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Abstract Nowadays, important decisions that have a

significant impact either in societies or in organizations are

commonly made by a group rather than a single decision

maker, which might require more than a majority rule to

obtain a real acceptance. Consensus-reaching processes

provide a way to drive group decisions which are more

accepted and appreciated by people affected by such a

decision. These processes care about different consensus

measures to determine the agreement in the group. The

correct choice of a consensus measure that reflects the

attitude of decision makers is a key issue for improving and

optimizing consensus-reaching processes, which still

requires further research. This paper studies the concept of

group’s attitude towards consensus, and presents a con-

sensus model that integrates it in the measurement of

consensus, through an extension of OWA aggregation

operators, the so-called Attitude-OWA. The approach is

applied to the solution of a real-like group decision making

problem with the definition of different attitudes, and the

results are analysed.

Keywords Group decision making � Consensus models �
Attitude � OWA operators � Linguistic quantifiers

1 Introduction

Group decision making (GDM) problems are required

throughout most companies and organizations nowadays,

in order to guarantee a right development in them. They

can be defined as decision situations where two or more

decision makers or experts try to achieve a common

solution to a decision problem, consisting of two or more

possible solutions or alternatives (Kacprzyk 1986).

In real-world GDM problems, a range of situations

including collaboration and competitiveness among indi-

viduals, compatible approaches or incompatible proposals

might occur. Some guiding rules have been proposed to

support decision making in such situations, for example the

majority rule, minority rule and unanimity (Butler and

Rothstein 2006). In democratic political systems, for

instance, the majority rule is the most usual rule for dealing

with GDM problems (Tocqueville 1840). However, in

many real-world GDM problems that can affect groups or

societies (civil rights, political or religious issues), the

agreed solutions are highly appreciated. Therefore, the

necessity of making decisions under consensus has become

increasingly common in these contexts.

Consensus-reaching processes (CRPs) (Butler and

Rothstein 2006; Saint and Lawson 1994) seek an experts’

agreement about the problem before making the decision,

thus yielding a more accepted solution by the whole

group. CRPs are normally coordinated by a human figure,

a so-called moderator, responsible for guiding experts

throughout the overall discussion process. Different

authors have proposed distinct approaches to handle CRPs,
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where Kacprzyk’s soft consensus approach stands out

(Kacprzyk 1986). In this approach, the concept of fuzzy

linguistic majority is used to measure consensus between

individuals in a flexible way. Later on, major achievements

have been reached with the development of different con-

sensus models, aimed to help decision makers to deal with

CRPs. Some of these consensus models address aspects

such as the use of different preference structures (Herrera-

Viedma et al. 2002), management of incomplete prefer-

ences (Herrera-Viedma et al. 2007a, b), their extension

to multi-criteria GDM problems (Parreiras et al. 2010;

Pedrycz et al. 2011; Xu and Wu 2011) or even the intro-

duction of adaptive consensus models based on the process

performance (Mata et al. 2009).

However, some crucial aspects in CRPs still require a

further study, for instance the idea of considering the

group’s attitude towards consensus, i.e. the experts’

capacity to modify their own preferences during the CRP.

Currently, consensus models found in the literature do not

address the fact that if experts are reluctant to improve their

attitude, the overall CRP might imply more time and cost.

Additionally, it is important to consider the application of

GDM problems with a large number of experts, because

although real-world CRPs usually involve many experts,

most developed models provide examples of performance

with a small number of experts only (Herrera-Viedma et al.

2007a; Mata et al. 2009). This aspect may be addressed by

designing consensus models with a high degree of auto-

mation, in which no human moderator is required to

supervise experts’ behaviour during the CRP.

In this paper, we develop the concept of group’s attitude

towards consensus and its application to CRPs, and present

a consensus model that integrates it. Our goal consists in

introducing such an attitude in the aggregation of infor-

mation conducted during the CRP to measure the level of

agreement in the group (Kuncheva and Krishnapuram

1995). To do so, we present the Attitude-OWA operator that

extends the OWA operator (Yager 1988), so that it easily

lets us reflect the group’s attitude towards consensus. The

model presented is applied to solve a real GDM problem

where a large number of experts are involved, thus showing

the importance and effects of integrating different attitudes.

This paper is organized as follows. In Sect. 2, some

preliminaries related to consensus processes in GDM and

OWA operators are reviewed. In Sect. 3, we develop in

detail an approach to reflect the group’s attitudes by means

of the Attitude-OWA operator, and a consensus model

based on such approach is defined and presented in Sect. 4.

An application of the model to solve a real GDM problem

by using different Attitude-OWA operators reflecting dis-

tinct attitudes is shown in Sect. 5. Finally, in Sect. 6, the

main conclusions and some future works are drawn.

2 Preliminaries

In this section, we revise GDM problems and CRPs. We

then briefly review OWA operators and linguistic quanti-

fiers, which are the basis for our proposal.

2.1 Group decision making (GDM)

GDM problems are characterized by the participation of

two or more experts in a decision problem, where a set of

alternatives or possible solutions to the problem are pre-

sented (Butler and Rothstein 2006; Kacprzyk 1986). For-

mally, the main elements found in any GDM problem are:

• A set X ¼ fx1; . . .; xqg; ðq� 2Þ of possible alternatives

to choose as possible solutions to the problem.

• A set E ¼ fe1; . . .; emg; ðm� 2Þ of individuals or

experts, who express their judgements or opinions on

the alternatives in X.

Each expert ei; i 2 f1; . . .;mg; provides his/her opinions

over alternatives in X by means of a preference structure.

One of the most usual preference structures, which also has

been especially effective when dealing with uncertainty, is

the so-called fuzzy preference relation.

