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A SimpleMethod for Testing Variance
Components in Unbalanced NestedModel

XINMIN LI AND JUAN WANG
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Shandong, China

In this article, we consider the unbalanced case of the three fold nested random
effects model under partial balance. The distributions of unweighted sums of squares
are obtained first. Using the method of generalized p value introduced in Tsui
and Weerahandi (1989), a new method is proposed for hypothesis tests involving
functions of variance components. To evaluate the sizes of the generalized p value,
a simulation study is conducted. The results indicate that the proposed method
performs well under all examined conditions.

Keywords Generalized p value; Unbalanced nested model; Unweighted sums of
squares; Variance components.

Mathematics Subject Classification 62F03; 62J10.

1. Introduction

In many experimental situations, processes are divided into several stages, and
estimators of the variance components of the stages are quite useful in identifying
major sources of variation. Nested model are used for this purpose; see details in
Sahai and Ojeda (2005).

For the balanced cases, several methods can be used for constructing confidence
intervals for functions of variance components by sums of squares which are
independently distributed as chi-squared distribution; see Burdick and Graybill
(1992), Weeranhandi (1995), and Chiang (2001). However, it is impossible to
select equal sample sizes for each stage in many cases. Since there may be some
occasions, on which a subject does not appear for one test, so that the experiment
design becomes unbalanced. But, in the unbalanced case, the sums of squares
no longer have chi-squared distributions. Furthermore, they are not independent.
Therefore, efforts in statistical inference for the variance of random effects seem to
be incommensurable although the initial attempt can be traced back to Wald (1947).
For testing whether a variance component is zero in a mixed linear model with two
variance components, the test by Wald (1947) leads an exact F -test. Later, Seely
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Testing Variance Components 1311

and El-Bassiouni (1983) extended the test method in the mixed linear model with
more than two variance components. Recently, likelihood-based method for linear
mixed-effects models have been well studied in statistical literature, and REML
procedures for testing variance components are implemented in well-developed
statistical software packages such as SAS and Splus/R with wide applications in
many scientific fields; see Scheipl et al. (2008) and Greven et al. (2008). According to
Scheipl et al. (2008), the restricted likelihood ratio test (RLRT), which implemented
in the R-package RLRSim (Scheipl, 2010), is better than other tests, including Wald
test. And they recommend RLRT to test zero variance components.

Yates’ (1934) unweighted sums of squares (USSs) have long been used to derive
a test concerning the parameters of unbalanced random or mixed models. Several
authors have investigated it and used it for constructing confidence intervals on
functions of variance components; for example, Thomas and Hultiquist (1978),
Burdick and Graybill (1985), Hernandez and Burdick (1993), and Khuri et al.
(1998). However, to the best of our knowledge, there has not yet been much attempt
to the problem on testing non zero variance components.

In many experimental situations, a partial balance is natural in many situations
since the error stage usually corresponds to replication of the experiments,
and hence achieving a balanced at this stage is more in the control of
experimenter. Tietjen (1974) called this condition “stage uniformity.” The model
under consideration is the unbalanced three-fold nested model with unequal number
of levels for the third random factor. In this article, we focus attention on
constructing generalized p value for functions of variance components in this
model. The generalized inference introduced by Tsui and Weerahandi (1989) and
Weeranhandi (1993) appear to be appropriate for constructing confidence intervals,
since it’s built from an exact probability statement, and can provide procedures
applicable to small samples. During the past few years, the idea of generalized
inference have been used by many authors to obtain useful inference procedure in
nonstandard problems; see, for instance, Weeranhandi (1995), Ananda (1995), Iyer
et al. (2004), Mathew and Webb (2005), and Hannig et al. (2006). Recently, Burch
(2007) proposed a generalized confidence interval approach for proportions of total
variance in mixed linear models having more than two variance components.

The article is organized as follows. In Sec. 2, we present the USSs in three-fold
nested model with unequal number of levels for the third random factor. Section 3
reviews some tests for zero variance component firstly, then provides the method
to construct generalized p-value for function of variance components. In Sec. 4,
a Monte–Carlo simulation study is applied to discussing the size of the resulted
generalized p value. The results indicate that the proposed method performs well
under all examined conditions. Section 5 contains summary and discussion.

