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Abstract In this paper, we propose a new correction strategy for some first-order primal-
dual algorithms arising from solving, e.g., total variation image restoration. With this strategy,
we can prove the convergence of the algorithm under more flexible conditions than those
proposed most recently. Some preliminary numerical results of image deblurring support that
the new correction strategy can improve the numerical efficiency.
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1 Introduction

Let ¥ € RE, Y € RN be two nonempty, closed and convex sets, b € RY, and A € RV*L,
B € RN*N are two matrices. We consider the saddle-point problem
minmax ®(x, y) := (y, Ax) + ~[|By — b|%, (1.1)
yeY xeX 2
where v > 0, (-, -) denotes the inner products of vectors and || - || is the Euclidean norm. This
problem arises from a number of areas such as constrained optimization duality, zero-sum
games, and general equilibrium theory. It has been attracted much attention of researchers
recently, e.g., [4,6-9,11], just named a few.
For solving such a problem, the following first-order primal-dual iterative scheme has
recently attracted most attentions of researchers, especially those from image processing:
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Algorithm 1.1: The primal-dual procedure for (1.1) Let7 > 0,0 > 0and 0 € R.
For given (x¥, y%), the new iterate (x**!, y¥*1) is generated by:
1
K = Argmax{r® (x, y¥) — = |lx — x¥ )%}, (1.2a)
xeX 2
k= Mgk — kb, (1.2b)
. _ 1
Y = Argmin{o @, ) + S Ily — YIIP). (1.2¢)
yey 2

The parameters 7, o and 0 play a crucial role for the efficiency of the algorithm. Thus, it is
important to prove the convergence of the algorithm under conditions as flexible as possible.
When 6 = 0, this procedure reduces to the primal-dual hybrid gradient method [12], which
is the well-known Arrow-Hurwicz-Uzawa method [1]. With some restrictions on 7 and o,
which are ensured when 7 and o are sufficiently small, the convergence of this procedure is
guaranteed. Note that here 7 and o play the role of step sizes in the primal and dual steps,
respectively, and small choice of them may cause slow convergence speed.

Recently, Chambolle and Pock [3] suggest to relax the choice of 6 from 6 = Oto 6 € [0, 1].
This flexible choice for & make them to be able to prove the global convergence of the proce-
dure under conditions less restrictive than those in [1,12]. Specially, when 8 = 1, Chambolle
and Pock prove the global convergence of the primal-dual procedure under the condition that

the step sizes satisfy
: (1.3)
o< —. .
AT Al

Here and throughout the paper, for a matrix B, || B|| denotes its norm
Bl := max{||Bx|| : [lx]| <1}

The condition (1.3) avoids the difficulty of choosing very small step sizes and can enhance
the numerical performance of the algorithm.

Most recently, He and Yuan [10] analyzed the convergence of the above primal-dual pro-
cedure and proposed a new modification. Under the help of an additional simple correction
step, they proved that

e the range of 6 can be enlarged to [—1, 1];

e When6 = —1, the step size T and o can be arbitrary positive numbers. When 6 € (—1, 1],
they proved the convergence of their new procedure under the requirement
1+6)2 1
d+6) < . (1.4)
4 AT Al

In this paper, we further relax the requirements of the parameters 6, t and o. Our results
are

e the parameter 6 can be arbitrary;
e When 6§ = —1, the step size t and o can be arbitrary positive numbers; otherwise 7 and
o should satisfy

(14 06)? o
<
4 1+ ovimn(BTB)

Note that our requirements are much flexible than those in [10], which are important from
numerical point of view.

AT A

1. (1.5)
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This paper is organized as follows. In Section 2, we summarize some necessary prelim-
inaries. In Section 3, we describe our method formally and present its convergence. We
reported some numerical results on our algorithm in Section 4 and conclude the paper with
Section 5.