Definition 1 (Bryson 1996; Herrera-Viedma et al. 2002)

Given an expert ei 2 E; i 2 f1; . . .;mg and two different

alternatives xl; xk 2 X; l; k 2 f1; . . .; qgðl 6¼ kÞ; a fuzzy

preference relation’s assessment on the pair (xl, xk), deno-

ted as plk
i 2 ½0; 1�; represents the degree of preference of

alternative xl with respect to alternative xk assessed by

expert ei, so that pi
lk [ 1/2 indicates that xl is preferred to

xk, pi
lk \ 1/2 indicates that xk is preferred to xl, and pi

lk =

1/2 indicates indifference between xl and xk.

Definition 2 (Herrera-Viedma et al. 2002) A fuzzy pref-

erence relation Pi associated with an expert ei; i 2
f1; . . .;mg; on a set of alternatives X is a fuzzy set on

X 9 X, which is characterized by the membership function

lPi
: X � X �! ½0; 1�: When the number of alternatives q is

finite, Pi is represented by a q 9 q matrix of assessments

pi
lk = lPi(xl, xk) as follows:

Pi ¼
� . . . p1q

i

..

. . .
. ..

.

pq1
i . . . �

0
B@

1
CA

Notice here that assessments pll
i ; l 2 f1; . . .; qg; situated in

the diagonal of the matrix, are not defined, since an alter-

native xl is not assessed with respect to itself.

In order to provide a better understanding of these def-

initions, a brief example is given below.
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Example 1 Given E = {e1, e2, e3}, X = {x1, x2, x3, x4},

let P3 be the fuzzy preference relation on X expressed by e3:

P3 ¼

� 0:2 0:25 0

0:8 � 0:75 0:3
0:75 0:25 � 0

1 0:7 1 �

0
BB@

1
CCA

where we can see, for instance, that p3
21 = 0.8 indicates that x2

is strongly preferred against x1 by e3, p3
14 = 0 indicates that x1

is absolutely rejected with respect to x4, and p3
43 = 1 indicates

that x4 is absolutely preferred against x3.

The solution to a GDM problem may be obtained either by

a direct approach, where the solution is immediately

obtained from the experts’ preferences, or by an indirect

approach, where a social opinion is computed to determine

the chosen alternative/s (Herrera et al. 1995). Regardless of

the approach considered, it is necessary to apply a selection

process to solve the GDM problem, which usually consists of

two main phases (Fig. 1) (Roubens 1997): (1) an aggregation

phase, where experts’ preferences are combined and (2) an

exploitation phase, which consists in obtaining an alternative

or subset of alternatives as the solution to the problem.

2.2 Consensus-reaching processes (CRPs)

One of the main shortcomings found in classic GDM rules,

such as the majority rule or minority rule, is the possible

disagreement shown by one or more experts with the

achieved solution, because they might consider that their

opinions have not been taken into account sufficiently.

Given the importance of obtaining an accepted solution by

the whole group, CRPs as part of the decision process have

attained great attention. Consensus can be understood as a

state of mutual agreement among members of a group

(Butler and Rothstein 2006; Saint and Lawson 1994),

where the decision made satisfies all of them. Reaching a

consensus usually requires that experts modify their initial

opinions in a discussion process, making them closer to

each other and towards a collective opinion which must be

satisfactory for all of them.

The notion of consensus can be interpreted in different

ways, ranging from consensus as total agreement to a more

flexible approach (Herrera-Viedma et al. 2011). The strict

notion of consensus assumes its existence only if all

experts have achieved a mutual agreement in all their

opinions (Tocqueville 1840). This may be quite difficult or

even impossible to achieve in practice, and in the cases it

could be achieved, the cost derived from the CRP would be

unacceptable. Also, it might sometimes have been achieved

through a normative point of view, through intimidation

and other social strategies (Yager 2001). Subsequently,

more flexible notions of consensus have been proposed to

soften the strict view of consensus as unanimity (Elzinga

et al. 2011; Herrera-Viedma et al. 2011; Kacprzyk and

Fedrizzi 1988). These flexible approaches, more feasible in

practice, consider different degrees of partial agreement to

decide about the existence of consensus. Such degrees

usually indicate how far a group of experts is from ideal

consensus or unanimity.

One of the most widely accepted approaches for a

flexible measurement of consensus is the so-called notion

of soft consensus, proposed by Kacprzyk (1986). This

approach introduces the concept of fuzzy linguistic

majority, which establishes that there exists consensus if

most experts participating in a problem agree with the most

important alternatives. Soft consensus-based approaches

have been used in different GDM problems, providing

satisfactory results (Fedrizzi et al. 1999; Herrera et al.

1996; Kacprzyk and Zadrozny 2010; Zadrozny and

Kacprzyk 2003). Consensus measures based on soft con-

sensus are more human consistent and ideal for reflecting

human perceptions of the meaning of consensus in practice

(Kacprzyk and Fedrizzi 1989). The aforementioned con-

cept of fuzzy linguistic majority has been captured by using

linguistic quantifiers (Zadeh 1983).

The process to reach consensus in GDM problems is a

dynamic and iterative discussion process (Saint and Lawson

1994), frequently coordinated by a human figure known as

moderator, who plays a key role in CRPs (Martı́nez and

Montero 2007). The moderator’s main responsibilities are:

• Evaluate the degree of agreement achieved in each

round of discussion, and decide whether it is enough to

accept or not the existence of consensus.

• Identify those alternatives that hamper reaching a

consensus.

• Give feedback to experts regarding changes they should

make in their opinions on the previously identified

alternatives, in order to increase the level of agreement

in the next few rounds.

A general scheme of the phases required for conducting

CRPs, depicted in Fig. 2, is briefly described below:

• Gather preferences: Each expert provides the moder-

ator a preference structure with his/her opinion on the

existing alternatives.