2. The Three-Fold Nested Model

In many experimental situations, an investigator can control an experiment and
achieve equal sample sizes for the error stage. Tietjen (1974) called this condition “last
stage uniformity”. The model under consideration is the unbalanced three-fold nested
model with unequal number of levels for the third random factor, which is written as

Yk1k2k3k4 = � + �k1 + �k1k2
+ �k1k2k3 + ek1k2k3k4� k1 = 1� � � � � a� k2 = 1� � � � � b�

k3 = 1� � � � � ck1k2� k4 = 1� � � � � d� (2.1)
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1312 Li and Wang

where �k1� �k1k2
� �k1k2k3 , and ek1k2k3k4 are mutually independent, normally distributed

random variables with zero means and variances �2
1� �

2
2� �

2
3 and �2

4, respectively. Let

Yk1k2 = �Yk1k211� � � � � Yk1k21d� � � � � Yk1k2ck1k2 1
� � � � Yk1k2ck1k2d

	′�

Y = �Y ′
11� � � � � Y

′
ab	

′� � = ��1� � � � � �a	
′�

� = ��11� � � � � �1b� � � � � �a1� � � � �ab	
′�

� = ��111� � � � � �11c11� � � � � �ab1� � � � �abcab 	
′�

Then the model (2.1) can be expressed in matrix form as

Y = X0� + X1�+ X2� + X3�+ X4e� (2.2)

where e is defined similarly to Y . Let c·· =
∑a

k1=1

∑b
k2=1 ck1k2 , ck1· =

∑b
k2=1 ck1k2 ,

n1 = a, n2 = ab, n3 = c··, n4 = n3d, then � ∼ Nn1
�0� �2

1In1	� � ∼ Nn2
�0� �2

2In2	� � ∼
Nn3

�0� �2
3In3	, and e ∼ Nn4

�0� �2
4In4	. The design matrices X0� X1� X2� X3� X4 are as

follows:

X0 = 1n4� X1 = diag�1c1·� � � � � 1ca·	⊗ 1d�

X2 = diag�1c11� � � � � 1cab 	⊗ 1d� X3 = In3 ⊗ 1d� X4 = In4 �

Lemma 2.1. The properties of the design matrices are stated as follows.

(1) X1 = X2�Ia ⊗ 1b	� X
′
2X3 = diag�d1′c11� � � � � d1

′
cab
	� X′

3X3 = dIn3 .
(2) ��X0	 ⊂ ��X1	 ⊂ ��X2	 ⊂ ��X3	 ⊂ ��X4	, where ��·	 denotes range space

(column space).

Denote a projection matrix onto the column space of Xi by Pi� i = 1� 2� 3� 4�
From Lemma 2.1, we see that

P0 =
1
n4

Jn4� P1 = diag

(
1
c1·

Jc1·� � � � �
1
ca·

Jca·

)
⊗ 1

d
Jd

P2 = diag

(
1
c11

Jc11� � � � �
1
cab

Jcab

)
⊗ 1

d
Jd� P3 = Ic�� ⊗

1
d
Jd� P4 = In4 � (2.3)

Now, we employ the transformation R = �R′
1� R

′
2	

′ to model (2.2), where R1 =
�X′

2X2	
−1X′

2, R2 = I − P2. By Lemma 2.1, we obtain

R1Y = �1ab + �Ia ⊗ 1b	�+ � + R1X3�+ R1e� (2.4)

with

E�R1Y	 = �1ab� Var�R1Y	 = �2
1�Ia ⊗ Jb	+ �2

2Iab +
( 4∑

i=3

n4

ni

�2
i

)
D�

and

R2Y = �In4 − P2	X3�+ �In4 − P2	e� (2.5)
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Testing Variance Components 1313

with

E�R2Y	 = 0� Var�R2Y	 =
4∑

i=3

�2
i �In4 − P2	XiX

′
i�In4 − P2	�

where D = diag
(

1
c11d

� � � � � 1
cabd

)
. Let SS3 = Y ′�P3 − P2	Y , and SS4 = Y ′�In4 − P3	Y ,

then SSR2Y
= Y ′�In4 − P2	Y = SS3 + SS4�

Theorem 2.1.