2 Preliminaries

In this section, we describe some useful preliminaries for our method and subsequent con-
vergence analysis.
Let (x*, y*) be a solution of the saddle point problem (1.1). Then,

max{(y*, Ax) + = | By* — b|} < (y*, Ax*)
xeX 2

v v
~|By* — b|* < min{(y, Ax*) + =By — b||*}.
+5 1By I _fvrélg{(y x7) + 5 1By — bII%}

which is equivalent to the following variational inequalities

x*eX, (x —x*, —ATy*) >0, Vx € X,
y ey, (y—y* Ax*+vBT(By* —b)) =0, Vye).

Denote

Y L _ATy B
u = (y), F(u) = (Ax-I-VBT(By—b))’ and Q=X x ),

the above variational inequalities can be rewritten in the compact form of finding u* € €,
such that

(u —u*, F(u*)) >0, VueQQ. 2.1
The mapping F is monotone, i.e.,
(u —v, Flu) — F(v)) =0, Vu,v.
Let Pq(-) denote the projection onto €2 under the Euclidean norm, i.e.,
Pq(v) := argmin{|ju —v|| : u € Q}.
Then it follows that for any w € €2,
(4 — Po(u), w — Po(u)) <0. (2.2)
The following lemma is due to He and Yuan [10].

Lemma 2.1 For given u* = (x*, y¥), let u*+! = (x**1, y¥*1) be generated by the primal-
dual procedure (1.2a)—(1.2c). Then, we have

e Q) w—u* FGHTY + M@ —ub)) >0, vu e Q, (2.3)
where
1 T
M = (51 1? ) .
Al (L+N)x(L+N)
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To prove the convergence of the primal-dual procedure under flexible requirements on the
parameters 6, T and o, He and Yuan [10] introduce a simple correction step to the algorithm.
In other words, for any given u*¥ = (x¥, y¥), they denote the point generated by (1.2a) and
(1.2¢) by ¥ and 3% and let #* = (&%, 7%), and suggest to generate the next iterate via

uk+] = uk — akM(uk — ﬁk), 2.4)
where
(wk — ik, M@t —a))
ag =y ~ ; (2.5
M (uk — k)12
andy € (0, 2) is arelaxation parameter. When # = —1 and r and o are any positive numbers,

or when 0 € (—1, 1] and t and o satisfied (1.4), they prove that the sequence {uk} generated
by the recursion (2.4) converges globally to a solution of the saddle point problem (1.1).

3 The algorithm and its convergence

As we have stated in the introduction, the purpose of this paper is to introduce a new correc-
tion step other than (2.4), and prove its global convergence with weaker assumptions than
those made in [10]. To this end, we first note that since ii* is generated by (1.2a)—(1.2c) and
u* € Q, it follows from (2.3) that

w* — ik, F@*y + m@* —u*)) > 0. (3.6)
On the other hand, since u* is a solution of (2.1) and ik e Q,
(@ — u*, F(u*)) > 0. (3.7)
Adding (3.6) and (3.7), we obtain
w* — i, (F@* — Fw*) + M@* — u*)) > 0. (3.8)

Recall that # and F are respectively defined as

e _ (A"
U= (y) and F(u) := (Ax—i—vBT(By—b))’

w* — i*, F@@*) — Fu*))
— (= 7K ATFE ATy 4% — 55 ARk
+vBT (B3 — b) — (Ax* +vBT (By* — b)))
= (v* =5, vBTBG* — y"). (3.9)

we have

Inserting (3.9) into (3.8), we obtain
(w* — i, M@ —u") + (y* = 3, vBT BGF = y) = 0. (3.10)
We have the following lemma.

Lemma 3.1 For given u* = (x*, y*), let i = (%%, 5*) be generated by the primal-dual
procedure (1.2a)—(1.2c). Then, we have

Wk —u*, M* — i) > Wk -k, M@ — i), (3.11)
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where
~ Ly AT ~ Ly AT
"= (5‘4 él +2UBTB)(L+N)><(L+N) nd M= (5‘4 gl + UBTB)(L+N)><(L+N) '
Proof Note that
(y* = vBTBG — ")

= =V BG* — yHI7 + 200" = »*, BTBG* — y*) — v BGK — 39117

< 2v(y* =y, BTBG* — y)) —vIBGH = 5917
Substituting it into (3.10) and rearranging terms, we have

