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Random walks including non-nearest-neighbor jumps appear in many real situations such as the
diffusion of adatoms and have found numerous applications including PageRank search algorithm;
however, related theoretical results are much less for this dynamical process. In this paper, we
present a study of mixed random walks in a family of fractal scale-free networks, where both
nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in
the network family, which is a particular case of random walks with a perfect trap fixed at the
central high-degree node. We derive analytical expressions for the average trapping time (ATT),
a quantitative indicator measuring the efficiency of the trapping process, by using two different
methods, the results of which are consistent with each other. Furthermore, we analytically determine
all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical
process. Our results show that although next-nearest-neighbor jumps have no effect on the leading
scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight
into better understanding of random-walk process in complex systems. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4931988]

I. INTRODUCTION

As a powerful tool for describing and studying complex
systems, network science (complex networks) has attracted
substantial attention of the scientific community in the past
decade.1,2 A central problem in the field of complex networks
is to understand the relationship between various structural
properties and dynamical processes occurring on networks.
Among many different dynamical processes, random walks
are a fundamental natural process, since they describe or ex-
press a wealth of other physical processes, including naviga-
tion,3 search,4,5 and so on. Thus far, random walks have found
a plethora of applications in interdisciplinary fields.6–11 In
view of their theoretical and practical relevance, continuously
increasing endeavors have been devoted to study random walks
on complex networks.12–16

One of the most important quantities related to random
walks is first-passage time (FPT).17,18 The FPT from a source
node s to a target node t is defined as the expected time for
a walker starting at node s to arrive at t for the first time. The
mean of FPTs to a given target over all starting nodes is known
as mean first-passage time (MFPT), which plays an essential
role in various realistic situations, such as trapping problem,19

target search,5,20 and lighting harvesting.21–23 MFPT has been
deeply studied in different networks,24–28 including the Sier-
pinski fractal,29–31 the T-fractal,32–36 dendrimers37–39 and hy-
perbranched polymers37,38 square-planar lattices,40 scale-free
networks,41–45 as well as weighted networks.46,47

a)Electronic mail: zhangzz@fudan.edu.cn. URL: http://www.researcherid.
com/rid/G-5522-2011.

Previous studies uncovered the critical effects of structure
and weight of the underlying systems on MFPT, for example,
inhomogeneous degree41,43 or weight.46,47 However, most exis-
tent works focus on nearest-neighbor random walks, neglect-
ing the role of non-nearest-neighbor hopping, which has been
implicated in some physical processes, such as exciton migra-
tion in crystals,48 photosynthesis,49 and the surface diffu-
sion of adatoms.50 Particularly, a recent work pointed out
the experimental evidence for and the physical significance
of non-nearest-neighbor jumps in the diffusion of adatoms.51

Due to its significant importance, non-nearest-neighbor hopp-
ing has been considered in various contexts.5,52–54 Neverthe-
less, in contrast to nearest-neighbor random walks, related
research about MFPT for random walks including non-nearest-
neighbor jumps is much less.31,55 Even if the inclusion of non-
nearest-neighbor jumps may not affect the scaling exponent
of MFPT, we may expect that it can significantly modify the
prefactor of MFPT.25,27 However, it is still not well understood
how the prefactor changes with non-nearest-neighbor jumps.

In this paper, we study random walks in a family scale-free
fractal networks56,57 with a deep trap placed at the central large-
degree node. During the process of random walks, both nearest-
neighbor and non-nearest-neighbor jumps are allowed with
different probabilities controlled by a parameter. We obtain two
expressions for the MFPT to the trap by using two different
techniques, the results of which are consistent with each other.
In addition, we find all the eigenvalues and their degeneracies
of the fundamental matrix characterizing the trapping problem.
The obtained result indicates that the prefactor of the MFPT
to the target is dependent on the probability parameter, which
shows that the inclusion of non-nearest-neighbor hopping has a

0021-9606/2015/143(13)/134101/8/$30.00 143, 134101-1 © 2015 AIP Publishing LLC
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FIG. 1. The first two iterations of a specific network for m = 1.

vital influence on random walks in the networks under consid-
eration.

II. NETWORK MODEL

The studied networks are defined in an iterative way. Let
Fn denote the networks after n (n ≥ 0) iterations. Then, Fn are
constructed as follows.56,57 For n = 0, F0 contains two nodes
linked by an edge. For n ≥ 1, Fn is obtained from Fn−1 by
performing the following operations on every edge in Fn−1:
replace the edge by a path of 2 links long, with the two end-
points of the path being the same endpoints of the original edge
(the new node having an initial degree 2 in the middle of path
is referred to as an internal node), then attach m new nodes
with an initial degree 1 (called external nodes) to each endpoint
of the path. Figure 1 illustrates the construction process for
a limiting case of m = 1, showing the first two iterative pro-
cesses.