Fig. 1 Selection process in GDM problems
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• Determine degree of consensus: The moderator com-

putes the level of agreement in the group by means of a

consensus measure (Herrera-Viedma et al. 2011), usu-

ally based on different similarity measures and aggre-

gation operators (Beliakov et al. 2007).

• Consensus control: The consensus degree is compared

with a threshold level of agreement desired by the

group. If such degree is sufficient, the group moves on

to the selection process; otherwise, more discussion

rounds are required.

• Generate feedback information: The moderator identi-

fies the farthest preferences from consensus and gives

experts some pieces of advice, suggesting how to

modify their opinions and make them closer to

agreement. Afterwards, a new round of discussion

begins with the gathering preferences phase.

2.3 OWA operators: weights computation

One of the most widely applied families of weighted

aggregation operators (Beliakov et al. 2007) in different

GDM approaches in the literature are the so-called ordered

weighted averaging (OWA) operators, introduced by

Yager:

Definition 3 (Yager 1988) Let A ¼ fa1; . . .; ang; ai 2 R;

be a set of n values to aggregate. An OWA operator is a

mapping F : Rn ! R; with an associated weighting vector

W ¼ ½w1. . .wn�> (wi 2 ½0; 1�;
P

i wi ¼ 1):

Fða1; . . .; anÞ ¼
Xn

j¼1

wjbj ð2:1Þ

where bj is the jth largest of ai values.

Note that a weight wi is associated with a particular

ordered position instead of a particular element, i.e. wi is

associated with the ith largest element in a1; . . .; an: OWA

operators are idempotent, continuous, monotone, neutral

and compensative (Grabisch et al. 1998).

OWA operators are averaging aggregation functions, i.e.

they lie between minimum and maximum functions, and

therefore can be classified according to their optimism

degree, by means of a measure, the so-called orness,

associated with W. This measure provides the attitudinal

character of aggregation, by determining how close the

operator is to the maximum (OR) function, and is defined

as (Beliakov et al. 2007):

ornessðWÞ ¼ 1

n� 1

Xn

i¼1

ðn� iÞwi ð2:2Þ

While optimistic or OR-LIKE OWA operators are those

whose orness(W) [ 0.5, in pessimistic or AND-LIKE

operators we have orness(W) \ 0.5 (Yager 1988, 1993).

Another measure, the dispersion (Shannon and Weaver

1949), can be used to let a further distinction amongst

different OWA operators with an equal degree of

optimism:

DispðWÞ ¼ �
Xn

i¼1

wi ln wi ð2:3Þ

This measure can be used as an indicator of the degree to

which information contained in values a1; . . .; an is really

used in the aggregation process.

Several approaches have been proposed to compute

OWA weights (Grabisch et al. 1998), for instance by using

linguistic quantifiers (Yager 1996), as considered in this

paper. Linguistic quantifiers were introduced by Zadeh

(1983). They can be used to semantically express

Fig. 2 General consensus

process scheme in GDM

problems
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aggregation policies and actually capture Kacprzyk’s

notion of soft consensus in consensus models (Kacprzyk

1986; Kacprzyk and Fedrizzi 1989). This paper focuses on

using a particular type of relative linguistic quantifiers, the

so-called regular increasing monotone (RIM) quantifiers

(Liu and Han 2008; Yager 1996), defined as a fuzzy subset

Q of the unit interval (Klir and Yuan 1995; Yager and Filev

1994) where for a given proportion r 2 ½0; 1�;QðrÞ indi-

cates the extent to which this proportion satisfies the

semantics defined in Q. RIM quantifiers are characterized

by the following properties: (1) Q(0) = 0, (2) Q(1) = 1

and (3) if r1 [ r2 then Q(r1) C Q(r2).

Yager (1988) proposed the following method to com-

pute OWA weights with the use of RIM quantifiers:

wi ¼ Q
i

n

� �
� Q

i� 1

n

� �
; i ¼ 1; . . .; n ð2:4Þ

where the linear membership function of a RIM quantifier

Q(r) is defined by the use of two parameters a; b 2 ½0; 1� as

QðrÞ ¼
0 if r� a;

r�a
b�a if a\r� b;
1 if r [ b:

8<
: ð2:5Þ

OWA operators based on linguistic quantifiers have been

widely applied in the literature, with multiple purposes

(Reformat et al. 2011).

3 Integrating experts’ attitude in consensus-reaching

processes

The aim of this paper is to introduce and manage the

concept of group’s attitude towards consensus in CRPs, by

means of a new aggregation operator based on the OWA

operator that allows managing this concept in the mea-

surement of consensus, and defines a consensus model

upon it. In this section, we develop such a concept and

show in detail how to implement attitude-based OWA

operators. Furthermore, we will introduce in the coming

sections a new attitude-based consensus model, as well as a

complete study of its performance.

The concept of attitude refers to the importance that

experts give to reach a consensus, compared to modifying

their own preferences, and can be roughly classified into

two types:

• Optimistic attitude: Achieving an agreement is more

important than experts’ own preferences; therefore,

those positions in the group whose level of agreement is

higher are given more importance in the aggregation

process.

• Pessimistic attitude: Experts’ own preferences are

considered more important than achieving an

agreement; therefore, those positions in the group

where the level of agreement is lower attain more

importance in aggregation.

The choice of an attitude depends on the prospects

considered by experts in the group and the nature of the

decision problem to be addressed.

Our proposal begins introducing the attitudinal param-

eters used by the group to reflect their attitude towards

consensus, and then the Attitude-OWA operator is defined

to capture such an attitude in the CRP. Attitude-OWA shall

be applied to aggregate similarities between experts in the

phase of computing consensus degree, as will be further

detailed in Sect. 4.