Wb —u, M@ — @) + (F — y*, 20BT BGF — §) = uf — it M@t — b))
ol BGF = 5911, (3.12)

which is exactly the inequality we need. O

The results in the above lemma inspire us to use -M (uF = ii*) as descent direction and
generate the next iterate via
WK =k — g Mk — i), (3.13)
where
Wk — ik, M@k — %))
o = — — . (3.14)
Y T aTE

The following result indicates the rationality in choosing the step size o

Theorem 3.1 Suppose that
(1+0)? o
<1
4 1 4+ ovAmin(BT B)

Then the step size {oy} generated by (3.14) is uniformly bounded away from zero, i.e., there
IS omin > 0, such that

| AT A (3.15)

Qg = opin > 0, Vk > 0. (3.16)
Proof From the definition of M , it follows
Wk — ik, M@ — "))

1 B 5 N 1 - -
= ;nx" — 72+ (1 o)k — 2K AT R — 55 + ;ny" — 712+ vIBOF = 51?

v

1 - - - 1 -
—It = F2 )t =5 ATGR = 59) + A+ vdmin (BT BYIY - 2.

(3.17)
Define the parameter delta to be the positive scalar satisfying the equality

0 1 T 1
T(1+8)|A" A 4 = |:O' + VAmin (B B):| (1—}—8)7

or equivalently,

5= 2 1+ ovimin(BTB)
140 1o ||AT A|
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Since for any two vectors a and b and a positive parameter (,
LT
2a,b) = —pllall” — ;IIbII )

we have

(1 +0)(xk — 35 AT (F — 3%))

(1+6)2 N
k=R -

> —(z(1+8)|ATA|) AR — 5512

4 YT Ta s AT A]
1 1 1
—_| = r (BTB) | —— k_~k2_—A k _ ~kyy2
|:o + VAmin( )] 1—}—8”y el T+ 5)[ATA| | A(x )|
1 Lox k2 1 T Kk aky2
> — — — — Amin(B' B — s 3.18
T (THX Xt +|:(7 + VAmin( YY" =3l (3.18)

where the equality and the last inequality follow from the definition of §. Note that the
condition (3.15) ensures that § > 0. Combining (3.17) and (3.18), we get

W — %, Mu* — %))

) 1 5 1 -
> — (= lx* = F | =+ v BT B) | Iy* = 5597). (3.19)
14+8 \t o

On the other hand, using the Cauchy-Schwarz inequality, we can see that there is a constant
C, such that

~ B 1 B 1 -
IM @k —i*)|)> < c (;nx" — 712+ [; + vxmm(BTm] Iy — y"nz) .

Consequently, for any k,

which completes the proof. O

Theorem 3.2 Suppose that (3.15) holds. Then the sequence {u*} generated by (3.13) con-
verges to a solution of the saddle point problem (1.1) globally.

Proof 1t follows from (3.13) that

”uk-H _ u*||2

= lluf — u* — M@ —i*))?

= [lu* — u*|? = 20y b — u*, M@ — @) + o | Mk — b))
< Nk —u*|? = 200 — %, M@* — %)) + o | M@* — i)
= lluk —u** = @ = pagu® — i, M@F - a*))

) 1 5 1 N
< [l —u* |~ tmin 2— ) —— (fnx" — 717 + [— + vxmm<BTB>] lIy* — yk||2) ,
14+8 \7 o

where the last inequality follows from (3.16) and (3.19). The above inequality means the
(¥} is Fejér monotone and the assertion follows immediately from the results in [5,2]. O
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4 Numerical experiments

In this section, we apply the improved primal-dual algorithm (denoted as “IPDA”) to solve
some TV image deblurring problems, and report some preliminary numerical results. For
this application, the underlying linear operator A in (1.1) is the matrix representation of the
discrete gradient operator, and the matrix B in (1.1) is a deconvolution operator. Since the
proposed method is an improved version of He and Yuan’s [10] Algorithm 1 (see (2.4)—(2.5)
and denote it as “HYPD” for short), we only compare “IPDA” method with “HYPD” to
demonstrate the improvements of our algorithm.

