
An Approach for Reverse Engineering of Web Applications

Sun Weijun1,2 Li Shixian1 Liu Xianming3
1Department of Computer Science, SUN YAT-SEN University

Guangzhou, 510275, China
2Faculty of Computer, Guangdong University of Technology

Guangzhou, 510006, China
3Department of Technology, JiangXi Electric Information and Communication Company

Nanchang, 330077, China
 gdutswj@gdut.edu.cn, lnslsx@mail.sysu.edu.cn, ecopnlab@yahoo.com.cn

Abstract—Web applications are the legacy software of the
future. The Web application reverse-engineering process
becomes necessary in order to facilitate the maintenance and
evolution. This paper presents an approach to recover the
architecture of web applications. The approach generates
UML models from existing web applications through static and
dynamic techniques. UML diagrams are extracted to depict the
static, dynamic and behavioral aspect of Web applications.
Finally, the architecture of the tool is described.

Keywords-Web application; reverse engineering; UML;
legacy software

I. INTRODUCTION
With the growth of the World Wide Web, more and more

applications are developed using web technologies. Web
applications have become the core business for many
companies in several application areas such as on-line
services (online retail, e-trading, e-banking, stock market,
and so on). Such Web applications therefore act as valuable
assets for companies and organizations.

Unfortunately, as a result of tight development schedules,
a sound software development lifecycle and well-proven
principles are not complied with in most cases of Web
application development. As consequence, the
documentation associated with many web applications is
rarely complete or up-to-date, and the original developers of
a maintained web application are often no longer part of the
organization. This lack of documentation and the original
developers increases the cost and time needed to understand
and maintain large web applications.

Web Applications will be the next generation of legacy
applications. These applications are required to undergo a
reverse engineering process for the improvement of
maintenance, evolution, migration and understanding.

Web applications are highly interactive and dynamic. A
reverse engineering process should support the recovery of
both the static and dynamic aspects of the applications, and
suitable representation models should be used to render the
recovered information.

This paper proposes and realizes an approach to assist
developers in understanding existing web applications. A
representation based on UML diagrams is extracted to depict

the static, dynamic and behavioral aspects of Web
applications.

The rest of this paper is organized as follows. Section 2 is
the review of existing works in reverse engineering for web
applications. Section 3 details web application modeling.
Section 4 describes our reverse engineering approach for
web applications. Section 5 describes the architecture of the
reverse engineering tool. Finally, section 6 draws
conclusions from this work.

II. RELATED WORK
Reverse engineering of Web Application is quite a recent

field. Antoniol et al. in [1] proposed an approach, based on
the Relational Management Methodology (RMM), to
recover web site architectures. Antoniol et al. also proposed
a tool, named WANDA,for Web application dynamic
analysis[2]. WANDA aims to recover fine-grained details
that allow a more accurate reconstruction of the Web
application architecture and dynamic behavior. Ricca and
Tonella have developed a semi-automatic tool named
ReWeb[3,4,5], for reverse engineering Web applications into
UML model, it performs several traditional source code
analyses, and uses UML class diagrams to represent
components and navigational features. Ricca and Tonella
also proposed to enhance the analysis considering dynamic
information[6]. Di Lucca et al. proposed an approach [7]
and, then, a tool, named WARE[8,9], to recover Conallen’s
UML documentation from Web Application. Conallen’s
extensions presents the Web Application Extension (WAE)
for UML[10].WARE performs static analysies on Web
Application, stores the extracted information into a database
and then uses such an information for the reverse
engineering of UML diagrams. Dynamic analysis Web
Application used in [11] to complement static information
required to detect page clusters.

Other Web application reverse engineering approaches
and tools are available in literature. Hassan and Holt[12],
proposed a tool for Web application architecture recovery.
Three layers in the Web applications (presentation, business
and infrastructure) are identified through static analysis.
WebUml[13] is a tool to reverse engineering Web
application through dynamic analysis. Vanderdonckt et al.
proposed a tool, named Vaquista[14], for reverse engineering

2008 International Symposium on Information Science and Engieering

978-0-7695-3494-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ISISE.2008.86

98

of the presentation model of Web Application. Benslimane et
al. [15,16]propose an approach known as ’OntoWeR’
(Ontology based Web Reverse-engineering), The objective
of OntoWeR is to enable conceptual schemas to be created.

III. WEB APPLICATION MODELING
Web applications are based on many components that are

linked together to accomplish the functionality of the
application. These components are often written in many
different programming languages and potentially distributed
over the Web.