By construction, at each generation ni (ni ≥ 1), the num-
ber of newly introduced nodes is Vni = (2m + 1)(2m + 2)ni−1,
among which (2m + 2)ni−1 nodes are internal nodes and the
remaining 2m(2m + 2)ni−1 nodes are external nodes. Then,
the total number of nodes Nn in Fn is Nn =

n
ni=0 Vni

= (2m + 2)n + 1, and the total number of edges is En = Nn − 1
= (2m + 2)n. Let di(n) represent the degree of a node i in
Fn, which was generated at iteration ni (ni ≥ 0). Then, di(n)
= 2(m + 1)n−ni if i is an internal node, and di(n) = (m + 1)n−ni
if node i is an external node. Hence, after each new iteration,
the degree of every node increases by m times, i.e., di(n)
= (m + 1) di(n − 1).

These networks under consideration display the remark-
able topological features as observed in various real sys-
tems. They are scale free with their degree distribution P(k)
following a power law form P(k) ∼ k−γ, where γ = 1 + ln
(2m + 2)/ ln(m + 1).57 In addition, they are fractal with the
fractal dimension being dB = ln(2m + 2)/ ln 2.56

III. DEFINITION OF MIXED RANDOM WALKS

We define a novel type of random walks taking place in
the fractal scale-free networks Fn, which include both nearest-
neighbor and next-nearest-neighbor jumps and are thus called
mixed random walks hereafter. Let An denote the adjacency
matrix of Fn, which encodes the structure information of Fn.
The entries An(i, j) of An are defined by An(i, j) = 1 if nodes i

and j are adjacent in Fn, or An(i, j) = 0 otherwise. Note that all
random walks are determined by their corresponding transition
probability matrices. We use Pn to represent the transition
probability matrix for mixed random walks in Fn, whose entry
Pn(i, j) is the jump possibility from node i to node j.

During the process of mixed random walks in Fn, if the
current location of the walker is an old node, which is already
existent in Fn−1, it is allowed to jump to both nearest neighbors
and next nearest neighbors, with their respective probabilities
θ and 1 − θ (0 ≤ θ ≤ 1); if the current state of the walker is
at a new node created at iteration n, then it can only jump to
nearest neighbors. In other words, for mixed random walks
in Fn, the walker performs isotropic nearest-neighbor random
walks in either Fn−1 or Fn, with respective probabilities θ and
1 − θ. Concretely, for mixed random walks in Fn, the transition
probability is defined by

Pn(i, j) =




θAn(i, j)
di(n) , i ∈ α, j ∈ β,

(1 − θ)An−1(i, j)
di(n − 1) , i ∈ α, j ∈ α,

An(i, j)
di(n) , i ∈ β, j ∈ α,

An(i, j)
di(n) , i ∈ β, j ∈ β,

(1)

where α represents the set of nodes belonging to Fn−1, and β
represents the set of nodes generated at nth iteration. Since all
new nodes in Fn are not adjacent, there is no transition between
any pair of new nodes in Fn. Thus, Eq. (1) is reduced to

Pn(i, j) =




θAn(i, j)
di(n) , i ∈ α, j ∈ β,

(1 − θ)An−1(i, j)
di(n − 1) , i ∈ α, j ∈ α,

An(i, j)
di(n) , i ∈ β, j ∈ α,

0, i ∈ β, j ∈ β.

(2)

There are two special cases for the above-defined mixed
random walks in Fn. For θ = 0, it reduces to random walks in
Fn; for θ = 1, it is exactly random walks in Fn−1. As expected,
the probability parameter θ dominates the process of mixed
random walks in Fn. Below, we will study a particular case of
mixed random walks in Fn with a deep trap positioned at the
central hub node, i.e., the internal node generated at iteration
1, and show that the parameter θ significantly influences the
average trapping time (ATT) to the trap, as well as the eigen-
values of the fundamental matrix associated with the trapping
problem.

IV. MIXED RANDOM WALKS WITH A PERFECT TRAP
AT A HUB NODE

In the sequel, we examine mixed random walks in Fn with
a perfect trap at the internal node created at the first generation.
We will derive explicit formulas for the ATT to the target.
Moreover, we will obtain the full spectra for the fundamental
matrix describing the trapping problem. Based on these results,
we will show that next-nearest-neighbor jumps, dominated
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by the parameter θ, have a substantial effect on the dynamic
process, especially the prefactor of ATT.

A. Formulation of trapping problem

The trapping problem is a kind of random walks with a
deep trap fixed at a certain location. We here address mixed
random walks in Fn in the presence of a trap placed at the
central node, that is, the unique internal node created at the first
generation. For the convenience of description, we label all the
nodes in Fn as follows. For n = 1, the trap node is labeled as
1, the initial two nodes belonging to F0 are labeled as 2 and
3, and all other nodes are labeled as 4,5, . . ., 2m + 3. For each
new generation n > 1, only those new nodes generated at this
generation are labeled, while the labels of all old nodes remain
unchanged, i.e., we consecutively label new nodes in Fn as
Nn−1 + 1, Nn−1 + 2, . . . , Nn.