Without loss of generality, the quality of restored images is measured by the value of
signal-to-noise ratio (SNR) defined by

I3
SNR := 201log, T
where y is the image restored by certain algorithm and y represent the original image. To
report the numerical results, we mainly list the plots of evolutions of SNR value with respect
to iterations.
All the proposed algorithms were coded by MATLAB 2010b and all the numerical experi-
ments were run on a HP desktop with Intel-Pentium Dual Core CPU 2.6 GHz and 2G memory.
In our numerical experiments, we test the images ‘House.png’ (128 x 128), ‘Camera-
man.png’ (256 x 256) and ‘Barbara.png’ (512 x 512) as shown in Fig. 1. These images are
then degraded by convolution and the zero-mean Gaussian noise with variance 4.0 x 107°.
The blur operator and the additive noise are generated by scripts fspecial and imnoise
in MATLAB Image Processing Toolbox, respectively. Specifically, we set the motion blur

Fig.1 The first row lists the original images and the second row lists the degraded images. From left to right:
‘House.png’, ‘Cameraman.png’ and ‘Barbara.png’
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Fig. 2 Sensitivity analysis of parameter 6 in “IPDA” for ‘Cameraman.png’
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Fig. 3 Evolutions of SNRs with respect to iterations for the tested images. From left to right corresponding

to: ‘House.png’, ‘Cameraman.png’ and ‘Barbara.png’, respectively

with 1en = 21 and theta = 135. The corresponding corrupted images are listed in Fig. 1.
Throughout these experiments, we take v = 80 for the data-fidelity term in (1.1).

For one of our contributions is that we can choose the parameter 6 arbitrarily, we first
analyze the sensitivity of 6 for the improved algorithm. In Fig. 2, the left plot shows the
effects of 6 with fixed t = 0.02 and 0 = 2, and the right one lists the effect of 6 with
t=0.02and o = m for the image ‘Cameraman.png’. From Fig. 2, we can see that
our method is very stable for different 6 in many cases.

Secondly, in order to demonstrate the improvements of our new algorithm, we plotted the
evolutions of SNRs with respect to iterations for “IPDA” and “HYPD” in Fig. 3. Through-
out the following experiments, we set 7 = 0.02, y = 1.5 and ¢ = 2 for both of “IPDA”
and “HYPD”. In addition, we took & = 1.5 and & = 0.8 in “IPDA” and “HYPD”, respec-
tively. According to Fig. 3, we can see that the proposed “IPDA” can reach a higher SNR
value than “HYPD” with the same iterations. In other words, the proposed method requires
less iterations to get the same SNR value than “HYPD”. Therefore, this figure supports our
improvements numerically.

In practice, we usually do not know the original images. Thus, we use the following rule
Iy + = 4l

LA (4.20)
llyEHL

= <,

to be the stopping criterion, where {y*} is the sequence generated by one of the tested algo-
rithms and ¢ is the error tolerance. Figure 4 lists the corresponding restored images by “IPDA”
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Fig. 4 Restored images by “IPDA” (the first row) and “HYPD” (the second row) under stopping criterion
(4.20) with error tolerance ¢ = 107

and “HYPD” under stopping criterion (4.20) with error tolerance & = 107>, It is clear that
both of “IPDA” and “HYPD” methods can restore the corrupted images with high quality.

5 Conclusion

We have presented a new correction scheme in the first-order primal-dual algorithms for
solving the saddle point problem (1.1). We prove the global convergence of the new scheme
under more flexible conditions than the existing literature. That is, we have no restriction
of the parameter 6, and the requirement on 7 and o is (3.15). This flexible in choosing the
parameters is crucial from numerical point of view. Some preliminary numerical experiments
on image deblurring supports our improvements for He and Yuan’s Algorithm 1 [10].

Note that in He and Yuan [10], the authors extended their algorithm to generic saddle
point problems. Since Lemma 3.1 depends on the special structure of the problem, it seems
not possible to extend our algorithm to generic saddle point problems.
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improve the presentation of the paper. The research is supported by the NSFC grants 11071122 and 11171159.
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