A complete solution to the chromatic equivalence class of graph $\overline{B_{n-7,1,3}}$

Jianfeng Wang ${ }^{\mathrm{a}, \mathrm{b}, *}$, Ruying Liu ${ }^{\mathrm{b}}$, Chengfu Ye ${ }^{\mathrm{b}}$, Qiongxiang Huang ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, PR China

Received 4 September 2006; received in revised form 29 June 2007; accepted 12 July 2007
Available online 23 August 2007

Abstract

By $h(G, x)$ and $P(G, \lambda)$ we denote the adjoint polynomial and the chromatic polynomial of a graph G, respectively. A new invariant of graph G, which is the fourth character $R_{4}(G)$, is given. By the properties of the adjoint polynomials, the adjoint equivalence class of graph $B_{n-7,1,3}$ is determined. According to the relations between $h(G, x)$ and $P(G, \lambda)$, we also simultaneously determine the chromatic equivalence class of $\overline{B_{n-7,1,3}}$ which is the complement of $B_{n-7,1,3}$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Adjoint polynomial; The smallest real root; The second smallest real root; The fourth character; Chromatic equivalence class

1. Introduction

All graphs considered here are finite and simple. Notations and terminology not defined here will conform to those in [2]. For a graph G, let $V(G), E(G), p(G), q(G)$ and \bar{G}, respectively, be the set of vertices, the set of edges, the order, the size and the complement of G.

For a graph G, we denote by $P(G, \lambda)$ the chromatic polynomial of G. A partition $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of a graph G if every A_{i} is a nonempty independent set of G. We denote by $\alpha(G, r)$ the number of r-independent partitions of G. Thus the chromatic polynomial of G is $P(G, \lambda)=\sum_{r \geqslant 1} \alpha(G, r)(\lambda)_{r}$, where $(\lambda)_{r}=\lambda(\lambda-1)(\lambda-2) \cdots(\lambda-r+1)$ for all $r \geqslant 1$. The readers can turn to [20] for details on chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. By $[G]$ we denote the equivalence class determined by G under " \sim ". It is obvious that " \sim " is an equivalence relation on the family of all graphs. A graph G is called chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$. See [4,9,10] for many results on this field.

[^0]Definition 1.1 (Dong et al. [4], Liu [17]). Let graph G with p vertices, the polynomial

$$
h(G, x)=\sum_{i=1}^{p} \alpha(\bar{G}, i) x^{i}
$$

is called its adjoint polynomial.
Definition 1.2 (Liu and Zhao [18]). Let G be a graph and $h_{1}(G, x)$ the polynomial with a nonzero constant term such that $h(G, x)=x^{\rho(G)} h_{1}(G, x)$. If $h_{1}(G, x)$ is an irreducible polynomial over the rational number field, then G is called irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by $G \stackrel{h}{\sim} H$, if $h(G, x)=h(H, x)$. Evidently, " \sim " is an equivalence relation on the family of all graphs. Let $[G]_{h}=\{H \mid H \stackrel{h}{\sim} G\}$. A graph G is said to be adjointly unique (or simply h-unique) if $H \cong G$ whenever $H \stackrel{h}{\sim} G$.

Theorem 1.1 (Dong et al. [5]). (1) $G \stackrel{h}{\sim} H$ if and only if $\bar{G} \sim \bar{H}$.
(2) $[G]_{h}=\{H \mid \bar{H} \in[\bar{G}]\}$.
(3) G is χ-unique if and only if h-unique.

The graphs with orders n used in the paper are drawn as follows:

ξ				\checkmark $\longdiv { O }$		
	$C_{r}\left(P_{s}\right)$	$Q_{r, s}$	$B_{r, s, t}$	F_{n}	$U_{r, s, t, a, b}$	K_{4}^{-}
	$r \geq 4, s \geq 2$	$r, s \geq 1$	$r, s, t \geq 1$	$n \geq 6$	$r, s, t, a, b \geq 1$	$n=4$
ψ						
	ψ_{n}^{1}	ψ_{n}^{2}	$\psi_{n}^{3}(r, s)$	$\psi_{n}^{4}(r, s)$	$\psi_{n}^{5}(r, s, t)$	ψ_{5}^{6}
	$n \geq 5$	$n \geq 5$	$r \geq 4, s \geq 2$	$r, s \geq 1$	$r, s, t \geq 1$	$n=5$

Now we define some classes of graphs, which will be used throughout the paper.
(1) $C_{n}\left(\right.$ resp. $\left.P_{n}\right)$ denotes the cycle (resp. the path) of order n, and write $\mathscr{C}=\left\{C_{n} \mid n \geqslant 3\right\}, \mathscr{P}=\left\{P_{n} \mid n \geqslant 2\right\}$ and $\mathscr{U}=$ $\{U(1,1, t, 1,1) \mid t \geqslant 1\}$.
(2) $D_{n}(n \geqslant 4)$ denotes the graph obtained from C_{3} and P_{n-2} by identifying a vertex C_{3} with a pendent vertex of P_{n-2}.
(3) $T_{l_{1}, l_{2}, l_{3}}$ is a tree with a vertex v of degree 3 such that $T_{l_{1}, l_{2}, l_{3}}-v=P_{l_{1}} \cup P_{l_{2}} \cup P_{l_{3}}$ and $l_{3} \geqslant l_{2} \geqslant l_{1}$, write $\mathscr{T}^{0}=$ $\left\{T_{1,1, l_{3}} \mid l_{3} \geqslant 1\right)$ and $\mathscr{T}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid\left(l_{1}, l_{2}, l_{3}\right) \neq(1,1,1)\right\}$.
(4) $\vartheta=\left\{C_{n}, D_{n}, K_{1}, T_{l_{1}, l_{2}, l_{3}} \mid n \geqslant 4\right\}$.
(5) $\xi=\left\{C_{r}\left(P_{s}\right), Q_{r, s}, B_{r, s, t}, F_{n}, U_{r, s, t, a, b}, K_{4}^{-}\right\}$.
(6) $\psi=\left\{\psi_{n}^{1}, \psi_{n}^{2}, \psi_{n}^{3}(r, s), \psi_{n}^{4}(r, s), \psi_{n}^{5}(r, s, t), \psi_{5}^{6}\right\}$.

For convenience, we simply denote $h(G, x)$ by $h(G)$ and $h_{1}(G, x)$ by $h_{1}(G)$. By $\beta(G)$ and $\gamma(G)$ we denote the smallest and the second smallest real root of $h(G)$, respectively. Let $d_{G}(v)$, simply denoted by $d(v)$, be the degree of vertex v. For two graphs G and $H, G \cup H$ denotes the disjoint union of G and H, and $m H$ stands for the disjoint union of m copies. By K_{n} we denote the complete graph with order n, let $n_{G}\left(K_{3}\right)$ and $n_{G}\left(K_{4}\right)$ denote the number of subgraphs isomorphic to K_{3} and K_{4}, respectively. Let $g(x) \mid f(x)$ (resp. $\left.g(x) \nmid f(x)\right)$ denote $g(x)$ divides $f(x)$ (resp. $g(x)$ does not divide $f(x)$) and $\partial(f(x))$ denote the degree of $f(x)$. By $(f(x), g(x))$ we denote the largest common factor of $f(x)$ and $g(x)$ on the real field.

It is an interesting problem to determine $[G]$ for a given graph G. From Theorem 1.1, it is not difficult to see that the goal of determining $[G]$ can be realized by determining $[\bar{G}]_{h}$. The related topics have been partially discussed in this respect by Dong et al in [5]. In this paper, using the properties of adjoint polynomials, we determine the $\left[B_{n-7,1,3}\right]_{h}$ for graph $B_{n-7,1,3}$, simultaneously, $\left[\overline{B_{n-7,1,3}}\right]$ is also determined, where $n \geqslant 8$.

2. Preliminaries

For a polynomial $f(x)=x^{n}+b_{1} x^{n-1}+b_{2} x^{n-2}+\cdots+b_{n}$, we define

$$
R_{1}(f(x))= \begin{cases}-\binom{b_{1}}{2}+1 & \text { if } n=1 \\ b_{2}-\binom{b_{1}-1}{2}+1 & \text { if } n \geqslant 2\end{cases}
$$

For a graph G, we write $R_{1}(G)$ instead of $R_{1}(h(G))$.
Definition 2.1 (Dong et al. [3], Liu [17]). Let G be a graph with p vertices and q edges. The first character of G is defined as

$$
R_{1}(G)= \begin{cases}0 & \text { if } q=0 \\ b_{2}(G)-\binom{b_{1}(G)-1}{2}+1 & \text { if } q>0\end{cases}
$$

The second character of G is defined as

$$
R_{2}(G)=b_{3}(G)-\binom{b_{1}(G)}{3}-\left(b_{1}(G)-2\right)\left(b_{2}(G)-\binom{b_{1}(G)}{2}\right)-b_{1}(G)
$$

where $b_{i}(G)=\alpha(\bar{G}, p-i)(i=1,2,3)$.
Lemma 2.1 (Dong et al. [3], Liu [17]). Let G be a graph with k components $G_{1}, G_{2}, \ldots, G_{k}$. Then

$$
h(G)=\prod_{i=1}^{k} h\left(G_{i}\right) \quad \text { and } \quad R_{j}(G)=\sum_{i=1}^{k} R_{j}\left(G_{i}\right) \text { for } j=1,2
$$

It is obvious that $R_{j}(G)$ is an invariant of graphs. So, for any two graphs G and H, we have $R_{j}(G)=R_{j}(H)$ for $j=1,2$ if $h(G)=h(H)$ or $h_{1}(G)=h_{1}(H)$.

Lemma 2.2 (Liu [12,13]). Let G be a graph with p vertices and q edges. Denote M the set of vertices of the triangles in G and by $M(i)$ the number of triangles which cover the vertex i in G. If the degree sequence of G is $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$, then the first four coefficients of $h(G)$ are, respectively,
(1) $b_{0}(G)=1, b_{1}(G)=q$;
(2) $b_{2}(G)=\binom{q+1}{2}-\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}+n_{G}\left(K_{3}\right)$;
(3)
$b_{3}(G)=\frac{q}{6}\left(q^{2}+3 q+4\right)-\frac{q+2}{2} \sum_{i=1}^{p} d_{i}^{2}+\frac{1}{3} \sum_{i=1}^{p} d_{i}^{3}+\sum_{i j \in E(G)} d_{i} d_{j}-\sum_{i \in M} M(i) d_{i}+(q+2) n_{G}\left(K_{3}\right)+n_{G}\left(K_{4}\right)$, where $b_{i}(G)=\alpha(\bar{G}, p-i)(i=0,1,2,3)$.

For an edge $e=v_{1} v_{2}$ of a graph G, the graph $G * e$ is defined as follows: the vertex set of $G * e$ is $\left(V(G)-\left\{v_{1}, v_{2}\right\}\right) \cup$ $\{v\}(v \notin G)$, and the edge set of $G * e$ is $\left\{e^{\prime} \mid e^{\prime} \in E(G), e^{\prime}\right.$ is not incident with v_{1} or $\left.v_{2}\right\} \cup\left\{u v \mid u \in N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)\right\}$, where $N_{G}(v)$ is the set of vertices of G which are adjacent to v.

Lemma 2.3 (Liu [12]). Let G be a graph with $e \in E(G)$. Then

$$
h(G, x)=h(G-e, x)+h(G * e, x),
$$

where $G-e$ denotes the graph obtained by deleting the edge e from G.
Lemma 2.4 (Liu [11,15,16]). (1) For $n \geqslant 2, h\left(P_{n}\right)=\sum_{k \leqslant n}\binom{k}{n-k} x^{k}$.
(2) For $m \geqslant 4, h\left(D_{n}\right)=\sum_{k \leqslant n}\left(\frac{n}{k}\binom{k}{n-k}+\binom{k-2}{n-k-3}\right) x^{k}$.
(3) For $n \geqslant 4, m \geqslant 6, h\left(P_{n}\right)=x\left(h\left(P_{n-1}\right)+h\left(P_{n-2}\right)\right), h\left(D_{m}\right)=x\left(h\left(D_{m-1}\right)+h\left(D_{m-2}\right)\right)$.

