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Abstract
The linear regression (LR) and non-linear regression methods e grid search-support vector machine (GS-SVM) and projection pursuit re-
gression (PPR) were used to develop quantitative structureeactivity relationship (QSAR) models for a series of derivatives of naphthalene, ben-
zofurane and indole with respect to their affinities to MT3/quinone reductase 2 (QR2) melatonin binding site. Five molecular descriptors selected
by genetic algorithm (GA) were used as the input variables for the LR model and two non-linear regression approaches. Comparison of the
results of the three methods indicated that PPR was the most accurate approach in predicting the affinities of the MT3/QR2 melatonin binding
site. This confirmed the capability of PPR for the prediction of the binding affinities of compounds. Moreover, it should facilitate the design and
development of new selective MT3/QR2 ligands.
� 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) (compound no.
C29 in Table 1) is an indole-derived neurohormone of long-
standing interest which is derived from serotonin, and is pro-
duced by the pineal gland during any dark period, whatever
be the species considered, including humans [1e3]. Melatonin
has been detected in numerous central and peripheral tissues
using the specific radioligand 2-[125I]-iodomelatonin [4,5].
As a consequence, melatonin is suspected to relay the circa-
dian rhythm and the information on the photoperiod to the pe-
ripheral organs for daily and seasonal physiological
regulations. Furthermore, melatonin has a proven role in the
sleep/wake cycle [6], and is involved in numerous physiolog-
ical functions depending on the circadian rhythm, such as the
immune [7] and the cardiovascular systems [8]. These effects
are mediated through activation of binding sites [9e11]. There
are two high affinity melatonin receptors and a binding site,
* Corresponding author. Tel.: þ86 931 891 2540; fax: þ86 931 891 2582.

E-mail address: hu_zhide@yahoo.com.cn (Z. Hu).

0223-5234/$ - see front matter � 2008 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.ejmech.2008.02.012
which have been identified to date. Among them, the MT1
[9] and MT2 [10] receptors have been cloned from human tis-
sues. The pharmacology of these two receptors is well docu-
mented, and several compounds, including melatonin, are
ligands with picomolar binding affinity [12]. Another putative
melatonin binding site was identified on pharmacological
grounds, with lower melatonin affinity (nanomolar range),
very rapid ligand association/dissociation kinetics, and an
original pharmacological profile [13e15]. In line with MT1
and MT2 receptors, this putative binding site was named
MT3, according to the nomenclature recommendations of
the IUPHAR [11], which was recently identified as the qui-
none reductase 2 (QR2) [3], an enzyme closely related to
the detoxifying enzyme, quinine reductase 1. However, the
physiological importance of the MT3/QR2 site is still
unknown and it is particularly interesting to design and synthe-
size new selective ligands, which will provide pharmaco-
logical tools to assess and better characterize the role of this
melatonin binding site.

Therefore, a major challenge to pharmaceutical scientists in
drug discovery is to find an efficient way to get the affinity of
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Table 1

Structures, MT3 affinities (pIC50) and the predicted values of naphthalene (Family A), benzofurane (Family B), and indole (Family C)