Let T (n)
i represent the TT for a walker initially placed at

node i (other than the trap) to arrive at the trap node for the
first time. In fact, T (n)

i is the FPT from node i to the trap. Then,
the ATT ⟨T⟩n, which is the mean of T (n)

i over all non-trap initial
nodes in network Fn, is given by

⟨T⟩n = 1
Nn − 1

Nn
i=2

T (n)
i . (3)

By definition, the quantity ATT ⟨T⟩n is the MFPT to the trap,
which is very important since it is a quantitative indicator
measuring the trapping efficiency, with small ATT correspond-
ing to efficient trapping process. Below, we will study the two
quantities T (n)

i and ⟨T⟩n.
For T (n)

i , it satisfies the following relation:

T (n)
i =

Nn
j=2

Pn(i, j)T (n)
j + 1, (4)

which can be rewritten in matrix form as

T = P̄n T + e, (5)

where T =
(
T (n)

2 ,T (n)
3 , . . . ,T (n)

Nn

)⊤
is an (Nn − 1)-dimensional

vector, P̄n is a matrix of order Nn − 1 that is actually a sub-
matrix of Pn with the row and column corresponding the
trap being removed, and e = (1,1, . . . ,1)⊤ is the (Nn − 1)-
dimensional vector of all ones. Equation (5) implies

T = (I − P̄n)−1e = Mn e, (6)

where I is the identity matrix of order (Nn − 1) × (Nn − 1).
Matrix Mn = (I − P̄n)−1 is often called fundamental matrix58

of the trapping problem. Equation (6) means

T (n)
i =

Nn
j=2

Mn(i, j), (7)

where Mn(i, j) denotes the i jth element of the fundamental
matrix, which is the mean number of visits of node j by the
walker starting from node i before being trapped. Inserting
Eq. (6) into Eq. (7) leads to

⟨T⟩n = 1
Nn − 1

Nn
i=2

Nn
j=2

Mn(i, j). (8)

Equation (8) shows that the problem of evaluating ATT
⟨T⟩n can be reduced to computing the sum of all elements of
the associated fundamental matrix. However, before finding
the sum, one must first invert a matrix, which demands a large
computational effort when the networks are very large. Thus,
Eq. (8) is only valid for those networks with a small number
of nodes, but it generates exact results that can be used to
check the results for ATT derived by other approaches. In
what follows, we will analytically determine the closed-form
expression for ATT ⟨T⟩n using another technique. Moreover,
we will determine all the eigenvalues of the fundamental ma-
trix Mn, the largest eigenvalue of which is proportional to the
leading scaling of the ATT.

B. Exact solution to average trapping time

The particular selection of trap location and the special
network structure allow to determine exactly the ATT ⟨T⟩n for
arbitrary n. In order to evaluate ⟨T⟩n, we use Λn to represent
the set of all nodes in Fn and use Λ̄n to denote the set of
those nodes created at generation n. Thus, Λn = Λ̄n ∪ Λn−1.
For the convenience of computation for ⟨T⟩n, we introduce
the following quantities for any g ≤ n: T (n)

g,tot =


i∈Λg T (n)
i and

T̄ (n)
g,tot =


i∈Λ̄g T (n)

i . Then,

⟨T⟩n = 1
Nn − 1

T (n)
g,tot. (9)

The specific case θ = 1 has been studied in Ref. 59. For this
case, we represent the quantities T (n)

i , T (n)
g,tot, T̄ (n)

g,tot, and ⟨T⟩n by
H (n)

i , H (n)
g,tot, H̄ (n)

g,tot, and ⟨H⟩n, respectively. It has been proved59

that

⟨H⟩n = 4m2 + 4m + 1
2(4m2 + 7m + 3)2n(2m + 2)n

+
16m2 + 16m + 3
4(4m2 + 7m + 3)2n − 4m2 + 4m + 1

2(4m2 + 7m + 3) , (10)

which is helpful for the following derivation.
Next, we show that there exists a useful relation between

T (n)
i and H (n−1)

i . Let us examine a node i in Fn. Notice that after
one iteration, the degree of an old node i in Fn−1 increases
from di(n − 1) to (m + 1) di(n − 1). Moreover, all these (m
+ 1) di(n − 1) neighbors of node i are new nodes created at
iteration n, among which m di(n − 1) neighbors are external
nodes, and the remaining di(n − 1) neighbors are internal
nodes. For mixed random walks in Fn, let X be the FPT
for a particle starting from node i to any of its di(n − 1)
old neighbors, namely, those nodes directly connected to i at
iteration n − 1, and let Y (respectively, Z) be the FPT for going
from any of the di(n − 1) (respectively, mdi(n − 1)) internal
(respectively, external) new neighbors of i to one of its di(n)
old neighbors. Then, X , Y , and Z follow the relations:




X =
mθ

m + 1
(1 + Z) + θ

m + 1
(1 + Y ) + (1 − θ),

Y =
1
2
+

1
2
(1 + X),

Z = 1 + X.