Lemma 2.5 (Zhao [23]). Let $\left\{g_{i}(x)\right\}$, simply denoted by $\left\{g_{i}\right\}$, be a polynomial sequence with integer coefficients and $g_{n}(x)=x\left(g_{n}(x)+g_{n-1}(x)\right)$. Then
(1) $g_{n}(x)=h\left(P_{k}\right) g_{n-k}(x)+x h\left(P_{k-1}\right) g_{n-k-1}(x)$.
(2) $h_{1}\left(P_{n}\right) \mid g_{k(n+1)+i}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$, where $0 \leqslant i \leqslant n, n \geqslant 2$ and $k \geqslant 1$.

Lemma 2.6 (Du [6], Liu and Zhao [18]). Let G be a nontrivial connected graph with n vertices. Then
(1) $R_{1}(G) \leqslant 1$, and the equality holds if and only if $G \cong P_{n}(n \geqslant 2)$ or $G \cong K_{3}$.
(2) $R_{1}(G)=0$ if and only if $G \in \vartheta$.
(3) $R_{1}(G)=-1$ if and only if $G \in \xi$, especially, $q(G)=p(G)+1$ if and only if $G \in\left\{F_{n} \mid n \geqslant 6\right\} \cup\left\{K_{4}^{-}\right\}$.
(4) $R_{1}(G)=-2$ if and only if $G \in \psi$ for $q(G)=p(G)+1$ and $G \cong K_{4}^{-}$for $q(G)=p(G)+2$.

Lemma 2.7 (Huo [8]). For $k \geqslant 0$, let $G^{(-k)}$ denote the union of the components of G whose the first characters are $-k$ and s_{k} denote the number of components of $G^{(-k)}$. Then
(1) If $k=0$, or -1 , or -2 , then $q\left(G^{(-k)}\right)-p\left(G^{(-k)}\right) \leqslant k s_{k}$ and the equality holds if and only if each component G_{i} of $G^{(-k)}$ such that $q\left(G_{i}\right)-p\left(G_{i}\right)=k$, where $1 \leqslant i \leqslant s_{k}$.
(2) If $k=-3$, then $q\left(G^{(-k)}\right)-p\left(G^{(-k)}\right) \leqslant 2 s_{3}$ and the equality holds if and only if each component G_{i} of $G^{(-3)}$ such that $q\left(G_{i}\right)-p\left(G_{i}\right)=2$, where $1 \leqslant i \leqslant s_{3}$.

Lemma 2.8 (Zhao [23]). Let G be a connected graph and H a proper subgraph of G, then

$$
\beta(G)<\beta(H) .
$$

Lemma 2.9 (Zhao [23]). Let G be a connected graph. Then
(1) $\beta(G)=-4$ if and only if

$$
G \in\left\{T(1,2,5), T(2,2,2), T(1,3,3), K_{1,4}, C_{4}\left(P_{2}\right), Q(2,2), K_{4}^{-}, D_{8}\right\} \cup \mathscr{U} .
$$

(2) $\beta(G)>-4$ if and only if

$$
G \in\left\{K_{1}, T(1,2, i)(2 \leqslant i \leqslant 4), D_{i}(4 \leqslant i \leqslant 7)\right\} \cup \mathscr{P} \cup \mathscr{C} \cup \mathscr{T}^{0} .
$$

Lemma 2.10 (Zhao [23]). Let G be a connected graph. Then $-(2+\sqrt{5}) \leqslant \beta(G)<-4$ if and only if G is one of the following graphs:
(1) $T_{l_{1}, l_{2}, l_{3}}$ for $l_{1}=1, l_{2}=2, l_{3}>5$ or $l_{1}=1, l_{2}>2, l_{3}>3$, or $l_{1}=l_{2}=2, l_{3}>2$, or $l_{1}=2, l_{1}=l_{2}=3$.
(2) $U_{r, s, t, a, b}$ for $r=a=1,(r, s, t) \in\{(1,1,2),(2,4,2),(2,5,3),(3,7,3),(3,8,4)\}$, or $r=a=1, s \geqslant 1, t \geqslant t^{*}(s, b)$, $b \geqslant 1$, where $(s, b) \neq(1,1)$ and

$$
t^{*}= \begin{cases}s+b+2, & \text { if } s \geqslant 3 \\ b+3, & \text { if } s=2 \\ b, & \text { if } s=1\end{cases}
$$

(3) D_{n} for $n \geqslant 9$.
(4) $C_{n}\left(P_{2}\right)$ for $n \geqslant 5$.
(5) F_{n} for $n \geqslant 9$.
(6) $B_{r, s, t}$ for $r=5$, $s=1$ and $t=3$, or $r \geqslant 1$, $s=1$ if $t=1$, or $r \geqslant 4$, $s=1$ if $t=2$, or $b \geqslant c+3$, $s=1$ if $t \geqslant 3$.
(7) $G \cong C_{4}\left(P_{3}\right)$, or $G \cong Q_{1,2}$.

From Lemmas 2.6 and 2.10, the following corollary is obtained.
Corollary 2.1. If graph G such that $R_{1}(G) \leqslant-2$, then $\beta(G)<-2-\sqrt{5}$.
Lemma 2.11 (Ren [21]). Let graph $G_{n} \in \xi \backslash\left\{F_{n}, U_{r, s, t, a, b}, K_{4}^{-}\right\}$, then
(1) $b_{3}\left(G_{n}\right)=b_{3}\left(D_{n}\right)-n+5$ if and only if

$$
G_{n} \in\left\{C_{r}\left(P_{s}\right) \mid r \geqslant 4, s \geqslant 3\right\} \cup\left\{Q_{1, n-4} \mid n \geqslant 6\right\} \cup\left\{B_{r, 1, t}, B_{1,1,1} \mid r, t \geqslant 2\right\}
$$

(2) $b_{3}\left(G_{n}\right)=b_{3}\left(D_{n}\right)-n+6$ if and only if

$$
G_{n} \in\left\{Q_{r, s} \mid r, s \geqslant 2\right\} \cup\left\{B_{1,1, t}, B_{r, s, t} \mid r, s, t \geqslant 2\right\} .
$$

Lemma 2.12 (Ren [21]). Let graph $G_{n} \in \psi$, then $b_{3}\left(G_{n}\right)=b_{3}\left(D_{n+1}\right)-2(n+1)+t$, where $10 \leqslant t \leqslant 13$.
Lemma 2.13 (Liu [14]). Let $f(x)$ be the monadic integral coefficients polynomial in x. If all the roots of $f(x)$ are nonnegative and there exists positive integer k such that $f(k)$ is a prime number, then $f(x)$ is a irreducible polynomial over the rational number field.

3. The algebraic properties of adjoint polynomials

3.1. The divisibility of adjoint polynomials and the fourth characters of graphs

Definition 3.1.1. The adjoint roots of graph G are the roots of its adjoint polynomial $h(G)$.
Lemma 3.1.1 (Zhao [23]). For $n, m \geqslant 2, h\left(P_{n}\right) \mid h\left(P_{m}\right)$ if and only if $n+1 \mid m+1$.
Theorem 3.1.1. (1) For $n \geqslant 8$,

$$
\partial\left(h_{1}\left(B_{n-7,1,3}\right)\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2} & \text { otherwise }\end{cases}
$$

(2) For $n \geqslant 8$,

$$
\rho\left(B_{n-7,1,3}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { otherwise }\end{cases}
$$

(3) For $n \geqslant 10, h\left(B_{n-7,1,3}\right)=x\left(h\left(B_{n-8,1,3}\right)+h\left(B_{n-9,1,3}\right)\right)$.

Proof. (1) Choosing a pendant edge $e=u v \in E\left(B_{n-7,1,3}\right)$ such that $d(u)=1, d(v)=3$ and by Lemma 2.3, we have $h\left(B_{n-7,1,3}\right)=x h\left(D_{n-1}\right)+x h\left(P_{3}\right) h\left(D_{n-5}\right)$. We have, from Lemma 2.4, that

$$
\partial\left(h_{1}\left(D_{n-1}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor \quad \text { and } \quad \partial\left(h_{1}\left(P_{3}\right) h_{1}\left(D_{n-5}\right)\right)=1+\left\lfloor\frac{n-4}{2}\right\rfloor .
$$

If n is even, then $\left[\frac{n}{2}\right]=\frac{n}{2}>1+\left\lfloor\frac{n-4}{2}\right\rfloor=\frac{n-2}{2}$. If n is odd, then $\left\lfloor\frac{n}{2}\right\rfloor=\frac{n-1}{2}>1+\left\lfloor\frac{n-4}{2}\right\rfloor=\frac{n-3}{2}$. Hence the result holds.
(2) Obviously follows from (1).
(3) Choosing a pendant edge $e=u v \in E\left(B_{n-7,1,3}\right)$ such that $d(u)=1, d(v)=3$, we have, by Lemma 2.4, that

$$
\begin{aligned}
h\left(B_{n-7,1,3}\right) & =x h\left(D_{n-1}\right)+x h\left(P_{3}\right) h\left(D_{n-5}\right) \\
& =x\left(x h\left(D_{n-2}\right)+x h\left(D_{n-3}\right)\right)+x h\left(P_{3}\right)\left(x h\left(D_{n-6}\right)+x h\left(D_{n-7}\right)\right) \\
& =x\left(x h\left(D_{n-2}\right)+x h\left(P_{3}\right) h\left(D_{n-6}\right)\right)+x\left(x h\left(D_{n-3}\right)+x h\left(P_{3}\right) h\left(D_{n-7}\right)\right) \\
& =x\left(h\left(B_{n-8,1,3}\right)+h\left(B_{n-9,1,3}\right)\right) .
\end{aligned}
$$

Theorem 3.1.2. For $n \geqslant 2$ and $m \geqslant 8, h\left(P_{n}\right) \mid h\left(B_{m-7,1,3}\right)$ if and only if $n=2$ and $m=3 k+2$ for $k \geqslant 2$ or $n=6$ and $m=7 k+3$ for $k \geqslant 1$.