(1) R1Y� SS3� SS4 are mutually independent.
(2) SSi ∼ 
i�

2
ni−ni−1

, i = 3� 4, where 
i =
∑4

r=i
n4
nr
�2
r .

Proof. First we show that R1Y� SSi� i = 2� 3� 4 are mutually independent. From
Lemma 2.1, we see that PiPj = Pmin�i�j� i �= j� i� j = 1� 2� 3� 4. Hence, �Pi − Pi−1	�Pj −
Pj−1	 = 0, and �Pi − Pi−1	Pj = 0 when i > j �i� j = 1� 2� 3� 4	, which implies that
R1Y� SS3� SS4 are mutually independent.

From model (2.2), we see that

E�Y	 = �1n4� Var Y =
4∑

i=1

�2
i XiX

′
i �

By (2.3) and the above results, for i = 3� 4, we obtain that

E�Pi − Pi−1	Y = 0�

Var�Pi − Pi−1	Y = �Pi − Pi−1	Var Y�Pi − Pi−1	

=
4∑

r=1

�2
r �Pi − Pi−1	XrX

′
r �Pi − Pi−1	

=
4∑

r=i

�2
r �Pi − Pi−1	

n4

nr

Pr�Pi − Pi−1	

=
4∑

r=i

n4

nr

�2
r �Pi − Pi−1	

= 
i�Pi − Pi−1	�

That is,

�Pi − Pi−1	Y ∼ N�0� 
i�Pi − Pi−1		�

We see that Pi − Pi−1 is idempotent, and rank�Pi − Pi−1	 = rank�Xi	− rank�Xi−1	 =
ni − ni−1, this follows that SSi ∼ 
i�

2
ni−ni−1

� i = 3� 4.
This completes the proof of Theorem 2.1.

Let Qi = �Q′
i1� Q

′
i2	

′ �i = 1� 2	 be orthogonal matrices, where Q11 = 1√
a
1′a,

Q21 = 1√
b
1′b, Q′

12Q12 = Ia − 1
a
Ja, and Q′

22Q22 = Ib − 1
b
Jb. Next, we employ the

orthogonal transformation H = �H ′
0� H

′
1� H

′
2	

′ to model (2.4), where H0 = Q11 ⊗Q21,
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1314 Li and Wang

H1 = Q12 ⊗Q21, H2 = Ia ⊗Q22. Let HR1Y = Z = �Z′
0� Z

′
1� Z

′
2	

′, where Z0 =
H0R1Y� Z1 = H1R1Y� Z2 = H2R1Y . It follows that

E�Z	 =
(√

ab�� 0 0
)′
�

Var�Z	 = diag�b�2
1 + �2

2� �b�
2
1 + �2

2	Ia−1� �
2
2Ia�b−1		+ 
3HDH ′� (2.6)

If the data set is balanced, that is c11 = c12 = · · · = cab = c, then HDH ′ = 1
cd
Iab.

But in unbalanced cases, it is no longer a diagonal matrix. Next, we get the
approximation of HDH ′ with the form �Iab, that is to say, we want to find the value
of �0 such that �0 = argmin�∈R�HDH ′ − �Iab� = argmin�∈R�tr�D − �Iab	

2	1/2. Then it
is easy to obtain the following lemma.

Lemma 2.2. The best approximation of D with a diagonal matrix of the form �Iab is
achieved when � = 1

c̃d
, where c̃ = ab∑a

k1=1
∑b

k2=1
1

ck1k2

is the harmonic mean of the ck1k2 .