(11)
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Eliminating Y and Z in Eq. (11) yields X = (2m+2)(1+θ)
(2−2θ)m+(2−θ) .

Therefore, when the networks evolve from iteration n − 1 to
iteration n, the FPT from any node i (i ∈ Fn−1) to another node
j ( j ∈ Fn−1) increases by a factor of (2m+2)(1+θ)

(2−2θ)m+(2−θ) . Thus, we
have

T (n+1)
i =

(2m + 2)(1 + θ)
(2 − 2θ)m + (2 − θ) H (n)

i , (12)

an expression useful for the following derivation of the exact
solution to ATT ⟨T⟩n. For θ = 1, Eq. (12) becomes

H (n+1)
i = (4m + 4)H (n)

i . (13)

Equation (9) shows that, in order to determine ⟨T⟩n, we can
alternatively estimate T (n)

n,tot that obeys the following relation:

T (n)
n,tot = T (n)

n−1,tot + T̄ (n)
n,tot

=
(2m + 2)(1 + θ)

(2 − 2θ)m + (2 − θ) H (n−1)
n−1,tot + T̄ (n)

n,tot. (14)

Hence, to find T (n)
n,tot, it is necessary to first explicitly determine

the quantity T̄ (n)
n,tot.

For an arbitrary external node iext in Fn, which was gener-
ated at iteration n and linked to an old node i, we have

T (n)
iext
= 1 + T (n)

i . (15)

While for an arbitrary internal node l i jint, which was created at
generation n and attached to a pair old nodes i and j, we have

T (n)
l
i j
int

= 1 +
1
2

T (n)
i +

1
2

T (n)
j . (16)

Then, by construction, it is easy to establish relation

T̄ (n)
n,tot = |Λ̄n | +


i∈Λn−1

(
m +

1
2

)
di(n − 1) × T (n)

i



= |Λ̄n | +
(
m +

1
2

)
×


i∈Λn−1

(
di(n − 1) (2m + 2)(1 + θ)

(2 − 2θ)m + (2 − θ)H (n−1)
i

)
,

(17)

where |Λ̄n | denotes the cardinality of set Λ̄n. For θ = 1, Equa-
tion (17) reduces to

H̄ (n)
n,tot = |Λ̄n | +

(
m +

1
2

)
×


i∈Λn−1

(
di(n − 1)(4m + 4)H (n−1)

i

)
. (18)

Combining Eqs. (17) and (18), we obtain

T̄ (n)
n,tot − |Λ̄n |
(2m+2)(1+θ)

(2−2θ)m+(2−θ)
=

H̄ (n)
n,tot − |Λ̄n |
4m + 4

, (19)

from which we can further derive

T̄ (n)
n,tot =

(2m + 2)n−1(1 + 2m)(3 + 4m)(1 − θ)
4 + 4m − 2θ − 4mθ

+
1 + θ

4 + 4m − 2θ − 4mθ
H̄ (n)

n,tot, (20)

where |Λ̄n | = (2m + 1)(2m + 2)n−1 was used. On the other
hand,

H̄ (n)
n,tot = H (n)

n,tot − H (n)
n−1,tot = H (n)

n,tot − (4m + 4)H (n−1)
n−1,tot. (21)

Plugging Eqs. (20) and (21) into Eq. (14) leads to

T (n)
n,tot =

(2m + 2)n−1(1 + 2m)(3 + 4m)(1 − θ)
4 + 4m − 2θ − 4mθ

+
1 + θ

4 + 4m − 2θ − 4mθ
H (n)

n,tot. (22)

Dividing both sides of Eq. (22) by Nn − 1 = (2m + 2)n, we arrive at an accurate formula for the ATT ⟨T⟩n, which reads

⟨T⟩n = (1 + 2m)(3 + 4m)(1 − θ)
(2m + 2)(4 + 4m − 2θ − 4mθ) +

1 + θ
4 + 4m − 2θ − 4mθ

⟨H⟩n

=
(4m2 + 4m + 1)(1 + θ)

2(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ)2n(2m + 2)n + (16m2 + 16m + 3)(1 + θ)
4(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ)2n

+
(1 + 2m)[(8 − 8θ)m2 + (11 − 13θ)m + (4 − 5θ)]

(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ) . (23)

We continue to express ATT ⟨T⟩n in terms of the network size Nn, with an aim to obtain the dependence relation of ⟨T⟩n on
Nn. From Nn = (2m + 2)n + 1, we have 2n = (Nn − 1)ln 2/ln(2m+2). Therefore, Eq. (23) can be rewritten as