Proof. Let $g_{0}(x)=x^{5}+8 x^{4}+22 x^{3}+26 x^{2}+13 x+3, g_{1}(x)=-x^{5}-7 x^{4}-16 x^{3}-15 x^{2}-4 x$ and $g_{m}(x)=$ $x\left(g_{m-1}(x)+g_{m-2}(x)\right)$. We can deduce that

$$
\begin{align*}
& g_{0}(x)=x^{5}+8 x^{4}+22 x^{3}+26 x^{2}+13 x+3, \\
& g_{1}(x)=-x^{5}-7 x^{4}-16 x^{3}-15 x^{2}-4 x, \\
& g_{2}(x)=x^{5}+6 x^{4}+11 x^{3}+9 x^{2}+3 x, \\
& g_{3}(x)=-x^{5}-5 x^{4}-6 x^{3}-x^{2}, \\
& g_{4}(x)=x^{5}+5 x^{4}+8 x^{3}+3 x^{2}, \\
& g_{5}(x)=2 x^{4}+2 x^{3}, \\
& g_{6}(x)=x^{6}+7 x^{5}+10 x^{4}+3 x^{3}, \\
& g_{7}(x)=x^{7}+7 x^{6}+12 x^{5}+5 x^{4}, \\
& g_{m}(x)=h\left(B_{m-7,1,3}\right) \text { if } m \geqslant 8 . \tag{3.1}
\end{align*}
$$

Let $m=(n+1) k+i$, where $0 \leqslant i \leqslant n$. It is obvious that $h_{1}\left(P_{n}\right) \mid h\left(B_{m-7,1,3}\right)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{m}(x)$. From Lemma 2.5, it follows that $h_{1}\left(P_{n}\right) \mid g_{m}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$, where $0 \leqslant i \leqslant n$. We distinguish the following two cases:

Case 1: $n \geqslant 8$.
If $0 \leqslant i \leqslant 7$, from (3.1), it is not difficult to verify that $h_{1}\left(P_{n}\right) \nmid g_{i}(x)$. If $i \geqslant 8$, From $i \leqslant n$, Lemma 2.4 and Theorem 3.1.1, we have that $\partial\left(h_{1}\left(P_{n}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor \geqslant \partial\left(h_{1}\left(B_{i-7,1,3}\right)=\left\lfloor\frac{i}{2}\right\rfloor\right.$. Suppose that $h_{1}\left(P_{n}\right) \mid h_{1}\left(B_{i-7,1,3}\right)$, it must leads to $\partial\left(h_{1}\left(P_{n}\right)\right)=\partial\left(h_{1}\left(B_{i-7,1,3}\right)\right.$ and $h_{1}\left(P_{n}\right)=h_{1}\left(B_{i-7,1,3}\right)$, which imply that $R_{1}\left(P_{n}\right)=R_{1}\left(B_{i-7,1,3}\right)$. This is a contradiction by Lemma 2.6. Hence $h_{1}\left(P_{n}\right) \nmid h_{1}\left(B_{i-7,1,3}\right)$, together with $\left(h_{1}\left(P_{n}\right), x^{\rho\left(B_{i-7,1,3}\right)}\right)=1$, we have that $h_{1}\left(P_{n}\right) \nmid h\left(B_{i-7,1,3}\right)$.

Case $2: 2 \leqslant n \leqslant 7$.
From (1) of Lemma 2.4 and (3.1), we can verify that $h_{1}\left(P_{n}\right) \mid g_{i}(x)$ if and only if $n=2$ and $i=2$ or $n=6$ and $i=3$ for $0 \leqslant i \leqslant n \leqslant 7$. From Lemma 2.5 , we have that $h_{1}\left(P_{n}\right) \mid h\left(B_{m-7,1,3}\right)$ if and only if $n=2$ and $m=3 k+2$ or $n=6$ and $m=7 k+3$. From $\rho\left(P_{3}\right)=2, \rho\left(P_{6}\right)=3$ and $\rho\left(B_{m-7,1,3}\right)=\left\lfloor\frac{m}{2}\right\rfloor \geqslant 4$ for $m \geqslant 8$, we obtain that the result holds.

Theorem 3.1.3. For $m \geqslant 8, h^{2}\left(P_{2}\right) \nmid h\left(B_{m-7,1,3}\right)$ and $h^{2}\left(P_{6}\right) \nmid h\left(B_{m-7,1,3}\right)$.

Proof. Suppose that $h^{2}\left(P_{2}\right) \mid h\left(B_{m-7,1,3}\right)$, from Theorem 3.1.2, we have that $m=3 k+2$, where $k \geqslant 2$. Let $g_{m}(x)=$ $h\left(B_{m-7,1,3}\right)$ for $m \geqslant 8$. By (3) of Theorem 3.1.1, (1) of Lemma 2.5, it follows that

$$
\begin{aligned}
g_{m}(x) & =h\left(P_{2}\right) g_{m-2}(x)+x^{2} g_{m-3}(x) \\
& =h^{2}\left(P_{2}\right) g_{m-4}(x)+2 x^{2} h\left(P_{2}\right) g_{m-5}(x)+x^{4} g_{m-6}(x) \\
& =h^{2}\left(P_{2}\right)\left(g_{m-4}(x)+2 x^{2} g_{m-7}(x)\right)+3 x^{4} h\left(P_{2}\right) g_{m-8}(x)+x^{6} g_{m-9}(x) \\
& =h^{2}\left(P_{2}\right)\left(g_{m-4}(x)+2 x^{2} g_{m-7}(x)+3 x^{4} g_{m-10}(x)\right)+4 x^{6} h\left(P_{2}\right) g_{m-11}(x)+x^{8} g_{m-12}(x) \\
& =\cdots=h^{2}\left(P_{2}\right) \sum_{s=1}^{k-2} g_{m-3 s-1}(x)+(k-1) x^{2 k-4} h\left(P_{2}\right) g_{m+1-3(k-1)}(x)+x^{2 k-2} g_{m-3(k-1)}(x) .
\end{aligned}
$$

According to the assumption and $m=3 k+2$, we arrive at, by (3.1), that

$$
h^{2}\left(P_{2}\right) \mid\left((k-1) x^{2 k-4} h\left(P_{2}\right) g_{6}(x)+x^{2 k-1} g_{5}(x)\right),
$$

that is,

$$
h\left(P_{2}\right) \mid\left((k-1) x^{2 k+2}+7(k-1) x^{2 k+1}+(10 k-8) x^{2 k}+3(k-1) x^{2 k-1}\right) .
$$

By direct calculation, we obtain that $k=-1$, which contradicts to $k \geqslant 2$.
Using the similar methods, we can also prove $h^{2}\left(P_{6}\right) \nmid h\left(B_{m-7,1,3}\right)$. The details here are omitted.
Definition 3.1.2. Let G be a graph with p vertices and q edges. The fourth character of G is defined as follows:

$$
R_{4}(G)=R_{2}(G)+p-q .
$$

From Lemmas 2.1 and 2.2, we obtain the following two theorems:
Theorem 3.1.4. Let graph G with k components $G_{1}, G_{2}, \ldots, G_{k}$. Then

$$
R_{4}(G)=\sum_{i=1}^{k} R_{4}\left(G_{k}\right) .
$$

Theorem 3.1.5. If graphs G and H such that $h(G)=h(H)$ or $h_{1}(G)=h_{1}(H)$, then

$$
R_{4}(G)=R_{4}(H)
$$

From Definitions 3.1.2 and 2.1, we have the following theorem:
Theorem 3.1.6. (1) $R_{4}\left(C_{n}\right)=0$ for $n \geqslant 4$ and $R_{4}\left(C_{3}\right)=-2 ; R_{4}\left(K_{1}\right)=1$.
(2) $R_{4}\left(B_{r, 1,1}\right)=3$ for $r \geqslant 1$; and $R_{4}\left(B_{r, 1, t}\right)=4$ for $r, t>1$.
(3) $R_{4}\left(F_{6}\right)=4, R_{4}\left(F_{n}\right)=3$ for $n \geqslant 7$ and $R_{4}\left(K_{4}^{-}\right)=2$.
(4) $R_{4}\left(D_{4}\right)=0$ and $R_{4}\left(D_{n}\right)=1$ for $n \geqslant 5 ; R_{4}\left(T_{1,1,1}\right)=0$.
(5) $R_{4}\left(T_{1,1, l_{3}}\right)=1, R_{4}\left(T_{1, l_{2}, l_{3}}\right)=2$ and $R_{4}\left(T_{l_{1}, l_{2}, l_{3}}\right)=3$ for $l_{3} \geqslant l_{2} \geqslant l_{1} \geqslant 2$.
(6) $R_{4}\left(C_{r}\left(P_{2}\right)\right)=3$ for $m \geqslant 4$ and $R_{4}\left(C_{4}\left(P_{3}\right)\right)=R_{4}\left(Q_{1,2}\right)=4$.
(7) $R_{4}\left(P_{2}\right)=0$ and $R_{4}\left(P_{n}\right)=-1$ for $n \geqslant 3$.

3.2. The smallest real roots of adjoint polynomials of graphs

An internal $x_{1} x_{k}$-path of a graph G is a path $x_{1} x_{2} x_{3} \cdots x_{k}$ (possibly $x_{1}=x_{k}$) of G such that $d\left(x_{1}\right)$ and $d\left(x_{k}\right)$ are at least 3 and $d\left(x_{2}\right)=d\left(x_{3}\right)=\cdots=d\left(x_{x-1}\right)$ (unless $k=2$).

Lemma 3.2.1 (Zhao [23]). Let T be a tree. If uv is an edge on an internal path of T and $T \nexists U(1,1, t, 1,1)$ for $t \geqslant 1$, then $\beta(T)<\beta\left(T_{x y}\right)$, where $T_{x y}$ is the graph obtained from T by inserting a new vertex on the edge $x y$ of T.

Lemma 3.2.2 (Zhao [23]). (1) For $n \geqslant 5, m \geqslant 4, \beta\left(C_{n}\left(P_{2}\right)\right)<\beta\left(C_{n-1}\left(P_{2}\right)\right) \leqslant \beta\left(D_{m}\right)$.
(2) For $n \geqslant 6$ and $m \geqslant 6, \beta\left(F_{n}\right)=\beta\left(B_{m-5,1,1}\right)$ if and only if $n=2 k+1$ and $m=k+2$.
(3) For $m \geqslant 6$ and $n \geqslant 4, \beta\left(F_{m}\right)<\beta\left(F_{m+1}\right)<\beta\left(D_{n}\right)$ and $\beta\left(B_{m-5,1,1}\right)<\beta\left(B_{m-4,1,1}\right)<\beta\left(D_{n}\right)$.

From Lemma 2.3 and calculation, we have the following lemma:
Lemma 3.2.3. (1) $T_{1,3,6} \stackrel{h}{\sim} C_{5}\left(P_{2}\right) \cup P_{5}, B_{n-6,1,2} \stackrel{h}{\sim} K_{1} \cup F_{n-1}$ for $n \geqslant 7$.
(2) $B_{5,1,3} \cup K_{1,3} \stackrel{h}{\sim} K_{1} \cup C_{14}\left(P_{2}\right), B_{6,1,3} \cup K_{1,3} \stackrel{h}{\sim} K_{1} \cup C_{7} \cup C_{8}\left(P_{2}\right)$,
(3) $B_{6,1,3} \stackrel{h}{\sim} C_{7} \cup C_{4}\left(P_{3}\right) \stackrel{h}{\sim} C_{7} \cup B_{1,1,1} \stackrel{h}{\sim} C_{7} \cup Q_{1,2}, B_{7,1,3} \stackrel{h}{\sim} D_{6} \cup C_{7}\left(P_{2}\right), B_{10,1,3} \stackrel{h}{\sim} C_{6}\left(P_{2}\right) \cup P_{6} \cup K_{4}^{-} \stackrel{h}{\sim} B_{2,1,1} \cup$ $P_{6} \cup K_{4}^{-}$.
(4) $h\left(B_{3,1,3} \cup P_{4}\right)=\left(x^{4}+5 x^{3}+3 x^{2}\right) h\left(P_{6}\right) h\left(B_{2,1,2}\right), B_{6,1,3} \cup C_{4} \stackrel{h}{\sim} B_{4,1,2} \cup C_{7}, B_{10,1,3} \cup D_{5} \stackrel{h}{\sim} C_{4}\left(P_{2}\right) \cup P_{6} \cup$ $B_{6,1,2}, T_{1,3,11} \cup D_{6} \stackrel{\mathrm{~h}}{\sim} P_{3} \cup C_{5} \cup B_{8,1,2}$.
(5) $U_{1,2, r, 1, t} \stackrel{h}{\sim} K_{1} \cup B_{r, 1, t}$ for $r, t \geqslant 1$.