Using Lemma 2.2 and (2.6),

Var�Z	 ≈ diag�b�2
1 + �2

2� �b�
2
1 + �2

2	Ia−1� �
2
2Ia�b−1		+

1
c̃d


3Iab�

which follows that

Z1 ∼ �approx�	Nn1−1

(
0�

1
c̃d


1In1−1

)
�

Z2 ∼ �approx�	Nn2−n1

(
0�

1
c̃d


2In2−n1

)
�

where 
1 = bc̃d�2
1 + c̃d�2

2 + d�2
3 + �2

4� 
2 = c̃d�2
2 + d�2

3 + �2
4. Denote SS1 = c̃dZ′

1Z1,
SS2 = c̃dZ′

2Z2, then

SS1 ∼ �approx�	
1�
2
n1−1� SS2 ∼ �approx�	
2�

2
n2−n1

�

Such an approximation amounts to replacing ck1k2 by their harmonic mean c̃.
A similar approximation was used by Thomas and Hultiquist (1978) to obtain an
approximate test for the between-groups variance component for the unbalanced
random one-way model. The next lemma gives the relationship between the USSs.

Lemma 2.3. The USSs for � and � in model (2.1) are equal to SS1 and SS2,
respectively. And SS3 and SS4 are the sums of squares of � and e.

Proof. Denote

Y k1k2k3
= 1

d

d∑
k4=1

Yk1k2k3k4� Y k1k2
= 1

ck1k2d

ck1k2∑
k3=1

d∑
k4=1

Yk1k2k3k4�

Y
∗
k1· =

1
b

b∑
k2=1

Y k1k2
� Y

∗
·· =

1
a

a∑
k1=1

Y
∗
k1·
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Testing Variance Components 1315

Since

R1Y = diag

(
1

c11d
1′c11d� � � � �

1
cabd

1′cabd

)
Y = �Y 11� � � � � Y ab	

′�

Y ′P2Y = Y ′diag
(

1
c11d

Jc11d� � � � �
1

cabd
Jcabd

)
Y =

a∑
k1=1

b∑
k2=1

ck1k2dY
2
k1k2

�

Y ′P3Y = Y ′
(
In3 ⊗

(
1
d
Jd

))
Y =

a∑
k1=1

b∑
k2=1

ck1k2∑
k3=1

dY
2
k1k2k3

�

then we obtain that

SS1 = c̃dY ′R′
1H

′
1H1R1Y

= c̃d�Y 11� � � � � Y ab	

((
Ia −

1
a
Ja

)
⊗ 1

b
Jb

)
�Y 11� � � � � Y ab	

′

= b̃cd
a∑

k1=1

�Y
∗
k1· − Y

∗
··	

2�

SS2 = c̃dY ′R′
1H

′
2H2R1Y

= c̃d�Y 11� � � � � Y ab	

(
Ia ⊗

(
Ib −

1
b
Jb

))
�Y 11� � � � � Y ab	

′

= c̃d
a∑

k1=1

b∑
k2=1

�Y k1k2
− Y

∗
k1·	

2�

SS3 = Y ′�P3 − P2	Y = d
a∑

k1=1

b∑
k2=1

ck1k2∑
k3=1

�Y k1k2k3
− Y k1k2

	2�

SS4 = Y ′�In4 − P3	Y =
a∑

k1=1

b∑
k2=1

ck1k2∑
k3=1

d∑
k4=1

�Yk1k2k3k4 − Y k1k2k3
	2�

The proof is completed.

Remark 2.1. On the basis of Lemmas 2.1 and 2.3, we conclude that

SS1 ∼ �approx�	�bc̃d�2
1 + c̃d�2

2 + d�2
3 + �2

4	�
2
n1−1�

SS2 ∼ �approx�	�c̃d�2
2 + d�2

3 + �2
4	�

2
n2−n1

�

SS3 ∼ �d�2
3 + �2

4	�
2
n3−n2

�

SS4 ∼ �2
4�

2
n4−n3

� (2.7)

3. Testing Variance Component

3.1. Testing for Zero Variance Component

Under a regression model which has two variance components, Wald (1947)
provided a method to construct the confidence interval on the ratio of variance to
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1316 Li and Wang

the error variance via the F -distribution. Seely and El-Bassiouni (1983) extended
the Wald’s procedure to test whether the variance is zero in the linear mixed model
which has several variance components. Suppose the variance component of interest
in the three-fold nested model (2.2) is �2