3.1 Attitudinal parameters and Attitude-OWA operator

In Sect. 2.3, we reviewed RIM quantifiers and stated the

membership function for a linear RIM quantifier upon two

parameters a, b. Note that ½a; b� � ½0; 1� (a\ b) defines the

range of proportions r where the membership function Q(r)

increases, i.e. the slope of the RIM quantifier. Therefore,

we have either Q(r) = 0 or Q(r) = 1 for any r situated to

the left or to the right side of the slope, respectively. For a

slope [a, b], its amplitude d is defined as d = b - a.

When computing OWA weights from Q(r) using Eq.

(2.4), non-null weights wi are assigned to elements bi

whose r = i/n is situated inside the quantifier’s slope, i.e.

r 2 ½a; b�: As we can see, d indicates the amount of values

considered in the aggregation. In addition, orness(W)

indicates how optimistic this aggregation is. These two

elements let us define the attitudinal parameters used by

the decision group to reflect an attitude towards consensus.

• # ¼ ornessðWÞ 2 ½0; 1� represents the group’s attitude

to be taken into account in the aggregation process (see

Sect. 2.3). This attitude can be either optimistic if

0[ 0.5, pessimistic if 0\ 0.5 or neutral if 0 = 0.5.

• u ¼ d 2 ½0; 1� indicates the amount of values which are

given non-null weight and therefore are considered in

the aggregation. The higher the d, the wider is the range

of ranked values given non-null weight and the higher

is the dispersion in the corresponding Attitude-OWA

operator.

We can now define an extension of OWA operators

so-called Attitude-OWA for reflecting specific aggregation

attitudes as follows:

Definition 4 An Attitude-OWA operator of dimension n

on a set A ¼ fa1; . . .; ang of values to be aggregated, is an

OWA operator based on two attitudinal parameters #;u
given by a decision group to indicate their attitude towards

consensus,
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Attitude-OWAWðA; #;uÞ ¼
Xn

j¼1

wjbj ð3:1Þ

where bj is the jth largest of the ai values,#;u 2 ½0; 1� are two

input attitudinal parameters, and the set of weights, W, is

computed by using a RIM quantifier, as shown in Eq. (2.4).

The attitude 0 of an Attitude-OWA operator can be

determined given the associated RIM quantifier Q, when

the number of elements to aggregate n is sufficiently large,

as follows:

Theorem 1 Let 0 be the attitude of an Attitude-OWA

operator based on an RIM quantifier with a differentiable

membership function Q(r). Then for n!1; # 2 ½0; 1� is

determined as follows

# ¼
Z1

0

QðrÞdr ð3:2Þ

The detailed analytical proof to obtain this expression is

given as follows:

Proof Based on Eq. (2.2) and Eq. (2.4), we have

#ðnÞ ¼ ornessðWÞðnÞ

¼ 1

n� 1

Xn

i¼1

ðn� iÞ Q
i

n

� �
� Q

i� 1

n

� �� �

To calculate 0 when n is sufficiently large, n!1;

# ¼ lim
n!1

#ðnÞ

¼ lim
n!1

1

n� 1

Xn

i¼1

ðn� iÞ Q
i

n

� �
� Q

i� 1

n

� �� �

¼ lim
n!1

1

n� 1

Xn�1

i¼1

ðn� iÞ Q
i

n

� �
� Q

i� 1

n

� �� �

If we consider P ¼
Pn�1

i¼1 ðn� iÞ Q i
n

� �
� Q i�1

n

� �� 	
; then we

have

P ¼
Xn�1

i¼1

n Q
i

n

� �
� Q

i� 1

n

� �� �
� i Q

i

n

� �
� Q

i� 1

n

� �� �� �

¼
Xn�1

i¼1

n Q
i

n

� �
� Q

i� 1

n

� �� �
�
Xn�1

i¼1

i Q
i

n

� �
� Q

i� 1

n

� �� �

¼ n
Xn�1

i¼1

Q
i

n

� �
� Q

i� 1

n

� �� �
�
Xn�1

i¼1

i Q
i

n

� �
� Q

i� 1

n

� �� �

where, expanding it into the sum form, some terms are

mutually deleted and finally we have

P ¼ nQ
n� 1

n

� �
� �

Xn�2

i¼1

Q
i

n

� �" #
þ ðn� 1ÞQ n� 1

n

� �" #

¼ nQ
n� 1

n

� �
� ðn� 1ÞQ n� 1

n

� �
þ
Xn�2

i¼1

Q
i

n

� �

¼ Q
n� 1

n

� �
þ
Xn�2

i¼1

Q
i

n

� �
¼
Xn�1

i¼1

Q
i

n

� �

Therefore,

# ¼ lim
n!1

1

n� 1

Xn

i¼1

ðn� iÞ Q
i

n

� �
� Q

i� 1

n

� �� �

¼ lim
n!1

1

n� 1

Xn�1

i¼1

Q
i

n

� �

When n!1; it follows from the limit definition of

definite integral that (Yager 1996)

# ¼ lim
n!1

1

n� 1

Xn�1

i¼1

Q
i

n

� �
¼
Z1

0

QðrÞdr

where r = i/n. h

Since this statement is true for any function Q(r) dif-

ferentiable in [0,1], it can be easily extended to different

types of RIM quantifiers, as shown below.