Lemma 3.2.4. (1) $\beta\left(T_{1,3,6}\right)=\beta\left(C_{5}\left(P_{2}\right)\right), \beta(1,3,11)=\beta\left(B_{8,1,2}\right)$.
(2) $\beta\left(B_{5,1,3}\right)=\beta\left(C_{14}\left(P_{2}\right)\right), \beta\left(B_{6,1,3}\right)=\beta\left(C_{8}\left(P_{2}\right)\right), \beta\left(B_{10,1,3}\right)=\beta\left(C_{6}\left(P_{2}\right)\right)$.
(3) For $r, t \geqslant 1, \beta\left(B_{t, 1,2}\right)=\beta\left(F_{t+5}\right)$ and $\beta(U(1,2, r, 1, t))=\beta\left(B_{r, 1, t}\right)$.
(4) $\beta\left(B_{3,1,3}\right)=\beta\left(B_{2,1,2}\right), \beta\left(B_{6,1,3}\right)=\beta\left(B_{7,1,2}\right), \beta\left(B_{10,1,3}\right)=\beta\left(B_{4,1,2}\right)$.
(5) For $r, t \geqslant 1, \beta\left(B_{r, 1, t}\right)<\beta\left(B_{r+1,1, t}\right)$.

Proof. The first four results of the theorem obviously holds from Lemma 3.2.3.
(5) By Lemma 3.2.1, we have $\beta\left(U_{1,2, r, 1, t}\right)<\beta\left(U_{1,2, r+1,1, t}\right)$. From (3) of the lemma, we arrive at the result.

Theorem 3.2.1. (1) For $n_{1} \geqslant 15,13 \leqslant n_{2} \leqslant 9$ and $n \geqslant 18, \beta\left(B_{1,1,3}\right)<\beta\left(B_{2,1,3}\right)<\beta\left(B_{3,1,3}\right)<\beta\left(C_{n_{1}}\left(P_{2}\right)\right)<\beta\left(C_{14}\left(P_{2}\right)\right)$ $=\beta\left(B_{5,1,3}\right)<\beta\left(C_{n_{2}}\left(P_{2}\right)\right)<\beta\left(C_{8}\left(P_{2}\right)\right)=\beta\left(B_{6,1,3}\right)<\beta\left(C_{7}\left(P_{2}\right)\right)=\beta\left(B_{7,1,3}\right)<\beta\left(B_{8,1,3}\right)<\beta\left(B_{9,1,3}\right)<\beta\left(B_{10,1,3}\right)=$ $\beta\left(C_{6}\left(P_{2}\right)\right)<\beta\left(B_{n-7,1,3}\right)<\beta\left(C_{5}\left(P_{2}\right)\right)<\beta\left(C_{4}\left(P_{2}\right)\right)$.
(2) For $n \geqslant 21$ and $m \geqslant 14, \beta\left(B_{1,1,3}\right)<\beta\left(F_{6}\right)=\beta\left(B_{1,1,2}\right)<\beta\left(B_{2,1,3}\right)<\beta\left(F_{7}\right)=\beta\left(B_{2,1,2}\right)=\beta\left(B_{3,1,3}\right)<\beta\left(B_{4,1,3}\right)<$ $\beta\left(F_{8}\right)=\beta\left(B_{3,1,2}\right)<\beta\left(B_{5,1,3}\right)<\beta\left(B_{6,1,3}\right)=\beta\left(B_{4,1,2}\right)=\beta\left(F_{9}\right)<\beta\left(B_{7,1,3}\right)<\beta\left(B_{5,1,2}\right)=\beta\left(F_{10}\right)<\beta\left(B_{8,1,3}\right)<\beta\left(B_{9,1,3}\right)$ $<\beta\left(B_{10,1,3}\right)=\beta\left(B_{6,1,2}\right)=\beta\left(F_{11}\right)<\beta\left(B_{11,1,3}\right)<\beta\left(B_{12,1,3}\right)<\beta\left(B_{13,1,3}\right)<\beta\left(B_{7,1,2}\right)=\beta\left(F_{12}\right)<\beta\left(B_{n-7,1,3}\right)<$ $\beta\left(B_{m-6,1,2}\right)=\beta\left(F_{m-1}\right)$.
(3) For $n \geqslant 8$ and $m \geqslant 6, \beta\left(B_{n-7,1,3}\right)=\beta\left(B_{m-5,1,1}\right)$ if and only if $n=13, m=6$, or $n=17, m=7$.
(4) For $n \geqslant 8$ and $m \geqslant 4, \beta\left(B_{n-7,1,3}\right)<\beta\left(D_{m}\right)$.
(5) For $n \geqslant 8, \beta\left(B_{n-7,1,3}\right)=\beta\left(Q_{1,2}\right)=\beta\left(C_{4}\left(P_{3}\right)\right)$ if and only if $n=13$.
(6) For $m \geqslant 4, \beta\left(Q_{1,2}\right)=\beta\left(C_{4}\left(P_{3}\right)\right)<\beta\left(D_{m}\right)$.
(7) For $t \geqslant 4$ and $n \geqslant m, \beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-7,1,3}\right)$.

Proof. (1) For $n \geqslant 18$, it is obvious that $T_{1,3,6}$ is a proper subgraph of $B_{n-7,1,3}$. From Lemma 2.8 and (1) of Lemma 3.2.4, it follows that $\beta\left(B_{n-7,1,3}\right)<\beta\left(T_{1,3,6}\right)=\beta\left(C_{5}\left(P_{2}\right)\right)$. From (2) and (5) of Lemma 3.2.4 and (1) of Lemma 3.2.2, we have that the result holds.
(2) Using Software Mathematica and by calculation, we have that $\beta\left(B_{1,1,3}\right)=-4.4605<\beta\left(F_{6}\right)=-4.39026<$ $\beta\left(B_{2,1,3}\right)=-4.36234, \beta\left(B_{4,1,3}\right)=-4.26308<\beta\left(F_{8}\right)=-4.24978<\beta\left(B_{5,1,3}\right)=-4.23499, \beta\left(B_{7,1,3}\right)=-4.19869<$ $\beta\left(F_{10}\right)=-4.189<\beta\left(B_{8,1,3}\right)=-4.18667, \beta\left(B_{13,1,3}\right)=-4.1568<\beta\left(F_{12}\right)=-4.15546<\beta\left(B_{14,1,3}\right)=-4.15431$. For $n \geqslant 21$, it follows, from Lemma 2.8 and (1) of Lemma 3.2.4, that $\beta\left(B_{n-7,1,3}\right)<\beta\left(T_{1,3,11}\right)=\beta\left(B_{8,1,2}\right)$. From (3)-(5) of Lemma 3.2.4 and (3) of Lemma 3.2.2, we have the result.
(3) From (2) of Lemma 3.2.2 and (2) of the theorem, the result obviously holds.
(4) From (2) of the theorem and (3) of Lemma 3.2.2, it is easy to get the result.
(5) From (3) of Lemma 3.2.3 and (5) of Lemma 3.2.4, the result evidently holds.
(6) It obviously follows from (4) and (5) of the theorem.
(7) Since $n \geqslant m$ and $t \geqslant 4$, from (5) of Lemma 3.2.4 and Lemma 2.8, we have that $\beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-t-4,1, t}\right) \leqslant$ $\beta\left(B_{n-8,1, t}\right)<\beta\left(B_{n-7,1, t}\right)<\beta\left(B_{n-7,1,3}\right)$.

3.3. The second smallest real roots of adjoint polynomials of graphs

Lemma 3.3.1 (Gantmacher [7]). Let G be a simple graph and $v \in V(G)$. If the spectrums of G and $G-v$ are, respectively, $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ and $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n-1}$, then

$$
\lambda_{1} \geqslant \mu_{1} \geqslant \lambda_{2} \geqslant \mu_{2} \geqslant \cdots \geqslant \lambda_{n-1} \geqslant \mu_{n-1} \geqslant \lambda_{n}
$$

Lemma 3.3.2 (Biggs [1]). Let the characteristic polynomial of a tree be $f(T, \lambda)=\sum c_{i} \lambda^{n-i}$, then the roots of $f(T)$ are symmetric by 0 , where the odd coefficients $c_{2 r+1}$ are zero and the even coefficients $c_{2 r}$ are given by the rule that $(-1)^{r} c_{2 r}$ is the number of ways of choosing r disjoint edges in the tree.

Lemma 3.3.3 (Zhao [22]). Let T be a tree or a forest. If λ and θ are, respectively, the eigenvalue and the adjoint root of T, then $\theta=-\lambda^{2}$.

Theorem 3.3.1. Let the adjoint roots of tree T and $T-v$ are, respectively, $\eta_{1} \leqslant \eta_{2} \leqslant \cdots \leqslant \eta_{n}$ and $\theta_{1} \leqslant \theta_{2} \leqslant \cdots \leqslant \theta_{n-1}$, where $v \in V(T)$ and $p(T)=n$.
(1) If $n=2 k$, then the nonzero adjoint roots of T and $T-v$ such that

$$
\eta_{1} \leqslant \theta_{1} \leqslant \eta_{2} \leqslant \theta_{2} \leqslant \cdots \leqslant \eta_{k-1} \leqslant \theta_{k-1} \leqslant \eta_{k}<0
$$

(2) If $n=2 k+1$, then the nonzero adjoint roots of T and $T-v$ such that

$$
\eta_{1} \leqslant \theta_{1} \leqslant \eta_{2} \leqslant \theta_{2} \leqslant \cdots \leqslant \theta_{k-1} \leqslant \eta_{k} \leqslant \theta_{k}<0 .
$$

Proof. (1) From $n=2 k$ and Lemma 3.3.2, if follows that $f(T)$ has no zero-root and $f(T-v)$ has only one zeroroot. Without loss of generality, Let the roots of $f(T)$ and $f(T)-v$ are, respectively, $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{k} \geqslant-\lambda_{k} \geqslant-$ $\lambda_{k-1} \geqslant \cdots \geqslant-\lambda_{1}$ and $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{k-1}>0>-\mu_{k-1} \geqslant-\mu_{k-2} \geqslant \cdots \geqslant-\mu_{1}$.

According to Lemma 3.3.1, we arrive at

$$
\lambda_{1} \geqslant \mu_{1} \geqslant \lambda_{2} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{k-1} \geqslant \lambda_{k}>0>-\lambda_{k} \geqslant-\mu_{k-1} \geqslant-\lambda_{2} \geqslant-\mu_{1} \geqslant-\lambda_{1} .
$$

In the light of Lemma 3.3.3, we get that

$$
\eta_{1} \leqslant \theta_{1} \leqslant \eta_{2} \leqslant \theta_{2} \leqslant \cdots \leqslant \eta_{k-1} \leqslant \theta_{k-1} \leqslant \eta_{k}<0 .
$$

(2) Using the similar proof as that of (1), we can prove that the result holds.

Theorem 3.3.2 (Mao [19]). (1) $\gamma\left(U_{1,2, t, 1,3}\right)=-4$ if and only if $t=10$ for $t \geqslant 1$.
(2) $\gamma\left(B_{n-7,1,3}\right)=-4$ if and only if $n=17$ for $n \geqslant 8$.
(3) $\gamma\left(T_{l_{1}, l_{2}, l_{3}}\right)>-4$ for $l_{3} \geqslant l_{2} \geqslant l_{1} \geqslant 1$.

Proof. (2) From (5) of Lemma 3.2.3 and (1) of the theorem, the result holds.
(3) Choosing the vertex $v \in V\left(T_{l_{1}, l_{2}, l_{3}}\right)$ such that $d(v)=3$ and from Lemma 2.9, we obtain, from Lemma 2.9 and Theorem 3.3.1, that $\gamma\left(T_{l_{1}, l_{2}, l_{3}}\right) \geqslant \beta(T-v)=\beta\left(P_{l_{1}} \cup P_{l_{2}} \cup P_{l_{3}}\right)>-4$.

4. The chromaticity of the complement of graph $\boldsymbol{B}_{\boldsymbol{n}-7,1,3}$

Theorem 4.1. Let graph G such that $G \stackrel{h}{\sim} B_{n-7,1,3}$, where $n \geqslant 8$. Then G contains at most two components whose first characters are 1, furthermore, one of them is P_{2} and the other is P_{6}.

