) as a function of pressure. In the upper panel,
�p is the external pressure for Cr0.968V0.032, and an effective pressure
when the V-concentration differs from 0.032 [22]. In the lower panel,
the result is shown only in the vicinity of the critical pressure [23], so
that the two panels cover the same pressure extent. The dashed lines
label the critical pressure.

field dependence of the magnetoresistance in Ca3Ru2O7 was
taken as an indication thereof [27]. More significantly, the
breakdown of weak-field magnetotransport may lead to a jump
in the Hall coefficient, which, however, does not appear to have
been seen in any of the other quantum critical systems. This is
not surprising, as the jump in the Hall coefficient is likely to
be very small. In fact, for the case of the cuprates, mean field
theory predicts that the anomaly in the Hall response at the
critical doping level is non-observably small even though the
SDW gap is large [28]. Disorder may smear the jump of the
Hall coefficient into a smooth crossover.

As described above, in the pressure-driven SDW QCP of
the V-doped and pure Cr [22, 23], the Hall coefficient (and the
resistivity) is smooth across the QCP, with a crossover width
that does not track with the strength of disorder (figure 7),
in contrast to the scenario of a breakdown of the weak-field
limit. For the field-driven QCP of YbRh2Si2, the issue of
nonlinear response to the Lorentz force is completely avoided
by the crossed-field Hall setup, in which the Lorentz field B1

7
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can be vanishingly small while the tuning field B2 is fixed at
its critical value. As seen in figure 1, the Hall resistivity is
indeed linear in B1, even at the critical B2. Our conclusion
is reinforced by considerations of several other factors. Our
measured width of the critical crossover component is the
same for both samples (1 and 2) that have different amounts
of disorder (figure 5). The fact that the single-field Hall
coefficient and magnetoresistivity have the same crossover
width as the crossed-field Hall coefficient implies that, even
in our single-field measurements, the critical Hall crossover
does not originate from the above-noted nonlinear effect. This
last conclusion is not surprising, given that at the critical Bc1

field, ωcτ is of the order of 0.01 and 0.002 for samples 1 and 2
respectively.

5. Conclusion

Our study of the Hall effect and magnetoresistivity on the
model system YbRh2Si2 provides a systematic characterization
of the signatures of unconventional quantum criticality in this
material. We analyze various magnetotransport properties for
samples of different quality. We find a robust crossover in
the Hall coefficient and magnetoresistivity on top of a sample
dependent background. The crossover sharpens towards a
finite jump at the QCP in the extrapolation to zero temperature,
indicating a collapse of the Fermi surface. The relevance of
such a Fermi surface reconstruction for the concept underlying
our understanding of quantum critical metals cannot be
overstated. Given the continuous nature of the transition, the
collapse indicates that the Fermi surface is much more fragile
than expected. Hence, it is necessary to introduce a new class
of quantum phase transitions in metals. We also argue that
our results are very different from the expectations for and
observations in SDW QCPs.
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