Family A Family B Family C

No. R1 R2 R3 R4 R5 pIC50 LR SVM PPR

A1a CH2NHCOei-C3H7 OCH3 H 7.36 7.31 7.00 7.27

A2 CH2NHCOCH2eN-pyrrolidin-2-one OCH3 H 7.21 7.15 7.26 7.24

A3 CH2NHCOPh OCH3 H 7.54 7.51 7.35 7.51

A4 CH2NHCOec-C4H9 H OCH3 7.15 7.65 7.25 7.15

A5 CH2NHSO2CH3 H H 7.55 4.26 7.48 7.70

A6 CH2NHCOCH2CH]CH2 OH H 8.11 8.00 8.18 8.05

A7 5-Imidazolidine-2,4-dione OCH3 H 7.21 6.84 7.14 7.20

A8 CH2eN-oxazolidin-2-one OCH3 H 7.85 7.58 7.78 7.79

A9 CH2NHCOe2-furyl OCH3 H 7.27 7.40 7.34 7.26

A10 CH2NHCOe2-furyl OH H 7.96 7.94 7.89 7.98

A11 CH2NHCOCH3 SO2NH2 H 7.49 7.78 7.56 7.49

A12 CH2NHCOOet-C4H9 OH H 7.29 7.95 7.42 7.34

A13 CH2NHCOe2-furyl SO2NHCH3 H 8.04 8.14 7.78 8.05

A14 CH2NHCOCH3 SCH3 H 7.74 7.85 7.67 7.69

A15 CH2NHCOCH3 SO2CH3 H 7.68 7.51 7.75 7.68

A16 CH2NHCOCH3 SOCH3 H 7.43 7.38 7.42 7.44

A17a NHCOec-C3H7 NHCOOCH3 7.62 7.75 7.49 7.69

A18a NHCOCH3 CONHCH3 7.92 7.90 7.64 7.67

A19 NHCOe2-furyl COOCH3 7.28 7.26 7.31 7.19

B20 NHCOe2-furyl CONH2 7.17 2.58 7.10 7.23

B21 NHCOec-C5H9 COOCH3 7.74 7.46 7.63 7.73

B22 NHCOPh NHCOOCH3 7.17 7.20 7.24 7.14

B23 NHCOei-C3H7 NHCOOCH3 7.64 7.86 7.57 7.61

B24 NHCOCH2CH]CH2 NHCOOCH3 7.96 7.83 8.03 7.99

B25 NHCOe2-furyl NHCOOCH3 7.25 7.36 7.32 7.30

B26a NHCOCH3 OCH3 7.19 8.00 7.62 7.55

B27 NHCOCH3 COOCH3 7.85 7.56 7.52 7.79

B28 NHCOCH3 NHCOOCH3 7.80 7.98 7.63 7.73

C29a NHCOCH3 OCH3 H H H 7.19 7.74 7.38 7.27

C30 NHCOCH3 OCH3 CH3 I NO2 9.89 10.07 9.96 9.91

C31a NHCOCH3 OCH3 H I NO2 9.70 9.95 9.84 9.78

C32 NHCOCH3 OCH3 H COOC2H5 H 8.52 8.57 8.59 8.59

C33a NHCOCH3 OCH3 CH3 I H 10.05 9.74 9.57 9.63

C34 NHCOCH3 NHCOOCH3 H I H 9.52 9.40 9.59 9.51

C35 NHCOCH3 NHCOOCH3 H H H 7.24 7.45 7.56 7.25

C36 NHCOCH3 OCH3 H H NO2 8.92 8.51 8.44 8.85

C37 NHCOCH3 NO2 H H H 7.38 7.29 7.49 7.47

C38a NHCOCH3 OCH3 CH3 H NO2 9.51 8.72 8.84 9.11

C39a NHCOCH3 OCH3 CH3 H H 8.55 8.01 7.85 7.94

a Test set.
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the new compounds for melatoninergic binding sites MT3 in
early ligand discovery. The traditional methods are always
time-consuming and costly, however, quantitative structuree
activity relationship (QSAR) method provides a promising
approach for the estimation of the affinity based on the
descriptors solely derived from the molecular structures. The
advantage of this method over the other approaches lies on
the fact that it mainly requires the information of the chemical
structure and is slightly dependent on the experimental data
[16]. This way can develop a method for the prediction of
the property of new compounds that have not been synthesized
or found. It can also identify and describe the major structural
features of the molecules that are relevant to molecular prop-
erty variations. Once QSAR models are tested as efficient and
creditable approaches, they can be used to estimate the activ-
ities of drugs, and guide to find a new ligand with high affinity.
These methods have been widely used to predict the property
and activity of drugs and compounds [11,16e19]. Due to the
above reasons, it is necessary to develop these methods which
will greatly improve work efficiency.