Fig. 1 shows the metamodel of Web application structure
(similar to [10], and like [13] model). The metamodel is used
to describe the structure and components of a generic Web
application. The core of a Web application is the WebPage, it
can be static (Client Page) or dynamic (Server Page).A static
page is a simple markup language (HTML) file on a Web
server, its content is fixed and stored in a persistent way. A
dynamic page contains a mixture of HTML tags and
executable codes, and its content is generated by a Web
server upon request of Web clients. Involved technologies
are ASP, PHP, JSP, CGI and so on. When a dynamic page is
requested, the application server preprocesses it and
integrates data from various resources such as web objects or
databases, to generate the final HTML web page sent to the
browser.

Figure 1. Web application structure metamodel

A Client page may be divided into frames using a
particular page structure, the frameset. An HTML page may
be inserted in a frame context, or can contain a set of frames
grouped in a Frameset that can interact with each other. An
HTML frame (Frame) is an area in the HTML client side
page where the navigation can take place independently. In
particular, a frame can be used to create menus defining
navigation paths in other frames (framelink)[13].

The inner page components include text, images, form,
text box, multimedia objects (sounds, movies), anchors
(implementing hypertext links), scripts, and so on. Moreover,
it can contain object types such as Java applets (Applet) or
other embedded objects (Object) (e.g., ActiveX object,
Microsoft COM object, and so on). Scripts (VBScript and
JavaScript) and Java applets represent page active
components, since they perform some processing action that
contributes to the Web application behavior. Client side
scripting code fragments (Script) supports dialogue with the
user (such as alerts, inputs boxes, and so on) and functions
declarations. The scripting code may use a Cookie [13,18].

A ServerPage defines a server side page composed by
variables, prompts, alerts, an so on (class attributes), and
function declarations (class methods). A server page can use
embedded objects (Object) and can define sessions (Session).
A server page may receive data from (Form) elements, it
may contain redirection links or may build a client side page
based on (Form) data. HTMLFragment defines HTML code
fragments dynamically built by server pages [13,18].

The behavioral and the navigational structures of a Web
application are generally achieved through collaborations
and interactions between its structural components. During
the execution of an instrumented Web application, the
sequences of interactions implementing each behavior will
have to be identified in the code and represented with
suitable models too.

To this aim, a Web application is modeled as a set of web
pages that a user can access sequentially along a working
session [17]. Fig. 2 shows the view of a Web application
(similar to [2] and [18]).

An accessed page may be a Server Page or a Client
Page, by which the user interacts with the Web application.
A Transition consists of sequentially visited pages by
navigating a link from a Source Page to a Target Page. A
transition is categorize into different types of relationships
between pages (Hyperlinks, form Submission, Build,
Redirection, Inclusion).Thus, all the executions of the Web
application is represented by the Execution Trace, which
involves many single User Session Trace of navigated
pages[17].

Web applications can be described in UML with various
diagrams: class diagrams for the structure and components of
a Web application, state diagrams for component states and
state changes, collaboration diagrams for scenarios and
interactions among objects, use-case diagrams for
application functionalities and interactions with external
systems.

99

Figure 2. Web application dynamic model

IV. REVERSE ENGINEERING APPROACH
As Fig. 3 shows, the approach consists in three

successive phases: Analysis, Abstraction, Formatting and
Visualization.

The analysis phase is responsible for parsing and
instrumentation of web applications. The abstraction phase
focuses on the Model abstraction. The formatting and
visualization phase is responsible for the Result presentation.

Next, the phases of the Web application reverse
engineering approach are presented in detail.

A. Analysis
The analysis phase is performed into three steps:

preprocessing, static analysis, and dynamic analysis. This
resulting information is stored in a repository.

1) Preprocessing
As HTML is a short-constrained language, the validity of

web pages should be check before working on it. The
preprocessing phase takes web pages as input, and corrects
them, proceeds to some filtering and cleaning, executes some
transformations and then returns a DOM describing the page
structure for each page. Filtering and cleaning consists in
checking the source code of HTML pages, eliminate useless
tags such as those of layout (e.g. , <i>), and preserve
useful tags, which carry information to be treated in the
following stages (e.g. <form>, <table>, <td>, <tr>, ,
)[15]. The result of this step is a set of cleaned HTML
pages. Some Tools allow to transform any HTML page into
a well-formed XHTML-valid document[19]. The result is an
XML document that can be parsed and transformed by
specific processors such as DOM[20] or XSLT[21].

It is useful to gather Web pages within a site into
semantic groups according to their informational content. A
page type is a set of pages related to a same concept. All the
pages of a page type defined as a set of pages related to a
same concept have some similarities: they display the same
pieces of information and have a very similar, while possibly
different, layout. The file path is a good clue to detect the
page types through a web site [22].