⟨T⟩n = (4m2 + 4m + 1)(1 + θ)
2(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ) (Nn − 1)1+ln 2/ln(2m+2) +

(16m2 + 16m + 3)(1 + θ)
4(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ) (Nn − 1)ln 2/ln(2m+2)

+
(1 + 2m)[(8 − 8θ)m2 + (11 − 13θ)m + (4 − 5θ)]

(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ) , (24)

which provides an exact dependence relation of ⟨T⟩n on Nn and parameter θ. For very large networks, i.e., Nn → ∞, ⟨T⟩n has the
following dominating term:
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⟨T⟩n ≈ (4m2 + 4m + 1)(1 + θ)
2(4m2 + 7m + 3)(4 + 4m − 2θ − 4mθ) (Nn − 1)1+ln 2/ln(2m+2) ∼ ξ(θ)(Nn)1+ln 2/ln(2m+2), (25)

where ξ(θ) = (4m2+4m+1)(1+θ)
2(4m2+7m+3)(4+4m−2θ−4mθ) .

Form Eq. (25), we can observe that in the whole range of
0 ≤ θ ≤ 1, the ATT ⟨T⟩n scales superlinearly with the system
size Nn, with the exponent 1 + ln 2/ln(2m + 2) independent
of parameter θ. Thus, the inclusion of next-nearest-neighbor
jumps, controlled by parameter θ, has a negligible effect on
the leading behavior of ATT. However, as shown in Eq. (25),
the parameter θ can significantly modify the prefactor ξ(θ) of
the dominant term for ATT. Concretely, ξ(θ) is an increasing
function of θ. When θ grows from 0 to 1, the prefactor ξ(θ)
grows from 4m2+4m+1

2(4m2+7m+3)(4m+4) to 4m2+4m+1
2(4m2+7m+3) , implying that

the incorporation of next-nearest-neighbor jumps can enhance
the transportation efficiency in a significant way. For the two
limiting cases of θ = 0 and θ = 1, the ATT for the former is
only 1

4m+4 of that for the latter.

V. FULL SPECTRUM OF FUNDAMENTAL MATRIX

In this section, we study the eigenvalues of the funda-
mental matrix Mn for the trapping problem considered above.
We will obtain all eigenvalues as well as their multiplicities.
Moreover, we will show that the largest eigenvalue has the
same leading scaling as that of the ATT ⟨T⟩n. For this pur-
pose, we introduce a matrix Tn defined by Tn = M−1

n . Let
λi(n) and σi(n), where i = 1,2, . . . ,Nn − 1, be the respective
eigenvalues ofTn and Mn, satisfying λ1(n) ≤ λ2(n) ≤ λ3(n) . . .
≤ λNn−1(n) and σ1(n) ≥ σ2(n) ≥ σ3(n) ≥ . . . ≥ σNn−1(n).
Then, we have λi(n) = 1/σi(n). Thus, in order to find the
eigenvalues of matrix Mn, we only need to determine the
eigenvalues for Tn.

A. Eigenvalue spectrum for case of θ = 1

We first compute the eigenvalue of Tn for the special case
of θ = 1. For this case, we use Γn to denote Tn. It is easy to
see that for θ = 1, the transition probability matrix Pn becomes
Pn = D−1

n An, where Dn is the diagonal degree matrix of Fn

with its ith diagonal entry being di(n). Thus, for θ = 1, the (i, j)
entry of Γn = I − P̄n reduces to the following form:

Γn(i, j) =



1, i = j,

− An(i, j)
di(n) , i , j.

(26)

For the sake of convenience, in the sequel, we use I to denote
the identity matrix of approximate order. By definition, the
problem of finding eigenvalues of Γn is equivalent to determine
the roots of the characteristic polynomial ξn(µ) = det(µI − Γn)
of Γn. Next, we will derive a recursive relationship for the char-
acteristic polynomial ξn(µ) and ξn−1(µ), based on which we
will determine all eigenvalues of Γn from those corresponding
to the previous iteration.

By construction, matrix Γn can be written in a block form,

Γn =



Γα,α Γα,β

Γβ,α Γβ,β


=



I Γα,β

Γβ,α I


, (27)

where the fact that both Γα,α and Γβ,β are identity matrices is
applied. Then,

ξn(µ) =
������

(µ − 1)I −Γα,β
−Γβ,α (µ − 1)I

������

=

�������

(µ − 1)I − Γα,βΓβ,α
µ − 1

0

−Γβ,α (µ − 1)I

�������

= (µ − 1)(2m+1)(2m+2)n−1 �����
(µ − 1)I − Γα,βΓβ,α

µ − 1

�����
= (µ − 1)2m(2m+2)n−1

det
�(µ − 1)2I − Γα,βΓβ,α

�
. (28)