In this study, the descriptors based on the CODESSA soft-
ware [20] calculated from structure alone were used to predict
the affinities of the MT3/QR2 melatonin binding site. The ge-
netic algorithm (GA) was used to select the most important
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molecular descriptors, and build a linear regression (LR)
model. Two non-linear models were constructed by using
grid search-support vector machine (GS-SVM) and projection
pursuit regression (PPR). The aim of this investigation was to
explore the most major structural factors affecting the affinity
of the MT3/QR2 melatonin binding site. The predicted results
were very satisfactory for both training set and test set com-
pounds. Furthermore, the information obtained from this
work can be very helpful in the design and development of
new selective MT3/QR2 ligands.
2. Experimental
2.1. Data set
In this study, the data set of 39 ligands was collected, whose
affinities of MT3/QR2 melatonin binding site were reported in
Ref. [11,21]. The affinity values were expressed as pIC50
(Table 1), which ranges from 7.15 (low affinity) to 10.05
(high affinity). The selected compounds belong to three
structurally different families in terms of the different cyclic
tensors. These tensors were naphthalene (Family A: 16 com-
pounds), benzofurane (Family B: 12 compounds), and indole
(Family C: 11 compounds). The data set was randomly divided
into two subsets: the training set contained 30 compounds
(76.9%) and the test set contained 9 compounds (23.1%).
The training set was used to build a regression model, and
the test set was used to evaluate the predictive ability of the
obtained model.
2.2. Molecular descriptor generation
To obtain a QSAR model, the selected drugs were repre-
sented by the molecular descriptors. The calculation process
of the molecular descriptors was shown as the following:
two-dimensional structures of the compounds were drawn
with the ISIS DRAW program. All of the structures were
transferred into HyperChem 7.0 and pre-optimized using the
MMþ molecular mechanics force field. A more precise opti-
mization was done with the semi-empirical AM1 method in
MOPAC, and then the structures of minimum energy were ob-
tained. The resulting structures were transferred into the CO-
DESSA software to calculate the descriptors. There were
several kinds of descriptors obtained, including constitutional,
topological, geometrical, electrostatic, and quantum chemical
descriptors. These descriptors could represent a variety of as-
pects in the compounds, and had been successfully used in var-
ious QSAR and QSPR researches [22e24].
2.3. Principal component analysis (PCA) of the data set
Fig. 1. The principal component analysis of the training set and the test set.
The diversity of the training set and the test set was ana-
lyzed using the principal component analysis (PCA) method.
Using all the descriptors generated by the CODESSA soft-
ware, PCA was used to deduce the dimensions of the descrip-
tors by dropping the unnecessary data information. In order to
do PCA, the constant descriptors and some descriptors with
missing values must be excluded. After this step, the PCA
method was used for analysis, for which PC1, PC2, and PC3
made 19.90%, 16.02%, and 13.13% contribution to the total
PCs, respectively. In all these three PCs made a total of
49.05% of the variation in the data, and played major roles.
It should be noted that all loading plots showed similar trends,
therefore, only the PC1, PC2, and PC3 loading plots were
shown for the compounds. Fig. 1 illustrates the distribution
of compounds over the first three principal component space.
Inspecting this figure, it could be concluded that samples in
both the training and the test sets seemed to be evenly scat-
tered in the 3D space. So it confirmed that it was feasible
for the splitting of the data set. Moreover, the compounds in
the training set were representative of the whole data.
2.4. QSAR model development and evaluation
After analyzing splitting of the data set into the diversity
of the training set and test set, the next step was to select
the main factors which were the most important for the af-
finity toward the MT3 binding site. As a powerful tool in
searching the most suitable parameters [25], GA was used
to select the most important popular molecular descriptors.
In the present work, five molecular descriptors (see Table 2)
were selected. Based on the selected descriptors, the LR and
two non-linear models (GS-SVM and PPR) were
constructed.

After the regression model was constructed, the root mean
square error (RMSE) and the absolute average relative devia-
tion (AARD) were used to evaluate the model’s predictive per-
formance; they were calculated as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
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Table 2

The involved parameters and the statistical parameters of the linear regression (LR) model

Descriptors Meaning Coefficient t-test tp

Constant 108.15

MW Molecular weight 0.01 7.16 2.13E-07

BI Balaban index 2.40 10.49 1.90E-10

PPSA-1/TMSA FPSA-1 fractional PPSA (PPSA-1/TMSA) [Zefirov’s PC] 6.30 5.46 1.30E-05

MERIO Min electroph. react. index for an O atom �2237.72 �2.41 2.37E-02

MBOH Max bond order of an H atom �114.15 �6.52 9.60E-07

n¼ 30, R2¼ 0.8777, adjusted R2¼ 0.8522, Rcv
2 ¼ 0.7686, F¼ 34.45 (95% confidence level)
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where yexp and ypred are the experimental and predicted data
for the selected compounds. It can be seen that the lower the
RMSE and AARD, the more accurate is the model obtained.