Proof. Let G_{1} be one of the components of G such that $R_{1}(G)=1$. From Lemma 2.6 and $h_{1}\left(P_{4}\right)=h_{1}\left(C_{3}\right)$, it follows, from Theorem 3.1.2, that $h\left(G_{1}\right) \mid h\left(B_{n-7,1,3}\right)$ if and only if $G_{1} \cong P_{2}$ and $n=3 k+2$, or $G_{1} \cong P_{6}$ and $n=7 k+3$, furthermore, $h_{1}\left(C_{3}\right) \nmid h\left(B_{n-7,1,3}\right)$. From (1) of Lemma 2.5, we obtain the following equality:

$$
\begin{equation*}
h\left(B_{21 k+10,1,3}\right)=h\left(P_{21}\right) h\left(B_{21(k-1)+10,1,3}\right)+x h\left(P_{20}\right) h\left(B_{21(k-1)+19,1,3}\right) . \tag{4.1}
\end{equation*}
$$

Noting that $\{n \mid n=3 k+2, k \geqslant 2\} \cap\{n \mid n=7 k+3, k \geqslant 1\}=\{n \mid n=21 k+17, k \geqslant 0\}$, we have that

$$
\begin{equation*}
h\left(P_{2}\right) h\left(P_{6}\right) \mid h\left(B_{21(k-1)+10,1,3}\right) . \tag{4.2}
\end{equation*}
$$

From Lemma 3.1.1, it follows that $h\left(P_{2}\right) \mid h\left(P_{20}\right)$ and $h\left(P_{6}\right) \mid h\left(P_{20}\right)$, together with $\left(h_{1}\left(P_{2}\right), h_{1}\left(P_{6}\right)\right)=1$, which leads to

$$
\begin{equation*}
h\left(P_{2}\right) h\left(P_{6}\right) \mid h\left(P_{20}\right) . \tag{4.3}
\end{equation*}
$$

From (4.1) to (4.3), we arrive at $h\left(P_{2}\right) h\left(P_{6}\right) \mid h\left(B_{21 k+10,1,3}\right)$, together with Theorem 3.1.3, we know that the theorem holds.

Theorem 4.2. Let graph G such that $G \stackrel{h}{\sim} B_{n-7,1,3}$, where $n \geqslant 8$. Then:
(1) if $n=8$, then $[G]_{h}=\left\{B_{1,1,3}, Q_{2,3}\right\}$,
(2) if $n=9$, then $[G]_{h}=\left\{B_{2,1,3}, Q_{1,5}, C_{7}\left(P_{3}\right), C_{4}\left(P_{6}\right)\right\}$,
(3) if $n=13$, then $[G]_{h}=\left\{B_{6,1,3}, C_{7} \cup B_{1,1,1}, C_{7} \cup Q_{1,2}, C_{7} \cup C_{4}\left(P_{3}\right)\right\}$,
(4) if $n=14$, then $[G]_{h}=\left\{B_{7,1,3}, D_{6} \cup C_{7}\left(P_{2}\right)\right\}$,
(5) if $n=17$, then $[G]_{h}=\left\{B_{10,1,3}, C_{6}\left(P_{2}\right) \cup P_{6} \cup K_{4}^{-}, B_{2,1,1} \cup P_{6} \cup K_{4}^{-}\right\}$,
(6) if $n \neq 8,9,13,14,17$, then $[G]_{h}=\left\{B_{n-7,1,3}\right\}$.

Proof. (1) When $n=8$, let graph G such that $h(G)=h\left(B_{1,1,3}\right)$. From Lemmas 2.1, 2.2 and 2.6, we obtain that $p(G)=q(G)=8$ and $R_{1}(G)=-1$. We distinguish the following cases:

Case 1: G is a connected graph.
From $b_{3}(G)=b_{3}\left(B_{1,1,3}\right)$ and (2) of Lemma 2.11, it follows that $G \in\left\{Q_{2,3}, B_{1,1,3}\right\}$, where $b_{3}(G)$ is the fourth coefficient of $h(G)$. By calculation, we have that

$$
Q_{2,3}, B_{1,1,3} \in[G]_{h} .
$$

Case 2: G is not a connected graph.
By calculation, we obtain that $h(G)=h\left(B_{1,1,3}\right)=x^{4} f_{1}(x) f_{2}(x)$, where $f_{1}(x)=(x+1)$ and $f_{2}(x)=\left(x^{3}+7 x^{2}+12 x+3\right)$. Note that $R_{1}\left(f_{1}(x)\right)=1$ and $b_{1}\left(f_{1}(x)\right)=1$, from (1) of Lemma 2.6, we have that $f_{1}(x)=h_{1}\left(P_{2}\right)$ if $f_{1}(x)$ is a factor of adjoint polynomial of some graph.

Case 2.1: P_{2} is not a component of G.
Since G is not connected, then the expression of G is $G=a K_{1} \cup G_{1}$, where $a \geqslant 1$ and G_{1} is a connected graph. It is not difficult to obtain that $q\left(G_{1}\right)-p\left(G_{1}\right) \geqslant 1$. Noting that $R_{1}\left(G_{1}\right)=-1$, we have, from Lemma 2.7, that $q\left(G_{1}\right)-p\left(G_{1}\right) \leqslant 1$. Thus $q\left(G_{1}\right)=8=p\left(G_{1}\right)+1$, which leads to $G_{1} \cong F_{7}$ by Lemma 2.6. By calculation, we arrive at $h(G)=h\left(K_{1} \cup F_{7}\right) \neq h\left(B_{1,1,3}\right)$.

Case 2.2: P_{2} is a component of G.
In terms of $h_{1}\left(P_{2}\right) \mid h(G)$ and $h_{1}^{2}\left(P_{2}\right) \nmid h(G)$, so G only has one component P_{2}. Let $G=P_{2} \cup G_{1}$, where $h\left(G_{1}\right)=$ $x^{3}\left(x^{3}+7 x^{2}+12 x+3\right)$ which results in $R_{1}\left(G_{1}\right)=-2$ and $q\left(G_{1}\right)=p\left(G_{1}\right)+1$. Thus the following two subcases to be discussed:

Subcase 2.1: G_{1} is a connected graph.
From (4) of Lemma 2.6, we arrive at $G_{1} \in \psi$. From Lemma 2.12, we have that $b_{3}\left(G_{1}\right) \geqslant 4$, which contradicts to $b_{3}\left(G_{1}\right)=3$.
Subcase 2.2: G_{1} is not a connected graph.
From $h_{1}\left(G_{1}, 1\right)=23$ and Lemma 2.13, we obtain that $h_{1}(G)$ is a irreducible polynomial over the rational number field, which leads to $G_{1} \cong a K_{1} \cup G_{2}$ and $G=P_{2} \cup a K_{1} \cup G_{2}$, where $a \geqslant 1$ and G_{2} is a connected graph. It is not difficult to get that $q\left(G_{2}\right)-p\left(G_{2}\right) \geqslant 2$. From (1) of Lemma 2.7, we have that $q\left(G_{2}\right)-p\left(G_{2}\right) \leqslant 2$. Hence $q\left(G_{2}\right)-p\left(G_{2}\right)=2$, which leads to $G_{2} \cong K_{4}$ by (4) of Lemma 2.6. This contradicts to $q\left(G_{2}\right)=7$.
(2) When $n=9$, let graph G such that $h(G)=h\left(B_{2,1,3}\right)$, which leads to $p(G)=q(G)=9$ and $R_{1}(G)=-1$. We distinguish the following cases:

Case 1: G is a connected graph.
By $b_{3}(G)=b_{3}\left(B_{2,1,3}\right)$ and (1) of Lemma 2.11, we obtain that $G \in\left\{C_{4}\left(P_{6}\right), C_{5}\left(P_{5}\right), C_{6}\left(P_{4}\right), C_{7}\left(P_{3}\right), Q_{1,5}, B_{2,1,3}\right.$, $\left.B_{3,1,2}\right\}$. By calculation, we have that

$$
C_{4}\left(P_{6}\right), C_{7}\left(P_{3}\right), Q_{1,5}, B_{2,1,3} \in[G]_{h} .
$$

Case 2: G is not a connected graph.
By calculation, we have that $h(G)=h\left(B_{2,1,3}\right)=x^{5}\left(x^{4}+9 x^{3}+26 x^{2}+27 x+8\right)$. According to $h_{1}(G, 1)=71$ and Lemma 2.13, we arrive at $h_{1}(G)$ is a irreducible polynomial over the rational number field, which leads to $G=a K_{1} \cup G_{1}$, where $a \geqslant 1$ and G_{1} is a connected graph. It is easy to get that $q\left(G_{1}\right)-p\left(G_{1}\right) \geqslant 1$. From $R_{1}\left(G_{1}\right)=-1$ and (1) of Lemma 2.7, it follows that $q\left(G_{1}\right)-p\left(G_{1}\right) \leqslant 1$, which leads to $G_{1} \cong F_{8}$ by Lemma 2.6. Thus $G=K_{1} \cup F_{8}$, which contradicts to $h(G)=h\left(B_{2,1,3}\right)$.
(3) When $n=10$, let graph G such that $h(G)=h\left(B_{3,1,3}\right)$, which brings about $p(G)=q(G)=10$ and $R_{1}(G)=-1$. We distinguish the following cases:

Case 1: G is a connected graph.
By $b_{3}(G)=b_{3}\left(B_{3,1,3}\right)$, we have that $G \in\left\{C_{4}\left(P_{7}\right), C_{5}\left(P_{6}\right), C_{6}\left(P_{5}\right), C_{7}\left(P_{4}\right), C_{8}\left(P_{3}\right), Q_{1,6}, B_{2,1,4}, B_{3,1,3}, B_{4,1,2}\right\}$. By calculation, we have that $h(G)=h\left(B_{3,1,3}\right)$ if and only if $G \cong B_{3,1,3}$, which implies that $B_{3,1,3}$ is adjoint uniqueness.

Case 2: G is not a connected graph.
By calculation, we obtain that $h\left(B_{3,1,3}\right)=x^{5} f_{1}(x) f_{2}(x)$, where $f_{1}(x)=x^{3}+5 x^{2}+6 x+1$ and $f_{2}(x)=x^{2}+5 x+3$. Remarking that $R_{1}\left(f_{1}(x)\right)=1$ and $b_{1}\left(f_{1}(x)\right)=5$, from (1) of Lemma 2.6, we arrive at $f_{1}(x)=h_{1}\left(P_{6}\right)$ if $f_{1}(x)$ is a factor of adjoint polynomial of some graph.

Case 2.1: P_{6} is not a component of G.
Since G is not connected, then the expression of G is $G=a K_{1} \cup G_{1}$, where $a \geqslant 1$ and G_{1} is a connected graph. It is not difficult to obtain that $q\left(G_{1}\right)-p\left(G_{1}\right) \geqslant 1$. Noting that $R_{1}\left(G_{1}\right)=-1$, we have, from Lemma 2.7, that $q\left(G_{1}\right)-p\left(G_{1}\right) \leqslant 1$. Thus $q\left(G_{1}\right)=10=p\left(G_{1}\right)+1$, which leads to $G_{1} \cong F_{9}$ by Lemma 2.6. By calculation, we arrive at $h(G)=h\left(K_{1} \cup F_{9}\right) \neq h\left(B_{3,1,3}\right)$.