In Appendix A, we prove that

Γα,βΓβ,α = I − 1
2m + 2

Γn−1. (29)

Plugging Eq. (29) into Eq. (28) gives

ξn(µ) = (µ − 1)2m(2m+2)n−1
det

(
(µ2 − 2µ)I + 1

2m + 2
Γn−1

)
=

(µ − 1)2m(2m+2)n−1

(−2m − 2)(2m+2)n−1 det
�(2m + 2)(2µ − µ2)I − Γn−1

�

=
(µ − 1)2m(2m+2)n−1

(−2m − 2)(2m+2)n−1 ξn−1
�(2m + 2)(2µ − µ2)� , (30)

which reveals the relationship between ξn(µ) and ξn−1(µ),
allowing to express the eigenvalues of Γn in terms of those of
Γn−1.

Now we show how to obtain the eigenvalues of Γn from
those of Γn−1. Let µ1(n − 1), µ2(n − 1), . . ., µNn−1−1(n − 1)
be the Nn−1 − 1 eigenvalues of Γn−1. Then, the characteristic
polynomial ξn−1(µ) of Γn−1 can be written as

ξn−1(µ) =
Nn−1−1
i=1

(µ − µi(n − 1)), (31)

substituting which into Eq. (30) yields

ξn(µ) = (µ − 1)2m(2m+2)n−1

(−2m − 2)(2m+2)n−1 ξn−1(φ(µ)), (32)

where

φ(µ) = (2m + 2) �2µ − µ2� . (33)

Equation (32) indicates that 1 is an eigenvalue of Γn with
multiplicity 2m(2m + 2)n−1 and that all other eigenvalues are
determined by ξn−1(φ(λ)) = 0. For each eigenvalue µi(n − 1)
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of Γn−1, from Eq. (32), we have the following quadratic equa-
tion:

(2m + 2)(2µ − µ2) − µi(n − 1) = 0. (34)

Solving this quadratic equation in the variable µ gives rise to
two eigenvalues, µi,+(n) and µi,−(n), other than 1 for matrix
Γn,

µi,+(n) = 1 +


1 − µi(n − 1)

2m + 2
(35)

and

µi,−(n) = 1 −


1 − µi(n − 1)
2m + 2

, (36)

both of which keep the degeneracy of its parent µi(n − 1).
From above analysis, the number of eigenvalues other

than 1 is 2(Nn−1 − 1) = 2(2m + 2)n−1, and the number of eigen-
values 1 is 2m(2m + 2)n−1. Then, from the eigenvalues of Γn−1,
we can completely determine all the 2m(2m + 2)n eigenvalues
of Γn. For Γ1, the set of its eigenvalues includes 1 with multi-
plicity of 2m − 2, 1 +


m

m+1 , and 1 −


m
m+1 with respective

multiplicity being 2. According to the above argument, all
eigenvalues and their multiplicities of Γn (n ≥ 2) can be deter-
mined in an iterative way: 1 is always an eigenvalue with
multiplicity of 2m(2m + 2)n, and any other eigenvalue can be
obtained by recursively applying Eqs. (35) and (36) with their
multiplicity being the same as that of their parent.

B. Eigenvalue spectrum for arbitrary θ

After obtaining all the eigenvalues of Γn for the particular
case of θ = 1, we now determine the eigenvalue spectrum of
matrix Tn for arbitrary θ between 0 and 1. Let ζn(λ) = det(λI
− Tn) denote the characteristic polynomial of matrix Tn. In
what follows, we will provide a relationship between ζn(λ) and
ξn−1(µ), from which we will show that all the eigenvalues of
Tn can be completely determined from those of Γn−1.

Note that matrix Tn can be written in a block form,

Tn =



Tα,α Tα,β

Tβ,α Tβ,β


=



Tα,α Tα,β

Tβ,α I


. (37)

Then,

ζn(λ) =
������

λI − Tα,α −Tα,β

−Tβ,α (λ − 1)I
������

=

�������

λI − Tα,α −
Tα,βTβ,α

λ − 1
0

−Tβ,α (λ − 1)I

�������
= (λ − 1)(2m+1)(2m+2)n−1 �����

λI − Tα,α −
Tα,βTβ,α

λ − 1

�����
= (λ − 1)2m(2m+2)n−1

× det
��
λ2 − λ

�
I − (λ − 1)Tα,α − Tα,βTβ,α

�
. (38)

The two matrices Tα,α and Tα,βTβ,α can be, respectively, ex-
pressed in terms of matrix Γn−1 as (see Appendix B for proof)

Tα,α = θI + (1 − θ)Γn−1 (39)
and

Tα,βTβ,α = θI − θ

(2m + 2)Γn−1. (40)

Inserting Eqs. (39) and (40) into Eq. (38) leads to

ζn(λ) = (λ − 1)2m(2m+2)n−1

(2m + 2)(2m+2)n−1

× [(λ − 1)(1 − θ)(2m + 2) − θ](2m+2)n−1

× ξn−1

( (2m + 2)(λ2 − λ − λθ)
(λ − 1)(1 − θ)(2m + 2) − θ

)
, (41)

which relates ζn(λ) to ξn−1(η(λ)), where

η(λ) = (2m + 2)(λ2 − λ − λθ)
(λ − 1)(1 − θ)(2m + 2) − θ .