3. The theory of the modeling methods
3.1. Genetic algorithm (GA)
GA is a stochastic optimization technique [26,27], which
derives from the concepts of biological process of inheritance:
natural selection, evolution, mutation, and the genetic cross-
over. It has been widely used to solve the variable selection
problems [28,29]. The basic theory of GA could be found in
Refs. [26,27]; here, we only briefly summarize the main ideas
of GA. In the research, the variables are represented as genes
on a chromosome, and they are generally coded as binary
strings. Through a simulated natural selection and the action
of the genetic operators mutation and recombination, chromo-
somes that satisfy at best to a predefined fitness function are
found. The fitness function is deduced from the gene compo-
sition of a chromosome. So it contains many procedures: pa-
rameters and fitness, representation, populations and
generation, selection, crossover and mutation, replacement,
termination, etc. These procedures have been described in de-
tail in Ref. [29]. When adding another descriptor does not im-
prove the fitness significantly, the best variable selection is
obtained.
3.2. Support vector machine (SVM)
SVM was developed by Vapnik, and gained popularity due
to its many attractive features and promising empirical perfor-
mance [30,31]. SVM has been used for classification, regres-
sion, and function approximation works. A thorough
discussion of the theory of SVM was provided by Cristianini
and Shawe-Taylor [32]. So only a brief introduction to SVM
will be given here. The excellent properties of SVM embody
the structural risk minimization (SRM) principle, which has
been shown to be superior to the traditional empirical risk
minimization (ERM) principle. SRM minimizes an upper
bound on VC dimension (‘‘generalization error’’), as opposed
to ERM that minimizes the error on the training data. It is the
difference that equips SVM with good generalization perfor-
mance, which is the goal in statistical learning. Originally,
SVM was developed for pattern recognition problems [33]
and now, with the introduction of 3-insensitive loss function,
SVM has been widely used to solve non-linear regression es-
timation. The estimated function is a linear expansion in terms
of functions defined on a certain subset of the data (support
vectors), and the final number of coefficients in such an expan-
sion does not depend on the dimensionality of the space of in-
put variables. These two properties make SVM an especially
useful technique for dealing with very large data sets in
a high-dimensional space.
3.3. Projection pursuit regression (PPR)
PPR developed by Friedman and Stuetzle [34] is a powerful
tool for seeking interesting projections of high-dimensional
data into lower-dimensional space and, therefore, can over-
come the curse of dimensionality. At present, it has been suc-
cessfully applied to tackle some chemical problems [35,36].
Friedman and Stuetzle’s concept of PPR avoided many diffi-
culties experienced with other existing non-parametric regres-
sion procedures. It does not split the predictor space into two
regions thereby allowing, when necessary, more complex
models. In addition, interactions of predictor variables are di-
rectly considered since linear combinations of the predictors
are modeled with general smooth functions. The basic theory
of PPR can be found in Refs. [37,38]. Here, we only give
a brief description. Given the (k� n) data matrix X, where k
is the number of observed variables and n is the number of
units, and an m-dimensional orthonormal matrix A (m� k),
the (m� n) matrix Y¼ AX represents the coordinates of the
projected data onto the m-dimensional (m< k) space spanned
by the rows of A. As such projections are infinite, it is impor-
tant to have a technique to pursue a finite sequence of projec-
tions that can reveal the most interesting structures of the data.
Projection pursuit (PP) is such a powerful tool that combines
both ideas of projection and pursuit [37,38]. In a typical re-
gression problem, PPR aims to approximate the regression
pursuit function f(x) by a finite sum of ridge functions with
suitable choices of ai and gi.

gðpÞðxÞ ¼
Xp

i¼1

gi

�
aT

i x
�

ð1Þ
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where ai are m� n orthonormal matrices, p is the number of
ridge functions.