Corollary 1 Given an RIM quantifier Q with a linear

membership function Q(r) as shown in Eq. (2.5), when the

number of elements to aggregate n is sufficiently large, it is

possible to compute the optimism degree 0 of the Attitude-

OWA operator based on Q as follows,

# ¼ 1� a� u
2

ð3:3Þ

Proof Based on the previous theorem and Eq. (2.5), we

have

# ¼
Z1

0

QðrÞdr ¼
Z1

a

QðrÞdr ¼ AreaðQÞ

¼ 1

2
ðb� aÞ þ ½1� b� ¼ 1

2
uþ 1� ðaþ uÞ ¼ 1� a� u

2

Notice that the interval [a,1] defines the support of the

quantifier and b� a ¼ u: The meaning of the integral

states that 0 is equal to the area under the membership

function Q(r) (Liu and Han 2008; Yager 1996), as shown in

Fig. 3. h
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Therefore, when using linear RIM quantifiers, 0 may

closely approximate to the result of Eq. (3.3) when mea-

suring consensus in large groups where a high number of

agreement values must be aggregated to measure consen-

sus, i.e. when n!1: As a result, since we are interested

in integrating a group’s attitude towards consensus by

means of 0 and u; we use Eq. (3.3) to determine the value

of a, necessary to define the RIM quantifier and compute

Attitude-OWA weights, as follows:

a ¼ 1� #� u
2

ð3:4Þ

3.2 Relations and restrictions between attitudinal

parameters

Attitudinal parameters’ values are related to each other, so it

is convenient to clarify some existing relations and restric-

tions between them. As stated earlier, a and u are used to

univocally define a linear RIM quantifier Q, but the following

condition must be fulfilled to define a valid RIM quantifier

and therefore integrate a valid attitude in the process:

Theorem 2 Given a;u 2 ½0; 1�; a valid attitude given by

0 can be guaranteed only if aþ u� 1:

Proof Let us suppose aþ u[ 1: Considering that u ¼
b� a; Eq. (3.3) leads to

# ¼ 1� a� u
2
¼ 1� aþ b

2
ð3:5Þ

where aþb
2

is the central value of the quantifier’s slope, so

that

a� aþ b
2
� b

1� a� 1� aþ b
2
� 1� b

1� a�#� 1� ðaþ uÞ

where b ¼ aþ u: Notice here that if aþ u [ 1 as we sup-

posed, then 0 can be negative; therefore, aþ u must be equal

or less than one to ensure a valid attitude is defined. h

In order to avoid expressing invalid attitudinal param-

eters, we present the restrictions to be considered by the

decision group when providing them.

Corollary 2 The following condition must be fulfilled

when the group provides a value of 0:

u
2
�#� 1� u

2
ð3:6Þ

Proof According to Eq. (3.4), a is negative if ð#þ
u=2Þ[ 1: We need a C 0, i.e.

1� #� u
2
� 0

#þ u
2
� 1

#� 1� u
2

However, according to Theorem 2, it is also necessary to

guarantee aþ u� 1: Based on Eq. (3.4) we have,

aþ u ¼ 1� #� u
2
þ u� 1

1� #þ u
2
� 1

#� u
2

The fulfillment of both inequalities leads to the afore-

mentioned restriction. h

As a result, the higher the proportion of values to con-

sider in aggregation (given by u), the narrower range of

possible attitudes or optimism degrees (given by 0) can be

considered.

Corollary 3 The following condition must be fulfilled

when the group provides a value of u:

u� 1� j2#� 1j ð3:7Þ

Proof Based on the previous proof in Corollary 1, a C 0

requires

#þ u
2
� 1 i:e:;

u� 2ð1� #Þ

which is valid for # 2 ½0:5; 1�; but may give rise to u [ 1

and fail to fulfill Theorem 2 when 0\ 0.5. Let us consider

Theorem 2 and Eq. (3.4). We then have

aþ u ¼ 1� #� u
2
þ u� 1

1� #þ u
2
� 1

u� 2#

which is valid for # 2 ½0; 0:5�; but u [ 1 may still be

possible when 0[ 0.5; hence, a valid quantifier can be

defined only if these restrictions are satisfied,

Fig. 3 Membership function in RIM quantifiers considered
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u� 2# if # 2 ½0; 0:5�
u� 2ð1� #Þ if # 2 ½0:5; 1�

We finally proceed to find a single expression which

considers both restrictions. On the one hand, we have

2# ¼ 1� ð�2#þ 1Þ

where, when # 2 ½0; 0:5�; the term (- 20 ? 1) C 0. On the

other hand,

2ð1� #Þ ¼ 1� ð2#� 1Þ

where, when # 2 ½0:5; 1�; the term (20 - 1) C 0. This

means we can consider the absolute value of the term

(20 - 1) to integrate both restrictions as

u� 1� j2#� 1j

This restriction can be interpreted as the fact that the closer

0 is to a neutral attitude (0.5), the wider the range of

possible degrees for u that can be considered. h

If restrictions pointed out in Eqs. (3.6) and (3.7) are

taken into account when expressing any two values for

input attitudinal parameters ð#;uÞ; then a valid RIM

quantifier is always defined, thus guaranteeing a valid

Attitude-OWA operator.

4 Attitude-based consensus model

Once presented the concept of attitude towards consensus

and the main features of the Attitude-OWA operator used

to reflect it, in this section we present the consensus model

designed to integrate such an attitude in CRPs. The model

extends the main ideas of some models presented in

(Herrera-Viedma et al. 2002; Mata et al. 2009) and its

design allows to automate all the human moderator tasks,

thus removing his/her inherent subjective biasness towards

experts and facilitating the resolution of GDM problems

with large groups of experts computationally.

Figure 4 shows the five phases conducted in the model,

which are described in the following subsections:

4.1 Determining group attitude towards consensus

This phase is carried out at the beginning of the CRP, as

part of a pre-consensus process (Saint and Lawson 1994).