Case 2.2: P_{6} is a component of G.
From $h_{1}\left(P_{6}\right) \mid h(G)$ and $h_{1}^{2}\left(P_{6}\right) \nmid h(G)$, it follows that G only has one component P_{6}. Let $G=P_{6} \cup G_{1}$, where $h\left(G_{1}\right)=x^{2}\left(x^{2}+5 x+3\right)$. The following subcases to be considered:

Subcase 2.1: G_{1} is a connected graph.
From $R_{1}\left(G_{1}\right)=-2$ and $q\left(G_{1}\right)=p\left(G_{1}\right)+1$, we have that $G_{1} \in \psi$ by (4) of Lemma 2.6. It is the fact that the order of any graph belonging to ψ is not less than 5 , which contradicts to $p\left(G_{1}\right)=4$.

Subcase 2.2: G_{1} is not a connected graph.
From $h_{1}\left(G_{1}, 2\right)=17$ and Lemma 2.13, we have that $h_{1}\left(G_{1}\right)$ is a irreducible polynomial over the rational number field, which leads to $G_{1}=a K_{1} \cup G_{2}$ and $G=P_{6} \cup a K_{1} \cup G_{2}$, where $a \geqslant 1$ and G_{2} is a connected graph. It is not difficult to get that $q\left(G_{2}\right)-p\left(G_{2}\right) \geqslant 2$. From (1) of Lemma 2.7, we have that $q\left(G_{2}\right)-p\left(G_{2}\right) \leqslant 2$. Hence $q\left(G_{2}\right)-p\left(G_{2}\right)=2$, which leads to $G_{2} \cong K_{4}$ by (4) of Lemma 2.6. This contradicts to $q\left(G_{2}\right)=5$.
(4)When $n=11$, Using the similar method as that of (3), we can show that $B_{4,1,3}$ is adjoint uniqueness. The details of the proof are omitted.
(5) When $n \geqslant 12$, let $G=\bigcup_{i=1}^{t} G_{i}$. From Lemma 2.1, we have that

$$
\begin{equation*}
h(G)=\prod_{i=1}^{t} h\left(G_{i}\right)=h\left(B_{n-7,1,3}\right), \tag{4.4}
\end{equation*}
$$

which results in $\beta(G)=\beta\left(B_{n-7,1,3}\right) \in[-2-\sqrt{5},-4)$ by Lemma 2.10. In terms of $h_{1}\left(P_{4}\right)=h_{1}\left(C_{3}\right)$ and Theorem 3.1.2, we know that G contains no C_{3} as its component. Let s_{i} denote the number of components G_{i} such that $R_{1}\left(G_{i}\right)=-i$, where $i \geqslant-1$. From Theorem 4.1, Lemmas 2.1 and 2.2, it follows that $0 \leqslant s_{-1} \leqslant 2, R_{1}(G)=\sum_{i=1}^{t} R_{1}\left(G_{i}\right)=-1$ and $q(G)=p(G)$, which results in

$$
\begin{aligned}
& -3 \leqslant R_{1}\left(G_{i}\right) \leqslant 1 \\
& s_{-1}=s_{1}+2 s_{2}+3 s_{3}-1
\end{aligned}
$$

$$
\begin{equation*}
\sum_{-3 \leqslant R_{1}\left(G_{i}\right) \leqslant 0}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=s_{-1} . \tag{4.5}
\end{equation*}
$$

According to (4.5) and Lemma 2.7, we have that

$$
\begin{equation*}
-1+s_{3}+s_{1} \leqslant \sum_{R_{1}\left(G_{i}\right)=-1}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right) \leqslant s_{1}, \tag{4.6}
\end{equation*}
$$

We distinguish the following cases by $0 \leqslant s_{-1} \leqslant 2$:
Case 1: $s_{-1}=0$.
It follows, from (4.5) and (4.6), that

$$
\begin{equation*}
s_{3}=0, \quad s_{2}=0, \quad s_{1}=1, \quad \text { and } \quad 0 \leqslant q\left(G_{1}\right)-p\left(G_{1}\right) \leqslant 1 \text { with } R_{1}\left(G_{1}\right)=-1 . \tag{4.7}
\end{equation*}
$$

From (4.7), we set

$$
\begin{equation*}
G=G_{1} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup\left(\bigcup_{j \in B} D_{i}\right) \cup f D_{4} \cup a K_{1} \cup b T_{1,1,1} \cup\left(\bigcup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}\right) \tag{4.8}
\end{equation*}
$$

where $\cup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}=\left(\cup_{T \in \mathscr{T}_{1}} T_{1,1, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{2}} T_{1, l_{2}, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{3}} T_{l_{1}, l_{2}, l_{3}}\right), \mathscr{T}_{1}=\left\{T_{1,1, l_{3}} \mid l_{3} \geqslant 2\right\}, \mathscr{T}_{2}=\left\{T_{1, l_{2}, l_{3}} \mid l_{3} \geqslant\right.$ $\left.l_{2} \geqslant 2\right\}, \mathscr{T}_{3}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid l_{3} \geqslant l_{2} \geqslant l_{1} \geqslant 2\right\}, \mathscr{T}_{0}=\mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \mathscr{T}_{3}$, the tree $T_{l_{1}, l_{2}, l_{3}}$ is denoted by T for short, $A=\{i \mid i \geqslant 4\}$ and $B=\{j \mid j \geqslant 5\}$.
From Theorems 3.1.4, 3.1.5 and 3.1.6, we arrive at

$$
\begin{equation*}
R_{4}(G)=R_{4}\left(B_{n-7,1,3}\right)=4=R_{4}\left(G_{1}\right)+|B|+a+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right| . \tag{4.9}
\end{equation*}
$$

We distinguish the following cases by $0 \leqslant q\left(G_{1}\right)-p\left(G_{1}\right) \leqslant 1$:
Case 1.1: $q\left(G_{1}\right)=p\left(G_{1}\right)+1$.
From Lemmas 2.6 and 2.10, we have $G_{1} \in\left\{F_{m}, K_{4}^{-} \mid m \geqslant 9\right\}$. Recalling that $q(G)=p(G)$, we obtain the following equality:

$$
\begin{equation*}
a+b+\left|\mathscr{T}_{1}\right|+\left|\mathscr{T}_{2}\right|+\left|\mathscr{T}_{3}\right|=1 . \tag{4.10}
\end{equation*}
$$

Subcase 1.1.1: $G_{1} \cong F_{m}$.
If $m \geqslant 9$, from (3) of Theorem 3.1.6, (4.9) and (4.10), we arrive at $|B|+a+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right|=1$, which leads to $|B|+a+\left|\mathscr{T}_{1}\right|=1,\left|\mathscr{T}_{2}\right|=\left|\mathscr{T}_{3}\right|=0$ and $a+b+\left|\mathscr{T}_{1}\right|=1$. Thus, we have the following three cases to be considered:

If $|B|=1$, then $a=\left|\mathscr{T}_{1}\right|=0$ and $b=1$, which results in

$$
G=F_{m} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup D_{j} \cup f D_{4} \cup T_{1,1,1}
$$

If $a=1$, then $|B|=\left|\mathscr{T}_{1}\right|=b=0$, which leads to

$$
G=F_{m} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup K_{1} .
$$

If $\left|\mathscr{T}_{1}\right|=1$, then $|B|=a=b=0$, which brings about

$$
G=F_{m} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup T_{1,1, l_{3}} .
$$

As stated above, we always have, from Lemmas 2.9 and 2.10, that $\beta(G)=\beta\left(F_{m}\right)$. From (2) of Theorem 3.2.1 and $\beta(G)=\beta\left(B_{n-7,1,3}\right)$, it follows that $\beta\left(F_{m}\right)=\beta\left(B_{n-7,1,3}\right)$ if and only if $m=7, n=10$, or $m=9, n=13$, or $m=11, n=17$. Note that $p(G)=p\left(B_{n-7,1,3}\right)=n$, so we only have $G=F_{11} \cup C_{5} \cup K_{1}$, or $G=F_{11} \cup D_{5} \cup K_{1}$, or $G=F_{11} \cup T_{1,1,3}$, which contradicts to $h(G)=h\left(B_{10,1,3}\right)$ by direct calculation.

Subcase 1.1.2: $G_{1} \cong K_{4}^{-}$.
From (3) of Theorem 3.1.6, (4.9) and (4.10), it follows that $|B|+a+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right|=2$, which leads to $\left|\mathscr{T}_{3}\right|=0$ and $a+b+\left|\mathscr{T}_{1}\right|+\left|\mathscr{T}_{2}\right|=1$. Hence, the following two subcases to be discussed by the above two equalities:

Subcase 1.1.2.1: $\left|\mathscr{T}_{2}\right|=1$.

Then $|B|=a=\left|\mathscr{T}_{1}\right|=0$ and $b=0$, which leads to

$$
\begin{equation*}
G=K_{4}^{-} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup T_{1, l_{2}, l_{3}} \tag{4.11}
\end{equation*}
$$

If $l_{2}=2,2 \leqslant l_{3} \leqslant 5$, or $l_{2}=l_{3}=3$, from Lemmas 2.9 and 2.10 , we have $\beta(G)=-4>\beta\left(B_{n-7,1,3}\right)$, which contradicts to $h(G)=h\left(B_{n-7,1,3}\right)$.

If $l_{2}=2, l_{3} \geqslant 6$, or $l_{2}=3, l_{3} \geqslant 4$, or $l_{3} \geqslant l_{2} \geqslant 4$, by Lemmas 2.9, 2.10 and (3) of Theorem 3.3.2, we obtain $\gamma(G)=4$. From $\gamma(G)=\gamma\left(B_{n-7,1,3}\right)$ and (2) of Theorem 3.3.2, it follows that $n=17$, which brings about $h(G)=h\left(B_{10,1,3}\right)$. By direct calculation, we obtain that

$$
h_{1}\left(B_{10,1,3}\right)=h_{1}\left(K_{4}^{-}\right) f_{1}(x) f_{2}(x)
$$

where $f_{1}(x)=\left(x^{3}+5 x^{2}+6 x+1\right)$ and $f_{2}(x)=\left(x^{3}+7 x^{2}+13 x+5\right)$. In terms of Definition 2.1 and calculation, we arrive at $R_{1}\left(f_{1}\right)=1$ and $R_{1}\left(f_{2}\right)=-1$, which contradicts to $R_{1}\left(C_{i}\right)=R_{1}\left(D_{4}\right)=R_{1}\left(1, l_{2}, l_{3}\right)=0$ in (4.11).

Subcase 1.1.2.2: $\left|\mathscr{T}_{2}\right|=0$.
If $|B|=2$, then $a=\left|\mathscr{T}_{1}\right|=0$ and $b=1$, which leads to

$$
G=K_{4}^{-} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup\left(\bigcup_{j \in B} D_{j}\right) \cup T(1,1,1)
$$

If $|B|=a=1$, then $\left|\mathscr{T}_{1}\right|=b=0$, which results in

$$
G=K_{4}^{-} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup D_{j} \cup K_{1}
$$

If $|B|=\left|\mathscr{T}_{1}\right|=1$, then $a=b=0$, which brings about

$$
G=K_{4}^{-} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \cup D_{j} \cup T_{1,1, l_{3}} .
$$

As stated above, if $4 \leqslant j \leqslant 8$, or $j \geqslant 9$, from Lemmas 2.9,, 2.10 and (4) of Theorem 3.2.1, we have that $\beta(G)=$ $-4>\beta\left(B_{n-7,1,3}\right)$, or $\beta(G)=\beta\left(D_{j}\right)>\beta\left(B_{n-7,1,3}\right)$, which contradicts to $h(G)=h\left(B_{n-7,1,3}\right)$.