2) Static Analysis
Static analysis is based on a parser that analyzes source

code of web applications. The parser generates facts about
the components, relations and attributes of the Web
applications. Because of the mix of languages (HTML,
JavaScript, VBScript, Java, embedded objects and so on),the
parser should not depend on a single extractor. To deal with
the web application, five types of extractors are used in this
stage.

The five types of extractors consist of HTML extractor,
Server Script extractor, DB Access extractor, Source Code
extractor and Binary Code extractor. Each extractor parses a
component or a section within a web page and generates the
appropriate facts. Together these extractors generate facts
from the entire web application. The parser crawls the
directory tree of the source code and invokes the
corresponding extractor according to the type of the
component.HTML extractor performs different types of
analysis including the text analysis, structure analysis, style
analysis, augmentation analysis, and media analysis.
Structure analysis includes table hierarchy analysis, frame
analysis, link Analysis and form analysis.

3) Dynamic Analysis
Dynamic analysis is based on the information recorded

during the executions of an instrumented Web Application.

100

The instrumentation of the Web Application is obtained by
using the tool WANDA [2] that automatically instruments
the source code of a Web Application by inserting probes.
The probes are able to identify relevant dynamic
information. Probes are developed to collect dynamic
information such as page access, HTTP environment
variables, cookie and session management functions,
databases and file I/O, access to libraries and COTS and so
on. The dynamic model of Web Application is shown in Fig.
2.

A Web Application execution trace is composed of a
sequence of navigated pages. To collect execution traces
useful for an effective extraction of UML models, the
instrumented Web Application needs to be executed in a real
usage environment for the collection of information about
the interaction of users with the Web Application.

Static Analysis
Dynamic Analysis

Abstraction

Formating and
Visualization

UML
Diagrams

Preprocessing

Instrumentation

WebPages

DTDs of
UML

diagrams

Figure 3. Reverse engineering process

B. Abstraction
The phase implements the abstraction operations that are

necessary for producing more abstract views from the Web
Applications. The abstraction works by retrieving static and
dynamic information about the web application, such as the
list of the page hyperlinks, page components, page or form
parameters, functions activated in a page, and sequences of
function calls or link activations. The results of the queries
are summarized to create diagrammatic representations.
Queries are mostly conceived to detect the building blocks of
the Web application (to extract its architecture) and their
temporal sequence of interaction (to extract sequence
diagrams). Moreover, the interaction frequency (e.g., the
frequency of exercising an association), the information

exchanged between the entities (e.g., passed parameters,
state values stored in session data, read and writing from/to
files or database) are exploited to significantly enhance the
UML representation.

C. Formatting and visualization
With the information abstracted by the previous phase,

the model describing the structure of a Web application at
different degrees of detail can be built. The proposed model
extends the one of Conallen’s extentions. Class diagrams are
used to describe frames, Java applets, input fields, cookies,
scripts, and so on),while state diagrams are used to represent
behavior and navigational structures (client-server pages,
navigation links, frames sets, inputs, scripting code flow
control, and so on).

To facilitate the transformation in any possible
visualization format, the abstracted diagrams are stored in
XML consistent with the XML Metadata Interchange (XMI).

V. ARCHITECTURE OF THE TOOL TO BE IMPLEMENTED
The tool to be implemented is composed of three

subsystems to allow assuming the stages of Web application
reverse-engineering approach, as well as supporting
interaction with the user (Fig. 4).

Reprository

Extractor

HTML

Server Script

DB Access

Source Code

Binary Code

Abstraction

UML
Diagrams
Abstractor

Query
Executor

XML Parser

Analysis

Viewer

Trace
Collector

Instrumentor

Cluster
Executor

Formatter

Diagrams Extractor

Conents Printer

Model Statistics

Various
Tools

WANDA

 XMI
Generator

WebPages

user

Java
Reflection

Figure 4. Architecture of the tool to be implemented

• Analysis
Analysis module allows the preprocessing, static analysis

and dynamic analysis of pages of Web application. Source
codes of Web pages are checked and the components of the
software system are processed using specialized extractors.
The instrumented Web application is executed for collecting
dynamic information.

• Abstraction
Abstraction module represents an implementation of the

abstraction phase in the reverse-engineering process. It

101

allows producing more abstract views from the Web
Applications by retrieving static and dynamic information.

• Viewer
Viewer allows viewing the resulting UML diagrams.

VI. CONCLUSIONS
In this paper, a reverse engineering approach has been

proposed for abstracting UML diagrams from Web
Applications. These UML diagrams deal with not only static
content, but also with the more challenging dynamic content
of Web Applications. These diagrams, together with other
extracted documentation, constitute an important support for
the subsequent maintenance and evolution of Web
Applications.