The moderator is responsible for reflecting the group’s

attitude towards consensus, by assigning a value to attitu-

dinal parameters 0 and u; considering both the context and

characteristics of the decision problem to solve, and the

experts’ individual concerns. Figure 5 shows the procedure

to determine a group’s attitude towards the achievement of

consensus and integrate it in the CRP, defining the corre-

sponding Attitude-OWA operator used in a later phase to

measure consensus.

4.2 Gathering preferences

Each expert ei provides his/her preference on alternatives

in X to the moderator, by means of a fuzzy preference

relation Pi, consisting of a q 9 q matrix of assessments pi
lk

on each pair of alternatives (xl; xkÞ; l; k 2 f1; . . .; qg: It is

advisable that experts provide consistent opinions that

could be easier to achieve if they provide reciprocal

assessments, i.e. if plk
i ¼ x; x 2 ½0; 1�; l 6¼ k; then pi

kl =

1 - x.

Fig. 4 Attitude-based

consensus model scheme
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4.3 Computing consensus degree

The moderator computes the level of agreement between

experts, by means of the following steps (see Fig. 6):

1. For each pair of experts ei, ej, (i = j), a similarity

matrix SM, defined by

SMij ¼
� . . . sm1q

ij

..

. . .
. ..

.

smq1
ij . . . �

0
BB@

1
CCA;

is computed as follows (Herrera-Viedma et al. 2005):

smlk
ij ¼ 1� jðplk

i � plk
j Þj ð4:8Þ

where smlk
ij 2 ½0; 1� is the similarity degree between

experts ei and ej in their assessments pi
lk, pj

lk.

2. A consensus matrix CM of dimension q 9 q, defined

by

CM ¼
�. . . cm1q

..

. . .
. ..

.

cmq1 . . . �

0
B@

1
CA;

is computed, taking into account the group’s attitude

by aggregation of similarity matrices. Each element

cmlk, l = k, is computed as:

cmlk ¼ Attitude-OWAWðSIMlk; #;uÞ ð4:9Þ

where SIMlk ¼ fsmlk
12; . . .; smlk

1m; smlk
23; . . .; smlk

2m; …,

sm(m-1)m
lk } is the set of all pairs of experts’ similarities

in their opinion on (xl, xk). Attitude-OWA operator is

used here to integrate the group’s attitude towards

consensus, previously gathered by means of 0 and u.

3. Consensus degree is computed at three different levels:

(a) Level of pairs of alternatives (cplk): obtained

from CM as cplk = cmlk, l, k [ {1, …, q},

l = k.

(b) Level of alternatives (cal): the level of agreement

on each alternative xl [ X is computed as:

cal ¼
Pq

k¼1;k 6¼l cplk

q� 1
ð4:10Þ

(c) Level of preference relation (overall consensus

degree, cr): it is computed as:

cr ¼
Pq

l¼1 cal

q
ð4:11Þ

4.4 Consensus control

The overall consensus degree cr is compared with a con-

sensus threshold l 2 ½0; 1� established a priori. If

cr C l, then the CRP ends and the group moves on to the

selection process; otherwise, more discussion rounds are

required. A parameter Maxrounds can be used to limit the

number of discussion rounds conducted in the cases that

consensus cannot be achieved.

4.5 Advice generation

If cr \ l, the moderator advises experts to modify their

preferences in order to increase the level of agreement in

the following rounds. Three steps are considered in this

phase:

1. Compute a collective preference and proximity matri-

ces for experts: A collective preference Pc is computed

Fig. 5 Process to determine the Attitude-OWA operator used to

measure consensus based on the group’s attitudinal parameters 0
and u

Fig. 6 Procedure to compute consensus degree based on the group’s

attitude
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for each pair of alternatives by aggregating experts’

preference relations:

plk
c ¼ /ðplk

1 ; . . .; plk
mÞ ð4:12Þ

where / is the aggregation operator considered.

Afterwards, a proximity matrix PPi = (ppi
lk) between

each expert’s preference relation and Pc is obtained:

PPi ¼
� . . . pp1q

i

..

. . .
. ..

.

ppq1
i . . . �

0
B@

1
CA

Proximity values ppi
lk are obtained for each pair (xl, xk)

as follows:

pplk
i ¼ 1� jðplk

i � plk
c Þj ð4:13Þ

Proximity values are used to identify the farthest

preferences from the collective opinion, which should

be modified by some experts.

2. Identify preferences to be changed (CC): pairs of

alternatives (xl, xk), whose consensus degrees cal and

cplk are not sufficient, are identified:

CC ¼ fðxl; xkÞjcal\cr ^ cplk\crg ð4:14Þ

Afterwards, the model identifies experts who should

change their opinion on each of these pairs, i.e. those

experts ei whose preference pi
lk on the pair ðxl; xkÞ 2

CC is farthest to pc
lk. An average proximity pplk is

calculated to identify them, as follows:

pplk ¼ /ðpplk
1 ; . . .; pplk

mÞ ð4:15Þ

As a result, experts ei whose pplk
i \pplk are advised to

modify their assessment on the pair (xl, xk).

3. Establish change directions: several direction rules are

applied to suggest the direction of changes proposed to

experts, in order to increase the level of agreement in

the following rounds (Mata et al, 2009).

• DIR.1: If (pi
lk - pc

lk) \ 0, then expert ei should

increase his/her assessment on the pair of alterna-

tives (xl, xk).

• DIR.2: If (pi
lk - pc

lk) [ 0, then expert ei should

decrease his/her assessment on the pair of alterna-

tives (xl, xk).

• DIR.3: If (pi
lk - pc

lk) = 0, then expert ei should not

modify his/her assessment on the pair of alterna-

tives (xl, xk).