Using Eq. (31), Eq. (41) can be recasted as

ζn(λ) = (λ − 1)2m(2m+2)n−1

(2m + 2)(2m+2)n−1

Nn−1−1
i=1

�(2m + 2)(λ2 − λ − λθ)

− µi(n − 1)[(λ − 1)(1 − θ)(2m + 2) − θ]	. (42)

From Eq. (42), one can find all the roots of ζn(λ), which
are the eigenvalues of matrix Tn. First, 1 is a root of ζn(λ) with
multiplicity 2m(2m + 2)n−1. While for other roots different
from 1, they can be derived from the eigenvalues of Γn−1.
For each eigenvalue µi(n − 1) of Γn−1, solving the following
quadratic equation in variable λ,

(2m + 2)(λ2 − λ − λθ) − µi(n − 1)[(λ − 1)(1 − θ)(2m + 2) − θ] = 0, (43)

generates two eigenvalues for Tn unequal to 1, λi,+(n) and λi,−(n), given separately by

λi,+(n) = (1 + m)(1 − θ)µi(n − 1) + (1 + m)(1 + θ)
2m + 2

+

(1 + m)2(1 − θ)2[µi(n − 1)]2 + (1 + m)2(1 + θ)2 − 2(1 + m)[1 + m(1 − θ)2 − (1 − θ)]µi(n − 1)
2m + 2

(44)

and

λi,−(n) = (1 + m)(1 − θ)µi(n − 1) + (1 + m)(1 + θ)
2m + 2

−
(1 + m)2(1 − θ)2[µi(n − 1)]2 + (1 + m)2(1 + θ)2 − 2(1 + m)[1 + m(1 − θ)2 − (1 − θ)]µi(n − 1)

2m + 2
, (45)
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with both λi,+(n) and λi,−(n) having the same multiplicity as
that of µi(n − 1). In an analogous way, we can verify that all
eigenvalues of Tn and their degeneracies can be found by using
Eqs. (44) and (45).

Since there exists a one-to-one relation between the eigen-
values of Tn and the fundamental matrix Mn, we thus have also
obtained the full eigenvalue spectrum of Mn.

C. The largest eigenvalue

In the above, we have determined all eigenvalues for the
inverse Tn of the fundamental matrix Mn and thus all eigen-
values of Mn. Here, we continue to estimate the largest eigen-
value of the fundamental matrix Mn, which is actually equal to
the reciprocal of the smallest eigenvalue for matrix Tn, denoted
by λmin(n). We will show that the ATT ⟨T⟩n has the same
leading behavior as that of the reciprocal of λmin(n).

We first consider special situation of θ = 1 and use µmin(n)
to denote the smallest eigenvalue of matrix Γn. According

to the computation process for eigenvalues of Γn, especially
Eq. (36), the smallest eigenvalue of µmin(n) satisfies the follow-
ing recursive relation

µmin(n) = 1 −


1 − µmin(n − 1)
2m + 2

. (46)

Using Taylor’s formula, we have

µmin(n) ≈ 1 −
(
1 − 1

2
µmin(n − 1)

2m + 2

)
=

µmin(n − 1)
4m + 4

. (47)

Considering the initial condition µmin(1) = 1 −


m
m+1 , Eq. (47)

can be solved by induction to yield

µmin(n) ≃
1 −
√

m2+m
m+1

(4m + 4)n−1 . (48)

For arbitrary θ in the interval [0,1], from Eq. (45) it is easy
to see that the smallest eigenvalue λmin(n) of Tn can obtained
from µmin(n − 1) via relation

λmin(n) = (1 + m)(1 − θ)µmin(n − 1) + (1 + m)(1 + θ)
2m + 2

−
(1 + m)2(1 − θ)2[µmin(n − 1)]2 + (1 + m)2(1 + θ)2 − 2(1 + m)[1 + m(1 − θ)2 − (1 − θ)]µmin(n − 1)

2m + 2
. (49)

Again, using Taylor’s formula in Eq. (49), we have

λmin(n) ≈ 2 + 2m(1 − θ) − θ
(2m + 2)(1 + θ) µmin(n − 1)

≃
[4 + 4m(1 − θ) − 2θ]

(
1 −
√

m2+m
m+1

)
(1 + θ)(4m + 4)n−1 . (50)

By comparing Eqs. (23) and (50), we can observe that, as
expected, the leading behavior for the reciprocal of λmin(n) is
identical to that of the dominant term for ATT ⟨T⟩n, signal-
ing that the trapping efficiency is characterized by the largest
eigenvalue of the associated fundamental matrix Mn.