Case 1.2: $q\left(G_{1}\right)=p\left(G_{1}\right)$.
Recalling that $q(G)=p(G)$, we arrive at, from (4.8), $a=b=\left|\mathscr{T}_{1}\right|=\left|\mathscr{T}_{2}\right|=\left|\mathscr{T}_{3}\right|=0$, which leads to

$$
\begin{equation*}
G=G_{1} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup\left(\bigcup_{j \in B} D_{i}\right) \cup f D_{4} \tag{4.12}
\end{equation*}
$$

From (3) of Lemma 2.6 and Lemma 2.10, it follows that

$$
\begin{equation*}
G_{1} \in\left\{B_{m-t-4,1, t}, C_{r}\left(P_{2}\right), Q_{1,2}, C_{4}\left(P_{3}\right)\right\}, \tag{4.13}
\end{equation*}
$$

where $m-t-4, t$ and r satisfy the conditions of Lemma 2.10.
We distinguish the following cases by (4.13):
Subcase 1.2.1: $G_{1} \cong C_{r}\left(P_{2}\right)$.
From Lemma 2.9 and (1) of Lemma 3.2.2, it follows that $\beta(G)=\beta\left(C_{r}\left(P_{2}\right)\right)$. Since $\beta(G)=\beta\left(B_{n-7,1,3}\right)$, we have, from (1) of Theorem 3.2.1, that $\beta\left(B_{n-7,1,3}\right)=\beta\left(C_{r}\left(P_{2}\right)\right)$ if and only if $n=12, r=14$, or $n=13, r=8$, or $n=14, r=7$, or $n=17, r=6$. The four subcases to be discussed:

Subcase 1.2.1.1: $n=12, r=14$.
In this subcase, it contradicts to $p(G)=p\left(B_{n-7,1,3}\right)$.
Subcase 1.2.1.2: $n=13, r=8$.

From (4.12) and $p(G)=13$, we only have that $G=C_{8}\left(P_{2}\right) \cup C_{4}$ or $G=C_{8}\left(P_{2}\right) \cup D_{4}$, which contradicts to $h(G)=h\left(B_{6,1,3}\right)$.

Subcase 1.2.1.3: $n=14, r=7$.
From (4.12) and $p(G)=14$, we only obtain that $G=C_{7}\left(P_{2}\right) \cup C_{6}$ or $G=C_{7}\left(P_{2}\right) \cup D_{6}$. By Lemma 2.3 and calculation, it follows that $C_{7}\left(P_{2}\right) \cup D_{6} \in[G]_{h}$.

Subcase 1.2.1.4: $n=17, r=6$.
By (4.12) and $p(G)=17$, we arrive at $G \in\left\{C_{6}\left(P_{2}\right) \cup C_{10}, C_{6}\left(P_{2}\right) \cup D_{10}, C_{6}\left(P_{2}\right) \cup C_{4} \cup C_{6}, C_{6}\left(P_{2}\right) \cup C_{4} \cup\right.$ $\left.D_{6}, C_{6}\left(P_{2}\right) \cup D_{4} \cup D_{6}, C_{6}\left(P_{2}\right) \cup D_{4} \cup C_{6}\right\}$, which contradicts to $h(G)=h\left(B_{10,1,3}\right)$ by calculation.
Subcase 1.2.2: $G_{1} \cong Q_{1,2}$ or $G_{1} \cong C_{4}\left(P_{3}\right)$.
From (6) of Theorem 3.2.1 and Lemma 2.9, we have that $\beta(G)=\beta\left(G_{1}\right)$. By (5) of Theorem 3.2.1, $\beta(G)=\beta\left(B_{n-7,1,3}\right)$ if and only if $n=13$, which leads to $G \in\left\{Q_{1,2} \cup C_{7}, Q_{1,2} \cup D_{7}, C_{4}\left(P_{3}\right) \cup C_{7}, C_{4}\left(P_{3}\right) \cup D_{7}\right\}$ by (4.12). By calculation, we have $Q_{1,2} \cup C_{7}, C_{4}\left(P_{3}\right) \cup C_{7} \in[G]_{h}$ and $p(G)=13$.

Subcase 1.2.3: $G_{1} \cong B_{m-t-4,1, t}$.
We distinguish the following subcases:
Subcase 1.2.3.1: $t=1$.
From Lemma 2.9 and (3) of Lemma 3.2.2, it follows that $\beta(G)=\beta\left(B_{m-5,1,1}\right)$. According to (3) of Theorem 3.2.1, we obtain that $\beta\left(B_{m-5,1,1}\right)=\beta\left(B_{n-7,1,3}\right)$ if and only if $m=6, n=13$, or $m=7, n=17$, which leads to $G \in\left\{B_{1,1,1} \cup C_{7}, B_{1,1,1} \cup D_{7}\right\}$, or $G \in\left\{B_{2,1,1} \cup C_{10}, B_{2,1,1} \cup D_{10}, B_{2,1,1} \cup C_{4} \cup C_{6}, B_{2,1,1} \cup C_{4} \cup D_{6}, B_{2,1,1} \cup D_{4} \cup\right.$ $\left.C_{6}, B_{2,1,1} \cup D_{4} \cup D_{6}, B_{2,1,1} \cup 2 C_{5}, B_{2,1,1} \cup 2 D_{5}\right\}$ from (4.12). By direct calculation, we only have that $B_{1,1,1} \cup C_{7} \in[G]_{h}$ and $p(G)=13$.

Subcase 1.2.3.2: $t=2$.
From (2) of Theorem 3.2.1, (3) of Lemmas 3.2.2 and 2.9, it follows that $\beta(G)=\beta\left(B_{m-2,1,2}\right)=\beta\left(B_{n-7,1,3}\right)$ if and only if $m=10, n=13$, or $m=12, n=17$, which leads to $G \in\left\{B_{6,1,2} \cup C_{5}, B_{6,1,2} \cup D_{5}\right\}$ from (4.12). By calculation, we know that this contradicts to $h(G)=h\left(B_{10,1,3}\right)$.
Subcase 1.2.3.3: If $t \geqslant 4$, from (4) and (7) of Theorem 3.2.1, we arrive at $\beta(G)=\beta\left(B_{m-t-4,1, t}\right)<\beta\left(B_{n-7,1,3}\right)$, which contradicts to $\beta(G)=\beta\left(B_{n-7,1,3}\right)$.

As analyzed above, we obtain that $t=3$. From (4) of Theorem 3.2.1 and Lemma 2.9, it follows that $\beta(G)=\beta\left(B_{m-7,1,3}\right)$, together with $\beta(G)=\beta\left(B_{n-7,1,3}\right)$ and (5) of Lemma 3.2.4, we arrive at $m=n$. Hence $G \cong B_{n-7,1,3}$.

Case 2: $s_{-1}=1$.
It follows, from (4.5), that $s_{1}+2 s_{2}+3 s_{3}=2$, which leads to $s_{3}=0$ and $s_{1}+2 s_{2}=2$. Hence

$$
\begin{equation*}
s_{2}=1, s_{1}=0 \quad \text { or } \quad s_{2}=0, s_{1}=2 . \tag{4.14}
\end{equation*}
$$

We distinguish the following cases by (4.14):
Case 2.1: $s_{2}=1, s_{1}=0$.
Without loss of generality, let the component G_{1} such that $R_{1}\left(G_{1}\right)=-2$. From Corollary 2.1, we know that $\beta\left(G_{1}\right)<-2-\sqrt{5}$, which contradicts to $\beta\left(B_{n-7,1,3}\right) \in[-2-\sqrt{5},-4)$.

Case 2.2: $s_{2}=0, s_{1}=2$.
Without loss of generality, Let

$$
\begin{equation*}
G=G_{1} \cup G_{2} \cup G_{3} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup\left(\bigcup_{j \in B} D_{i}\right) \cup f D_{4} \cup a K_{1} \cup b T_{1,1,1} \cup\left(\bigcup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}\right), \tag{4.15}
\end{equation*}
$$

where $\cup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}=\left(\cup_{T \in \mathscr{T}_{1}} T_{1,1, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{2}} T_{1, l_{2}, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{3}} T_{l_{1}, l_{2}, l_{3}}\right), \mathscr{T}_{1}=\left\{T_{1,1, l_{3}} \mid l_{3} \geqslant 2\right\}, \mathscr{T}_{2}=\left\{T_{1, l_{2}, l_{3}} \mid l_{3} \geqslant\right.$ $\left.l_{2} \geqslant 2\right\}, \mathscr{T}_{3}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid l_{3} \geqslant l_{2} \geqslant l_{1} \geqslant 2\right\}, \mathscr{T}_{0}=\mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \mathscr{T}_{3}$, the tree $T_{l_{1}, l_{2}, l_{3}}$ is denoted by T for short, $G_{1} \in\left\{P_{2}, P_{6}\right\}$, $R_{1}\left(G_{2}\right)=R_{2}\left(G_{3}\right)=-1, A=\{i \mid i \geqslant 4\}$ and $B=\{j \mid j \geqslant 5\}$.

From (4.6), we obtain that

$$
\begin{equation*}
1 \leqslant \sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right) \leqslant 2 \tag{4.16}
\end{equation*}
$$

We distinguish the following cases by (4.16):
Subcase 2.2.1: $\sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=1$.

From Lemmas 2.6 and 2.10, it follows that $G_{2} \in\left\{C_{m}\left(P_{2}\right), B_{r, 1, t}, C_{4}\left(P_{3}\right), Q_{1,2}\right\}$ and $G_{3} \in\left\{F_{s}, K_{4}^{-} \mid s \geqslant 9\right\}$, where s, r and t satisfy the conditions of Lemma 2.10. Recalling that $q(G)=p(G)$, we have, from (4.15), that

$$
a=b=\left|\mathscr{T}_{1}\right|=\left|\mathscr{T}_{2}\right|=\left|\mathscr{T}_{3}\right|=0
$$

which implies $G=G_{1} \cup G_{2} \cup G_{3} \cup\left(\cup_{i \in A} C_{i}\right) \cup\left(\cup_{j \in B} D_{i}\right) \cup f D_{4}$ and $R_{4}(G)=4=R_{4}\left(G_{1}\right)+R_{4}\left(G_{2}\right)+R_{4}\left(G_{3}\right)+|B|$. In terms of Theorem 3.1.6, we have that $R_{4}(G)=4$ if and only if $G_{1} \cong P_{6}, G_{3} \cong K_{4}^{-},|B|=0$ and $R_{4}\left(G_{2}\right)=3$, which brings about

$$
\begin{equation*}
G=P_{6} \cup G_{2} \cup K_{4}^{-} \cup\left(\bigcup_{i \in A} C_{i}\right) \cup f D_{4} \quad \text { and } \quad G_{2} \in\left\{C_{S}\left(P_{2}\right), B_{r, 1, t}\right\} \tag{4.17}
\end{equation*}
$$

where r, s and t satisfy the conditions of Lemma 2.10.
Let $p\left(G_{2}\right)=m$, From (4.17), it follows that $m \leqslant n-10$. We distinguish the following cases by (4.17):
Subcase 2.2.1.1: $G_{2} \cong C_{s}\left(P_{2}\right)$.
From Lemmas 2.9 and 2.10, we obtain that $\beta(G)=\beta\left(C_{s}\left(P_{2}\right)\right)$. By (1) of Theorem 3.2.1 and $m \leqslant n-10$, we arrive at $\beta\left(C_{s}\left(P_{2}\right)\right)=\beta\left(B_{n-7,1,3}\right)$ if and only if $s=6$ and $n=17$. By calculation, we have that

$$
P_{6} \cup C_{6}\left(P_{2}\right) \cup K_{4}^{-} \in[G]_{h} \quad \text { and } \quad p(G)=17 .
$$

Subcase 2.2.1.2: $G_{2} \cong B_{r, 1, t}$.
By Lemmas 2.9 and 2.10, we have that $\beta(G)=\beta\left(B_{r, 1, t}\right)$.
If $t=1$, from (3) of Theorem 3.2.1 and $m \leqslant n-10$, it follows that $\beta\left(B_{r, 1,1,}\right)=\beta\left(B_{n-7,1,3}\right)$ if and only if $r=2$ and $n=17$, which leads to

$$
G=P_{6} \cup B_{2,1,1} \cup K_{4}^{-} \in[G]_{h} \quad \text { and } \quad p(G)=17
$$

If $t=2$, from Lemmas 2.9 and 2.10, we have that $\beta\left(B_{r, 1,2}\right)=\beta(G)=\beta\left(B_{n-7,1,3}\right)$, which must contradict to $m \leqslant n-10$ by (2) of Theorem 3.2.1.