5 Experimental simulation

In this section, we use a multi-agent based consensus

support system to simulate the resolution of a real GDM

problem defined under uncertainty, with different instances

of Attitude-OWA operator based on different group atti-

tudes towards consensus, having a considerable number of

experts in the group. Our main hypothesis focuses mainly

on the effect of using different attitudes towards consensus

in the process, and states that optimism, given by OR-LIKE

operators, may favour a greater convergence towards

consensus with a lower number of rounds; whereas pessi-

mism, given by AND-LIKE operators, may favour a lower

convergence towards consensus and, therefore, more

rounds of discussion are required.

The presented attitude-based consensus model has been

applied to simulate a real-life problem, whose formulation

is as follows: let us suppose that a conference scientific

committee compound by 50 scientists, E ¼ fe1; . . .; e50g;
must grant a best Ph.D. student paper award to one out

of four possible candidate papers, X = {x1 = John’s paper,

x2 = Wang’s paper, x3 = Sue’s paper, x4 = Michael’s

paper}. The committee must achieve a minimum level of

agreement of l = 0.85 before making a decision.

The experiments consisted in defining a total of five

different attitudes towards consensus, 0, where both opti-

mistic, indifferent and pessimistic attitudes are reflected,

and applying a CRP based on the model presented in

Sect. 4. For each attitude, two different degrees of the

amount of information used, given by u; have been con-

sidered (taking into account the restrictions pointed out in

Sect. 3.2). Table 1 shows the different group attitudes used

in simulations, the obtained value of a [as stated in Eq. (3.4)]

and the subsequent definition of ten different RIM quantifiers

(denoted as Qða;uÞ) used in experiments. For each instance of

Attitude-OWA, 20 experiments have been run.

Results from experiments include the convergence to

consensus achieved, i.e. the average number of rounds of

discussion required to reach a consensus for each Attitude-

OWA operator defined upon an RIM quantifier. These

results, which are shown in Fig. 7, allow us to confirm our

hypothesis that the use of Attitude-OWA operator based on

Table 1 Attitudinal parameters and RIM quantifiers used

Attitude 0 u a Qða;uÞ

Highly pessimistic 0.1 0.1 0.85 Q(0.85,0.1)

0.1 0.2 0.8 Q(0.8,0.2)

Pessimistic 0.3 0.2 0.6 Q(0.6,0.2)

0.3 0.6 0.4 Q(0.4,0.6)

Indifferent 0.5 0.6 0.2 Q(0.2,0.6)

0.5 1 0 Q(0,1)

Optimistic 0.7 0.2 0.2 Q(0.2,0.2)

0.7 0.6 0 Q(0,0.6)

Highly Optimistic 0.8 0.1 0.15 Q(0.15,0.1)

0.8 0.2 0.1 Q(0.1,0.2)
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an optimistic attitude favours a greater convergence

towards consensus, whereas the use of Attitude-OWA

operator based on a pessimistic attitude favours a lower

convergence and a further discussion process, regardless of

the proportion of values considered, u:
It can be concluded that the main advantage of inte-

grating the group’s attitude in the CRP is the fact that it lets

us adapt and optimize such a process, according to the

specific needs of decision makers for each GDM problem

to be addressed. For instance, if decision makers’ priority is

achieving a consensus in a fast discussion process and they

do not care about considering the highest agreement posi-

tions, they would adopt an optimistic attitude. On the other

hand, if they consider that the problem requires further

discussion and they want to ensure that even the most

discrepant experts finally reach an agreement, they would

rather consider a pessimistic attitude.

6 Conclusions and future works

In this paper, we have studied the concept of group’s

attitude towards consensus by means of an extension of

OWA operators, the so-called Attitude-OWA, and pre-

sented a consensus model which allows to integrate it in the

consensus-reaching process. The attitudinal parameters

involved in the defined operator have been thoroughly

studied. In addition, the performance of the proposed

approach has been analysed through a simulation to solve a

real group decision making problem with many experts in

an automatic consensus support system. Having shown

the effect of using optimistic/pessimistic attitudes in the

number of discussion rounds necessary to achieve an

agreement (the more optimistic the attitude, the higher is

the convergence towards consensus, and vice versa), we

conclude that the integration of the group’s attitude pro-

vides the advantage that the consensus-reaching process

can be easily adapted and optimized according to the

group’s needs, by choosing the appropriate values for

attitudinal parameters.

Our future works are currently focused on a further

analysis of the proposed attitudinal parameters, as well as

introduction of the possibility that experts can express their

desired attitudes in a linguistic background, thus giving

them an even more natural way to provide attitudinal

information. We also aim to extend Attitude-OWA oper-

ator to apply it to consensus processes where different

types of quantifiers with diverse membership functions can

be used, and extend the consensus model to make it

adaptive, under the assumption that the group’s attitude

might change during the discussion process

Acknowledgments This work is partially supported by the

Research Project TIN-2009-08286, P08-TIC-3548 and FEDER funds.

References

Beliakov G, Pradera A, Calvo T (2007) Aggregation functions: a

guide for practitioners. Springer, Heidelberg

Bryson N (1996) Group decision-making and the analytic hierarchy

process. Exploring the consensus-relevant information content.