1, and the hypothesis problem to be tested is

H0 � �
2
1 = 0 versus H1 � �

2
1 > 0�

Now we give the Wald test for above testing problem.
Denote X = X0� B = X1� C = �X2� X3	 for simplicity. Then the model (2.2) is

equivalent to

Y = X� + B�+ C��′� �′	′ + X4e�

Let L be an k× n4 matrix satisfying LL′ = Ik� L′L = P�X�B�C	 − P�X�C	� and
F be an f × n4 matrix satisfying FF ′ = If � F ′F = In4 − P�X�B�C	, where k =
rank�P�X�B�C	 − P�X�C		 = rank�X� B�C	− rank�X�C	 and f = rank�In4 − P�X�B�C		 =
n4 − rank�X� B�C	� We can obtain that

LY = LB�+ Le ∼ Nk�0� �
2
1LBB

′L′ + �2
4Ik	�

FY = Fe ∼ Nf�0� �
2
4If 	�

Consequently, there exists

T = Y ′L′�Ik + �2
1LBB

′L′/�2
4	

−1LY/k

Y ′F ′FY/f
∼ Fk�f �

where Fk�f denotes F distribution with k and f degrees of freedom. Note that the
matrix LBB′L′ is a positive definite matrix, T is a decreasing function of �2

1.
When the null hypothesis is true, that is �2

1 = 0, T�0	 is the test statistic. Then
the corresponding p value is calculated as

p = Pr�T ≥ T�0		 = Fk�f �T�0		�

Recently, likelihood-based method for linear mixed-effects models have been
well studied in statistical literature, and REML procedures for testing variance
components are implemented in well-developed statistical software packages such as
SAS and Splus/R with wide applications in many scientific fields. Recently, Greven
et al. (2008) proposed two approximation methods for the sample distribution of
the likelihood ratio statistics. Although the asymptotic distribution of the restricted
likelihood ratio (RLRT) test is derived for a single variance component for the
case of linear mixed-effects models, the extension to multiple variance components
remains quite challenging. Scheipl et al. (2008) compared a variety of tests for a
zero random effect variance with respect to their power and their adherence to
the nominal level in a broad range of settings. Their simulation study showed
that RLRT test which implemented in the R-package RLRSim (Scheipl, 2010),
as implemented in the R-package RLRSim is better than Wald test. And they
recommend RLRT to test zero variance components.

In the next subsection, we will develop a nonzero-variance component test and
a corresponding efficient implementation procedure.
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Testing Variance Components 1317

3.2. Testing for Non Zero Variance Component

Let � = h��2
1� � � � � �

2
4	 be the function of variance components. It is often desired to

consider the following hypotheses for �,

HI
0 � � = �0 versus H1 � � �= �0�

HII
0 � � ≤ �0 versus H1 � � > �0�

HIII
0 � � ≥ �0 versus H1 � � < �0�

(3.1)

Now the USSs SSi, i = 1� � � � � 4 are applied to conduct above hypothesis tests.
Tsui and Weerahandi (1989) and Weeranhandi (1993, 1995) introduced the

concept of generalized inference. Assume an observable random vector X has a
probability distribution P��·	, where � = �
� �	 is an unknown vector in parameter
space �. Suppose that 
 = 
��	 is the parameter of interest, and � is the nuisance
parameter. Let x is the observed value of X. T = T�X� x� �	 is a generalized test
variable if it satisfies the following properties:

(a) The observed value t = T�x� x� �	 does not depend on the nuisance parameter �.
(b) T has a probability distribution free of unknown parameters.
(c) For fixed x and �, Pr�T�X� x� �	 ≥ t  
 is either nondecreasing or nonincreasing

in 
 for any given t.