The proposed reverse-engineering approach consists in
three phases: analyses, abstraction, formatting and
visualization. The approach allows users to recover static and
dynamic Web sites. Some of the required reverse
engineering activities are automatically performed by tools,
while other activities are carried out semi-automatically, with
the assistance provided by tools. Our further work is devoted
to improving the reverse engineering approach and tools
supporting.

ACKNOWLEDGMENT
Supported by the National Natural Science Foundation of

China under Grant No. 60673122, and by the Natural
Science Foundation of Guangdong under Grant No.
8151030007000002, and by the Technology Foundation of
Jiangxi Electric Power Corporation under Grant
No.200850802.

REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, "Web site reengineering using

RMM," Proc. International Workshop on Web Site Evolution, March
2000, pp. 9-16.

[2] G. Antoniol, P. M. Di and M. Zazzara, "Understanding Web
applications through dynamic analysis," Proc. 12th IEEE
International Workshop on Program Comprehension, 2004., pp. 120-
129

[3] F. Ricca. P. Tonella, "Web site analysis: Structure and evolution," in
Proceedings of IEEE International Conference on Software
Maintenance,ICSM 2000, pp. 76-85.

[4] F. Ricca. P. Tonella, "Analysis and testing of web applications," in
Proceedings of the International Conference on Software
Engineering, ICSE 2001, pp. 25-34.

[5] F. Ricca and P. Tonella, "Understanding and restructuring Web sites
with ReWeb," Multimedia, IEEE, vol.8, pp. 40-51, 2001.

[6] F. Tonella, P. Ricca, "Dynamic model extraction and statistical
analysis of Web applications," Proc. Fourth International Workshop
on Web Site Evolution, 2002, pp. 43-52.

[7] G.A Di Lucca, P. M. Di, G. Antoniol and G. Casazza, "An approach
for reverse engineering of web-based applications," Proc. Eighth
Working Conference on Reverse Engineering, 2001,pp. 231-240.

[8] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana and C. U. De,
"WARE: a tool for the reverse engineering of Web applications,"
Proc. Sixth European Conference on Software Maintenance and
Reengineering, pp. 241-250.

[9] G. A. Di Lucca, A. R. Fasolino and P. Tramontana, "Reverse
engineering Web applications: the WARE approach," Journal Of
Software Maintenance And Evolution-Research And Practice, vol.16,
pp. 71-101, 2004.

[10] J. Conallen, Building Web Applications with UML(2nd Edition),
Addison-Wesley Publishing Compay, 2002.

[11] G. A. Di Lucca , A. R. Fasolino and P. Tramontana, "Towards a
better comprehensibility of web applications: lessons learned from
reverse engineering experiments," Proc. Fourth International
Workshop on Web Site Evolution, 2002,pp. 33-42.

[12] A. E. Hassan and R. C. Holt, "Architecture recovery of Web
applications," Proc. the 24rd International Conference on Software
Engineering, ICSE 2002,pp. 349-359.

[13] A. T. Carlo Bellettini,Alessandro Marchetto, "WebUml : reverse
engineering of web applications," Proc. the ACM symposium on
Applied computing, 2004,pp. 1662-1669.

[14] J. Vanderdonckt, L. Bouillon and N. Souchon, "Flexible reverse
engineering of web pages with VAQUISTA," Proc. Eighth Working
Conference on Reverse Engineering, 2001,pp. 241-248.

[15] M. A. B. Bouchiha, D., Malki, M., "Ontology based Web Application
Reverse-Engineering Approach," INFOCOMP journal of Computer
Science, vol.6(1), pp. 37-46, 2007.

[16] B. Benslimane, M. S., Malki, M., Bouchiha, D., "An Ontology Based
Web Application Reverse Engineering Approach," International
Review on Computers and Software, 1(1), pp. 52-58, 2006.

[17] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, "Recovering
Interaction Design Patterns in Web Applications," Proc. Ninth
European Conference on Software Maintenance and Reengineering,
CSMR 2005, pp. 366-374.

[18] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, "Supporting Web
application evolution by dynamic analysis," Proc. Eighth
International Workshop on Principles of Software Evolution,2005,pp.
175-184.

[19] World Wide Web Consortium: "XHTML 1.0 The Extensible
HyperText Markup Language (Second Edition)
",http://www.w3.org/TR/xhtml1/

[20] World Wide Web Consortium: "Document Object Model(DOM) ",
http://www.w3.org/DOM/

[21] World Wide Web Consortium: "XSL Transformations(XSLT) ",
http://www.w3.org/TR/xslt

[22] E. Fabrice, F. Aurore, H. Jean, H. Jean-Luc, "A tool-supported
method to extract data and schema from web sites". Proc. the fifth
international workshop on Web site evolution, 2003, Amsterdam, pp.
3-11.

102