Comput Oper Res 23(1):27–35

Butler C, Rothstein A (2006) On conflict and consensus: a handbook

on formal consensus decision making. Food Not Bombs

Publishing, Takoma Park

Elzinga C, Wang H, Lin Z, Kumar Y (2011) Concordance and

consensus. Inf Sci 181(12):2529–2549

Fedrizzi M, Fedrizzi M, Marques R (1999) Soft consensus and

network dynamics in group decision making. Int J Intell Syst

14(1):63–77

Fig. 7 The average number of

required rounds of discussion

for RIM quantifier-based

Attitude-OWA operators with

different attitudinal parameters

given by 0 and u

Modelling experts’ attitudes in group decision making 1765

123



Grabisch M, Orlovski S, Yager R (1998) Fuzzy Aggregation of

numerical preferences. In: Fuzzy sets in decision analysis:

operations, research and statistics. Kluwer, Boston, pp 31–68

Herrera F, Herrera-Viedma E, Verdegay J (1995) A sequential

selection process in group decision making with linguistic

assessments. Inf Sci 85(1995):223–239

Herrera F, Herrera-Viedma E, Verdegay J (1996) A model of

consensus in group decision making under linguistic assess-

ments. Fuzzy Sets Syst 78(1):73–87

Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model

for multiperson decision making with different preference

structures. IEEE Trans Syst Man Cybern A Syst Hum 32(3):

394–402

Herrera-Viedma E, Martı́nez L, Mata F, Chiclana F (2005) A

consensus support system model for group decision making

problems with multigranular linguistic preference relations.

IEEE Trans Fuzzy Syst 13(5):644–658

Herrera-Viedma E, Alonso S, Chiclana F, Herrera F (2007a) A

consensus model for group decision making with incomplete

fuzzy preference relations. IEEE Trans Fuzzy Syst 15(5):863–

877

Herrera-Viedma E, Chiclana F, Herrera F, Alonso S (2007b) Group

decision-making model with incomplete fuzzy preference rela-

tions based on additive consistency. IEEE Trans Syst Man

Cybern B Cybern 37(1):176–189

Herrera-Viedma E, Garcı́a-Lapresta J, Kacprzyk J, Fedrizzi M, Nurmi

H, Zadrozny S (eds) (2011) Consensual processes. Studies in

fuzziness and soft computing, vol 267. Springer, Berlin

Kacprzyk J (1986) Group decision making with a fuzzy linguistic

majority. Fuzzy Sets Syst 18(2):105–118

Kacprzyk J, Fedrizzi M (1988) A ‘‘soft’’ measure of consensus in the

setting of partial (fuzzy) preferences. Eur J Oper Res 34(1):

316–325

Kacprzyk J, Fedrizzi M (1989) A ’human-consistent’ degree of

consensus based on fuzzy logic with linguistic quantifiers. Math

Soc Sci 18 (3):275–290

Kacprzyk J, Zadrozny S (2010) Soft computing and web intelligence

for supporting consensus reaching. Soft Comput 14(8):833–846

Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and

applications. Prentice Hall, Upper Saddle River

Kuncheva L, Krishnapuram R (1995) A fuzzy consensus aggregation

operator. Fuzzy Sets Syst 79 (3)(3):347–356

Liu X, Han S (2008) Orness and parameterized RIM quantifier

aggregation with OWA operators: a summary. Int J Approx

Reason 48:77–97

Martı́nez L, Montero J (2007) Challenges for improving consensus

reaching process in collective decisions. New Math Nat Comput

3(2):203–217

Mata F, Martı́nez L, Herrera-Viedma E (2009) An adaptive consensus

support model for group decision-making problems in a

multigranular fuzzy linguistic context. IEEE Trans Fuzzy Syst

17(2):279–290

Parreiras R, Ekel P, Martini J, Palhares R (2010) A flexible consensus

scheme for multicriteria group decision making under linguistic

assessments. Inf Sci 180(7):1075–1089

Pedrycz W, Ekel P, Parreiras R (2011) Fuzzy multicriteria decision-

making: models, methods and applications. Wiley, New York

Reformat M, Yager R, Li Z, Alajlan N (2011) Human-inspired

identification of high-level concepts using OWA and linguistic

quantifiers. Int J Comput Commun Control 6(3):473–502

Roubens M (1997) Fuzzy sets and decision analysis. Fuzzy Sets Syst

90(2):199–206

Saint S, Lawson JR (1994) Rules for reaching consensus. A modern

approach to decision making. Jossey-Bass, San Francisco

Shannon C, Weaver W (1949) The mathematical theory of commu-

nication. University of Illinois Press, Urbana

Tocqueville A (1840) Democracy in America, 2nd edn. Saunders and

Otleym, London

Xu J, Wu Z (2011) A discrete consensus support model for multiple

attribute group decision making. Knowl Based Syst 24(8):1196–

1202

Yager R (1988) On orderer weighted averaging aggregation operators

in multi-criteria decision making. IEEE Trans Syst Man Cybern

18(1):183–190

Yager R (1993) Families of OWA operators. Fuzzy Sets Syst

59:125–148

Yager R (1996) Quantifier guided aggregation using OWA operators.

Int J Intell Syst 11:49–73

Yager R (2001) Penalizing strategic preference manipulation in multi-

agent decision making. IEEE Trans Fuzzy Syst 9(3):393–403

Yager R, Filev D (1994) Essentials of fuzzy modeling and control.

Wiley, New York

Zadeh L (1983) A computational approach to fuzzy quantifiers in

natural languages. Comput Math Appl 9:149–184

Zadrozny S, Kacprzyk J (2003) An Internet-based group decision and

consensus reaching support system. In: Applied decision support

with soft computing (studies in fuzziness and soft computing),

vol 124. Springer, Berlin, pp 263–275

1766 I. Palomares et al.

123


	Modelling experts’ attitudes in group decision making
	Abstract
	Introduction
	Preliminaries
	Group decision making (GDM)
	Consensus-reaching processes (CRPs)
	OWA operators: weights computation

	Integrating experts’ attitude in consensus-reaching processes
	Attitudinal parameters and Attitude-OWA operator
	Relations and restrictions between attitudinal parameters

	Attitude-based consensus model
	Determining group attitude towards consensus
	Gathering preferences
	Computing consensus degree
	Consensus control
	Advice generation

	Experimental simulation
	Conclusions and future works
	Acknowledgments
	References