Lemma 3.1. Denote � = ��� �2
1� �

2
2� �

2
3� �

2
4	, T�21

�Y� y� �	 = 1
bc̃d

(
ss1
SS1


1 − ss2
SS2


2
)
,

T�22
�Y� y� �	 = 1

c̃d

(
ss2
SS2


2 − ss3
SS3


3
)
, T�23

�Y� y� �	 = 1
d

(
ss3
SS3


3 − ss4
SS4


4
)
, and T�24

�Y� y� �	 =
ss4
SS4


4 = ss4
�2n4−n3

, where ssi is the observed value of SSi� i = 1� 2� 3� 4. Then an approximate

generalized test variable for � can be given as

T��Y� y� �	 = h�T�21
� � � � � T�24

	� (3.2)

Proof. Since T�2i
�y� y� �	 = �2

i , i = 1� � � � � 4, T��y� y� �	 = �. On the other hand,
by (2.7), we have

T�21
= 1

bc̃d

(
ss1
SS1


1 −
ss2
SS2


2

)
∼ �approx�	

1
bc̃d

(
ss1
�2n1−1

− ss2
�2n2−n1

)
�

T�22
= 1

c̃d

(
ss2
SS2


2 −
ss3
SS3


3

)
∼ �approx�	

1
c̃d

(
ss2

�2n2−n1

− ss3
�2n3−n2

)
�

T�23
= 1

d

(
ss3
SS3


3 −
ss4
SS4


4

)
∼ 1

d

(
ss3

�2n3−n2

− ss4
�2n4−n3

)
�

T�24
= ss4

SS4

4 ∼

ss4
�2n4−n3

�

Then the approximate distribution of T��Y� y� �	 does not depend on any parametric.
Furthermore, we have

Pr�T�Y� y� �	 ≥ T�y� y� �		 = Pr�h�T�21
� � � � � T�24

	 ≥ �	�

which is non increasing in �. Hence, T�X� x� �	 is the approximate generalized test
variable.
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1318 Li and Wang

Following from Lemma 3.1, the generalized p values for the problems (3.1) are

HI
0 � p = 2 ·min�Pr�T��Y� y� �	 ≤ �0	� Pr�T
�Y� y� �	 ≥ �0	�

HII
0 � p = Pr�T��Y� y� �	 ≤ �0	� (3.3)

HIII
0 � p = Pr�T��Y� y� �	 ≥ �0	�

4. Simulation Study

To appraise the accuracies of the generalized test provided in Sec. 3, a Monte
Carlo simulation is used to estimate its size. The magnitude of variance components
and the intraclass correlation coefficient, which are significant in identifying
and controlling major sources of variation, are of particular interest in many
applications. Without loss of generality, define �1 = �2

1/
∑4

i=1 �
2
i and �2 = �2

1. Then
the two kinds of hypothesis problems are

H1
0 � �1 = c01 ↔ H1

1 � �1 �= c01�

H2
0 � �1 ≥ c01 ↔ H2

1 � �1 < c01� (4.1)

H3
0 � �1 ≤ c01 ↔ H3

1 � �1 > c01�

and

H1
0 � �2 = c02 ↔ H1

1 � �2 �= c02�

H2
0 � �2 ≥ c02 ↔ H2

1 � �2 < c02� (4.2)

H3
0 � �2 ≤ c02 ↔ H3

1 � �2 > c02�

Following from Lemma 3.1, we can obtain the generalized pivotal quantities of
T�i

� i = 1� 2 are

T�1
= T�21

/ 4∑
i=1

T�2i
�

(4.3)
T�2

= T�21
�

with their observed values t�i = c0i� i = 1� 2. It is obvious that they are stochastically
monotonous in their respective parameter of interest and could be applied as the
generalized test variables for the relevant hypothesis problems. Thus, for any given
c0i� i = 1� 2, the generalized p values for the two groups of testing problems (4.1)
and (4.2) are

H1
0 � p = 2 ·min�Pr�T�i

≤ c0i	� Pr�T�i
≥ c0i	� i = 1� 2�

H2
0 � p = Pr�T�i

≤ c0i	� i = 1� 2� (4.4)