VI. CONCLUSIONS

In this paper, we have presented an analytical study on
random walks in a class of scale-free fractal networks, which
incorporate both nearest-neighbor and non-nearest-neighbor
hopping. We have focused on a particular case of random
walks with a single trap placed on the central hub node. By
using two different methods, we have deduced two expres-
sions for the MFPT to the trap, which are equivalent to each
other. Moreover, we have determined all the eigenvalues and
their multiplicities of the fundamental matrix of the random
walk and demonstrated that the largest eigenvalue exhibits the
same dominant behavior as that of the MFPT, which validates
our computation for the full eigenvalues. The obtained results
indicate that the inclusion of non-nearest-neighbor jumps can
significantly modify the prefactor of MFPT to the trap. It
should be mentioned that although we only studied a special
case that the trap is the central node, the result is similar, when

the trap is placed at another node. Our work enables a better
understanding of the effect of non-nearest-neighbor hopping
on the dynamics of random walks.
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APPENDIX A: DERIVATION OF EQ. (29)

In order to prove Eq. (29), it suffices to show that their cor-
responding entries of two matrices Γα,βΓβ,α and I − 1

(2m+2)Γn−1
on both sides are equal to each other. For simplicity, let
Qn = Γα,βΓβ,α and Rn = I − 1

(2m+2)Γn−1. Obviously, the en-
tries Rn(i, j) of Rn are Rn(i, i) = − 1

2m+2Γn−1(i, j) for i , j and
Rn(i, j) = 2m+1

2m+2 for i = j. For Qn, its entries Qn(i, j) can be
determined as follows.

If i = j, the diagonal entry of Qn is

Qn(i, i) =

k ∈β


An(i, k)
di(n) ·

An(k, i)
dk(n)



=
1

di(n)


An(i,k )=1
k∈β

1
dk(n)

=
1

(m + 1)di(n − 1)


mdi(n − 1)
1

+
di(n − 1)

2



=
2m + 1
2m + 2

= Rn(i, i), (A1)

where di(n) = (m + 1)di(n − 1) has been used.
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If i , j, the non-diagonal entry of Qn is

Qn(i, j) =

k ∈β


An(i, k)
di(n) ·

An(k, j)
dk(n)



=


An(i,k )=1
An(k, j)=1

1
(m + 1)di(n − 1)dk(n)

=
An−1(i, j)

(2m + 2)di(n − 1)
= − 1

2m + 2
Γn−1(i, j) = Rn(i, j). (A2)

Equations (A1) and (A2) lead to Eq. (29).

APPENDIX B: DERIVATION OF EQS. (39) AND (40)

We first prove Eq. (39), which provides an expression of
Tα,α in terms of Γn−1. Notice that the diagonal elements of Tα,α

are all 1. For a non-diagonal element Tα,α(i, j) where i , j,
according to Eqs. (2) and (26), we have

Tα,α(i, j) = (1 − θ)An−1(i, j)
di(n − 1) = (1 − θ)Γn−1(i, j). (B1)

Recalling the fact that all the diagonal elements of Γn−1 are 1,
it is easy to get Eq. (39).

We proceed to prove Eq. (40). To this end, let Q̃n and R̃n

denote, respectively, the two matrices Tα,βTβ,α and R̃n = θI
− θ

(2m+2)Γn−1 on both sides of Eq. (40). Then, the proof of
Eq. (40) is reduced to proving the equivalence of the corre-
sponding entries of Q̃n and R̃n. For matrix R̃n, it is evident that
its diagonal and non-diagonal elements are R̃n(i, i) = θ(2m+1)

2m+2
and R̃n(i, j) = − θ

2m+2Γn−1(i, j), respectively. While for matrix
Q̃n, its entries Q̃n(i, j) can be determined in a similar way as
those of Qn for the case of θ = 1.

The diagonal entry of Q̃n is

Q̃n(i, i) =

k ∈β


θAn(i, k)

di(n) · An(k, i)
dk(n)



=
θ

di(n)


An(i,k )=1
k∈β

1
dk(n)

=
θ(2m + 1)

2m + 2
= R̃n(i, i), (B2)

and the non-diagonal element of Q̃n is

Q̃n(i, j) =

k ∈β


θAn(i, k)

di(n) · An(k, j)
dk(n)



=


An(i,k )=1
An(k, j)=1

θ

(m + 1)di(n − 1)dk(n)

=
θAn−1(i, j)

(2m + 2)di(n − 1)
= − θ

2m + 2
Γn−1(i, j) = R̃n(i, j), (B3)

which, together with Eq. (B2), completes the proof of Eq. (40).
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