If $t=3$, from Lemmas 2.9 and 2.10, we obtain that $\beta\left(B_{r, 1,3}\right)=\beta(G)=\beta\left(B_{n-7,1,3}\right)$, which is a contradiction by $m<n$ and (5) of Lemma 3.2.4.

If $t \geqslant 4$, we can turn to Subcase 1.2.3.3 for the same contradiction.
Subcase 2.2.2: $\sum_{i=2}^{3}\left(q\left(G_{i}\right)-p\left(G_{i}\right)\right)=2$.
From Lemmas 2.6 and 2.10, we have that $G_{i} \in\left\{F_{m}, K_{4}^{-} \mid m \geqslant 9\right\}$ for $i=2,3$.
If $G_{2}, G_{3} \in\left\{F_{m} \mid m \geqslant 9\right\}$, by (3) of Theorem 3.1.6, it follows that $R_{4}\left(G_{2}\right)+R_{4}\left(G_{3}\right)=6$. From (4.15), we have that $R_{4}(G)=4=R_{4}\left(G_{1}\right)+R_{4}\left(G_{2}\right)+R_{4}\left(G_{3}\right)+|B|+a+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right|$, which leads to $|B|+r+\left|\mathscr{T}_{1}\right|+$ $2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right| \leqslant-1$. This is a contradiction.

If $G_{2} \in\left\{F_{m} \mid m \geqslant 9\right\}$ and $G_{3} \in\left\{K_{4}^{-}\right\}$, from (3) Theorem 3.1.6 and the expression of $R_{4}(G)$ as above, we obtain that $R_{4}(G)=4$ if and only if $|B|=r=\left|\mathscr{T}_{1}\right|=\left|\mathscr{T}_{2}\right|=\left|\mathscr{T}_{3}\right|=0$ and $G_{1} \cong P_{6}$, which result in $G=P_{6} \cup F_{m} \cup K_{4}^{-} \cup\left(\cup_{i \in A} C_{i}\right) \cup f D_{4}$. From Lemmas 2.9 and 2.10 , we have that $\beta\left(F_{m}\right)=\beta(G)=\beta\left(B_{n-7,1,3}\right)$, which contradicts to $m \leqslant n-10$ by (2) of Theorem 3.2.1.
If $G_{2}, G_{3} \in\left\{K_{4}^{-}\right\}$, from $h\left(K_{4}^{-}\right)=x^{2}(x+1)(x+4)$, it follows that $h_{1}^{2}\left(P_{2}\right) \mid h(G)$, that is $h_{1}^{2}\left(P_{2}\right) \mid h\left(B_{n-7,1,3}\right)$, which contradicts to Theorem3.1.3.

Case 3: $s_{-1}=2$.
From (4.5), we arrive at $s_{1}+2 s_{2}+3 s_{3}=3$, which brings about the following cases:
Case 3.1: $s_{3}=1$ and $s_{1}=s_{2}=0$.
Let the component G_{1} such that $R_{1}\left(G_{1}\right)=-3$, which contradicts to $\beta(G) \in[-2-\sqrt{5},-4)$ by Corollary 2.1.
Case 3.2: $s_{2}=1$ and $s_{1}=s_{3}=0$.
According to the same reason as that of case 3.1, we have the contradiction.
Case 3.3: $s_{1}=3$ and $s_{2}=s_{3}=0$.
Without loss of generality, from Theorem 4.1, we set

$$
\begin{equation*}
G=P_{2} \cup P_{6} \cup\left(\bigcup_{k=1}^{3} G_{k}\right) \cup\left(\bigcup_{i \in A} C_{i}\right) \cup\left(\bigcup_{j \in B} D_{i}\right) \cup f D_{4} \cup a K_{1} \cup b T_{1,1,1} \cup\left(\bigcup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}\right), \tag{4.18}
\end{equation*}
$$

where $\cup_{T \in \mathscr{T}_{0}} T_{l_{1}, l_{2}, l_{3}}=\left(\cup_{T \in \mathscr{T}_{1}} T_{1,1, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{2}} T_{1, l_{2}, l_{3}}\right) \cup\left(\cup_{T \in \mathscr{T}_{3}} T_{l_{1}, l_{2}, l_{3}}\right), \mathscr{T}_{1}=\left\{T_{1,1, l_{3}} \mid l_{3} \geqslant 2\right\}, \mathscr{T}_{2}=\left\{T_{1, l_{2}, l_{3}} \mid l_{3} \geqslant\right.$ $\left.l_{2} \geqslant 2\right\}, \mathscr{T}_{3}=\left\{T_{l_{1}, l_{2}, l_{3}} \mid l_{3} \geqslant l_{2} \geqslant l_{1} \geqslant 2\right\}, \mathscr{T}_{0}=\mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \mathscr{T}_{3}$, the tree $T_{l_{1}, l_{2}, l_{3}}$ is denoted by T for short, $R_{1}\left(G_{k}\right)=-1$ for $1 \leqslant k \leqslant 3, A=\{i \mid i \geqslant 4\}$ and $B=\{j \mid j \geqslant 5\}$.

From (4.6), it follows that

$$
\begin{equation*}
2 \leqslant \sum_{k=1}^{3}\left(q\left(G_{k}\right)-p\left(G_{k}\right)\right) \leqslant 3 \tag{4.19}
\end{equation*}
$$

We distinguish the following cases by (4.19):
Case 3.3.1: $\sum_{k=1}^{3}\left(q\left(G_{k}\right)-p\left(G_{k}\right)\right)=2$.
From $\beta(G) \in[-2-\sqrt{5},-4)$ and Lemmas 2.6 and 2.10, we have that $G_{1} \in\left\{C_{s}\left(P_{2}\right), B_{r, 1, t}, C_{4}\left(P_{3}\right), Q_{1,2}\right\}$ and $G_{2}, G_{3} \in\left\{F_{m}, K_{4}^{-} \mid m \geqslant 9\right\}$, where r, s and t satisfy the conditions of Lemma 2.10. Recalling that $q(G)=p(G)$, we have, from (4.18), that

$$
a=b=\left|\mathscr{T}_{1}\right|=\left|\mathscr{T}_{2}\right|=\left|\mathscr{T}_{3}\right|=0,
$$

which leads to

$$
\begin{equation*}
R_{4}(G)=4=R_{4}\left(P_{2}\right)+R_{4}\left(P_{6}\right)+\sum_{k=1}^{3} R_{4}\left(G_{k}\right)+|B| . \tag{4.20}
\end{equation*}
$$

From Theorem 3.1.6 and (4.20), we obtain that $R_{4}(G)=4 \geqslant|B|+6$, which results in $|B| \leqslant-2$. This is obviously a contradiction.

Case 3.3.2: $\sum_{k=1}^{3}\left(q\left(G_{k}\right)-p\left(G_{k}\right)\right)=3$.
From Lemmas 2.6 and 2.10, we have that $G_{k} \in\left\{F_{r}, K_{4}^{-} \mid r \geqslant 9\right\}$. By (4.18) and Theorem 3.1.4, we have that

$$
\begin{equation*}
R_{4}(G)=4=R_{4}\left(P_{2}\right)+R_{4}\left(P_{6}\right)+\sum_{k=1}^{3} R_{4}\left(G_{k}\right)+a+|B|+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right| . \tag{4.21}
\end{equation*}
$$

In terms of Theorem 3.1.6, we arrive at $R_{4}(G)=4 \geqslant 5+a+|B|+\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right|$, which leads to $a+|B|+$ $\left|\mathscr{T}_{1}\right|+2\left|\mathscr{T}_{2}\right|+3\left|\mathscr{T}_{3}\right| \leqslant-1$. This is also a contradiction.

This completes the proof of the theorem.
Corollary 4.1. For $n \geqslant 8$, graph $B_{n-7,1,3}$ is adjoint uniqueness if and only if $n \neq 8,9,13,14,17$.
Corollary 4.2. For $n \geqslant 8$, the chromatic equivalence class of $\overline{B_{n-7,1,3}}$ only contains the complements of graphs that are in Theorem 4.2.

Corollary 4.3. For $n \geqslant 8$, graph $\overline{B_{n-7,1,3}}$ is chromatic uniqueness if and only if $n \neq 8,9,13,14,17$.

Acknowledgments

We are grateful to the referees for their careful reading of the paper, and for their comments and suggestions, which are very helpful improving the presentation of this paper.

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, 1993.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
[3] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Two invariants for adjointly equivalent graphs, Austral. J. Combin. 25 (2002) 133-143.
[4] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.
[5] F.M. Dong, K.L. Teo, C.H.C. Little, M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258 (2002) $303-321$.
[6] Q.Y. Du, The graph parameter $\pi(G)$ and the classification of graphs according to it, Acta Sci. Natur. Univ. Neimonggol 26 (1995) $258-262$ (Chinese).
[7] F.R. Gantmacher, Application of the Theory of Matrices, vol. II, Interscience, New York, London, 1959.
[8] B.F. Huo, Relations between three parameters $A(G), R(G)$ and $D_{2}(G)$ of graph G, J. Qinghai Normal Univ. (Natur. Sci.) 2 (1998) 1-6 (in Chinese).
[9] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
[10] K.M. Koh, K.L. Teo, The search for chromatically unique graphs-П, Discrete Math. 172 (1997) 59-78.
[11] R.Y. Liu, On chromatic polynomials of two classes of graphs, Kexue Tongbao 32 (1987) 1147-1148 (in Chinese).
[12] R.Y. Liu, Adjoint polynomials of graphs, J. Qinghai Normal Univ. (Natur. Sci.) 3 (1990) 1-9 (in Chinese).
[13] R.Y. Liu, Several results on adjoint polynomials of graphs, J. Qinghai Normal Univ. (Natur. Sci.) 1 (1992) 1-6 (in Chinese).
[14] R.Y. Liu, On the irreducible graphs, J. Qinghai Normal Univ. (Natur. Sci.) 4 (1993) 29-33 (in Chinese).
[15] R.Y. Liu, Chromatic uniqueness of a kind of graph, Acta Sci. Natur. Univ. Neimonggol 25 (1994) 469-475 (in Chinese).
[16] R.Y. Liu, Chromatic uniqueness of complementary of the irreducible cycles union, Math. Appl. 7 (1994) 200-205 (in Chinese).
[17] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85-92.
[18] R.Y. Liu, L.C. Zhao, A new method for proving uniqueness of graphs, Discrete Math. 171 (1997) 85-92.
[19] J.S. Mao, Adjoint uniqueness of two kinds of trees, The thesis for Master Degree, Qinghai Normal University, 2004.
[20] R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.T. Wilson (Eds.), Selected Topics in Graph Theory, vol. III, Academic Press, New York, 1988, pp. 15-42.
[21] S.Z. Ren, On the fourth coefficients of adjoint polynomials of some graphs, Pure Appl. Math. 19 (3) (2003) $213-218$ (in Chinese).
[22] H.X. Zhao, A necessary and sufficient condition of the irreducible paths, J. Northeast Normal Univ. (Natur. Sci.) 33 (2) (2001) 18-21 (in Chinese).
[23] H.X. Zhao, Chromaticity and Adjoint Polynomials of Graphs, Wöhrmann Print Service, The Netherlands, 2005.

[^0]: ${ }^{4}$ Supported by the Science Foundation of the State Education Ministry of China (No. 205170).

 * Corresponding author. Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, PR China. E-mail address: jfwang4@yahoo.com.cn (J. Wang).