H3
0 � p = Pr�T�i

≥ c0i	� i = 1� 2�

By using the Monte Carlo method, the Type I error rates are simulated
numerically under various parameter configurations. Table 1 lists the eight designs
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1320 Li and Wang

with different values of a� b� ck1k2 , and d, which set the values of sample size n4

ranging from 42–1084.
Several values of �1 and �2 are selected for extensive simulation study. For the

hypothesis test concerned �1, we set �2
2 = �2

3 = 1 and �2
1 + �2

2 + �2
3 + �2

4 = 10 with
�2
4 varying to keep the sum of variance components equal to 10. In the testing

procedure for �2, we set �2
2 = �2

3 = �2
4 = 1. The algorithm of generalized p value

(GP) method for evaluating the type I error rates for certain testing problem based
on T�k

� k = 1� 2 is as followed:

Algorithm
For l = 1 to N

Generate a random sample of y from certain designed model.
Compute ni, c̃ and SSi� i = 1� 2� 3� 4 defined in Sec. 2.
Produce �21 ∼ �2�n1 − 1	 and �2i ∼ �2�ni − ni−1	� i = 2� 3� 4, and compute T�k

using (3.2) and (4.3).
Repeat the above step for M times, and obtain t

j
�k
� j = 1� � � � �M .

For testing H1
0 , denote pl as 2 ·min�proportion�tj�k ≤ c0k� j =

1� � � � �M� proportion�t
j
�k
≥ c0k� j = 1� � � � �M; for testing H2

0 , denote pl as
proportion�t

j
�k
≤ c0k� j = 1� � � � �M; for testing H3

0 , denote pl as proportion�t
j
�k
≥

c0k� j = 1� � � � �M.
End l loop.
Then the simulated Type I error rates of certain testing problem is the

proportion of �pl < �� l = 1� � � � � N, where � is the given significance level. In the
simulation procedure, we set M = 50�000 and N = 5�000.

Firstly, we consider the testing problem

H0 � �
2
1 = 0 versus H1 � �

2
1 > 0�

that is c0i = 0 in H3
0 . For the given test level 0�05, we compare the size of

the proposed GP test with the restricted likelihood ratio test (RLRT), which is
conducted by R-package RLRSim for the test problem. The sizes are reported in
Table 2. It is evident that the performance of the GP test is as good as the RLRT
test.

Under the nominal level 0�05, Tables 3 and 4 provide the simulated results for
testing hypothesis in (4.1) and (4.2), respectively. We observe from the table values
that the sizes of H1

0 nominal level, and they are in general very close to the nominal
level 5%. And the tests of H2

0 and H3
0 are also generally close to the vary little,

although the sizes of H2
0 are smaller, and the sizes of H3

0 are larger in some cases.
Thus, the resulted generalized test has a good frequency property.

Table 2
Simulated Type I error rates for RLRT and GP test

D1 D2 D3 D4 D5 D6 D7 D8

RLRT 0.0455 0.055 0.05 0.048 0.039 0.042 0.0385 0.041
GP 0.047 0.05 0.05 0.0525 0.0435 0.0485 0.045 0.055
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Testing Variance Components 1321

Table 3
Simulated Type I error rates for test on �1

Design

�1 D1 D2 D3 D4 D5 D6 D7 D8

0.1 H1
0 0.0384 0.0362 0.047 0.0442 0.044 0.0492 0.0512 0.0476

H2
0 0.024 0.0232 0.0352 0.0376 0.0496 0.0454 0.0432 0.0408

H3
0 0.0598 0.0556 0.0572 0.0522 0.048 0.0518 0.0594 0.0496

0.2 H1
0 0.0354 0.0376 0.0434 0.0414 0464 0.047 0.0518 0.044

H2
0 0.0184 0.0226 0.0354 0.0378 0.0466 0.0464 0.0416 0.0414

H3
0 0.061 0.0632 0.0586 0.0534 0.0468 0.0516 0.0554 0.0508

0.4 H1
0 0.0368 0.0374 0.0468 0.0402 0.0482 0.047 0.0482 0.0482

H2
0 0.0188 0.0222 0.0358 0.0376 0.0474 0.0464 0.041 0.0398

H3
0 0.0612 0.0586 0.0584 0.0514 0.0486 0.0484 0.0544 0.0532

0.6 H1
0 0.0364 0.033 0.043 0.0416 0.048 0.0488 0.0484 0.0478

H2
0 0.0208 0.0214 0.0352 0.0366 0.0472 0.0474 0.041 0.04

H3
0 0.0586 0.054 0.0544 0.0506 0.0496 0.0486 0.0564 0.054

0.7 H1
0 0.0396 0.0356 0.0446 0.0448 0.0486 0.0506 0.0456 0.0478

H2
0 0.0236 0.0232 0.0356 0.0368 0.0464 0.0476 0.0408 0.0384

H3
0 0.06 0.055 0.0562 0.0504 0.0504 0.049 0.0582 0.0534

0.8 H1
0 0.0428 0.0376 0.0462 0.0484 0.0476 0.0496 0.0432 0.0482

H2
0 0.0428 0.0376 0.04 0.0396 0.0452 0.0472 0.0432 0.0482

H3
0 0.0574 0.0546 0.0528 0.0528 0.05 0.0492 0.057 0.0576

Table 4
Simulated Type I error rates for test on �2

Design

�2 D1 D2 D3 D4 D5 D6 D7 D8

1 H1
0 0.0372 0.036 0.0454 0.0438 0.047 0.0456 0.0512 0.0444

H2
0 0.0232 0.0226 0.0392 0.0374 0.0486 0.0472 0.0448 0.041

H3
0 0.0534 0.0558 0.0592 0.053 0.047 0.0516 0.057 0.05

2 H1
0 0.0312 0.0366 0.0494 0.043 0.0466 0.0482 0.0498 0.0462

H2
0 0.0216 0.0234 0.039 0.0386 0.0488 0.0476 0.0448 0.0434

H3
0 0.0486 0.0574 0.0578 0.0542 0.0498 0.0506 0.054 0.0516

4 H1
0 0.0352 0.0364 0.0496 0.046 0.0482 0.0524 0.0506 0.0522

H2
0 0.0242 0.0266 0.0412 0.0446 0.0518 0.0498 0.048 0.0454

H3
0 0.0528 0.0542 0.0546 0.0484 0.049 0.0498 0.054 0.0516

6 H1
0 0.0378 0.0346 0.0496 0.047 0.0496 0.0516 0.0494 0.0532

H2
0 0.0256 0.0286 0.0456 0.0462 0.0508 0.0508 0.0486 0.0482

H3
0 0.0544 00506 0.0538 0.0498 0.0498 0.0484 0.0516 0.0526

8 H1
0 0.0398 0.0362 0.0482 0.0482 0.05 0.0506 0.0516 0.0538

H2
0 0.0268 0.031 0.048 0.0472 0.0508 0.0516 0.05 0.0494

H3
0 0.052 00504 0.0528 0.048 0.0488 0.0482 0.0536 0.0512

10 H1
0 0.0406 0.0352 0.0454 0.0462 0.0476 0.0492 0.0504 0.0504

H2
0 0.029 0.0316 0.0432 0.044 0.0462 0.0464 0.0444 0.0428

H3
0 0.0538 0.0512 0.0506 0.0506 0.0486 0.0508 0.0498 0.0518
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1322 Li and Wang

5. Summary and Discussion

Testing for functions of variance components in three-fold nested mode is an
important problem in statistics which needs to be addressed frequently in practice.
Although testing zero variance component could be done by ML and REML
test, one needs to consider the testing problem for non zero variance components.
However, to the best of our knowledge, there does not exist an approach for the
problem. This article aims to fill this gap.

In this article, we reconsider the Wald test and propose an generalized p value
for functions of variance components in three-fold nested model with unequal
number of levels for the third random factor. The proposed generalized approach
can easily provide p values by using a few straightforward simulation steps. The
simulation studies indicate that the Type I errors of the proposed generalized p
value approach are generally satisfactory.
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