All calculation programs implementing SVM and PPR
were written in R-file under R2.3.1 [39] environment running
operating system on a Pentium IV with 512M RAM.

4. Results and discussion
4.1. Results of genetic algorithmelinear
regression model
Fig. 3. Influence of the number of descriptors on the root mean square error

(RMSE) of the training set and the test set.
In this QSAR study, GA was used to select the main de-
scriptors and build the linear model. A variety of subset sizes
of descriptors were investigated to determine the optimum
number of descriptors in the regression model. If adding an-
other descriptor did not significantly improve the statistics of
the model, it was determined that the optimum subset size
had been achieved. The influences of the number of the de-
scriptors on the coefficients of determination (R2) and the
RMSE to the training set and test set are shown in Figs. 2
and 3, respectively. The higher the values of R2 for the training
and test sets and the lower the RMSE, the better the results.
From Figs. 2 and 3, it was clearly seen that five descriptors
were the best selection. The involved parameters and the sta-
tistical parameters of this model are summarized in Table 2,
and the correlation matrix of these selected descriptors is
shown in Table 3. Table 4 shows the statistical results of the
LR model for the training and test sets, and the predicted af-
finity values are listed in Table 1, and Fig. 4 shows the pre-
dicted pIC50 vs. experimental values for all of the 39
compounds.

The selected molecular descriptors contained one constitu-
tional descriptor e molecular weight (MW), one topological
descriptor e Balaban index (BI), one electrostatic descriptor e
FPSA-1 fractional PPSA (PPSA-1/TMSA) [Zefirov’s PC]
(PPSA-1/TMSA), two quantum chemical descriptors e min
electroph. react. index for an O atom (MERIO) and max
bond order of an H atom (MBOH). By interpreting the
Fig. 2. Influence of the number of descriptors on the coefficients of determi-

nation (R2) of the training set and the test set.
meaning of these descriptors, we could get important struc-
tural information, which was related with the affinities of the
ligands with MT3/QR2. The constitutional descriptor MW re-
flects only the molecular composition of the compound with-
out using the geometry or electronic structure of the
molecules, and it is calculated from the atomic masses and
the number of the corresponding atoms. The topological de-
scriptor BI [40] is defined by the following formula:

J ¼
�

q

mþ 1

�Xq

i;j

�
SiSj

��1=2

where q is the number of edges in the molecular graph,
m¼ q� nþ 1 is the cyclometric number, n is the number of
vertices in the graph and Si, Sj e the distance sums (or distance
degrees), obtained by summation on the row i and column i (or
row j and column j, respectively) of the distance matrix be-
tween atoms in the molecule. It describes the atomic connec-
tivity and branching information in the molecule and has some
correlation with the hydrophobic interaction of the molecules.
The electrostatic descriptor PPSA-1/TMSA belongs to the
charged partial surface area (CPSA) descriptor, which was in-
vented by Jurs et al. [41,42] in terms of the whole surface area
of the molecule and in terms of functional group portions. It
encodes the features responsible for polar interactions between
molecules. The quantum chemical descriptors e MERIO en-
codes the polarity of the molecules, and it is related with the
Table 3

The correlation matrix of the selected molecular descriptors

MW BI PPSA-1/TMSA MERIO MBOH

MW 1

BI �0.0960 1

PPSA-1/TMSA 0.3654 �0.3061 1

MERIO �0.2073 �0.1259 �0.1926 1

MBOH 0.2128 0.4465 0.3532 �0.4147 1



Table 4

The comparison of different regression models (LR, GS-SVM, PPR)

Model Data set R2 RMSE AARD (%)

Training set Linear regression 0.8777 0.232 2.31

GS-SVM 0.9475 0.153 1.46

PPR 0.9938 0.052 0.52

Test set Linear regression 0.8630 0.452 4.53

GS-SVM 0.8827 0.427 4.47

PPR 0.9344 0.320 3.07
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ability of forming the hydrogen bond. The other MBOH also is
related to the ability of forming a hydrogen bond.

From the above discussion, the selected descriptors all had
explicit physical meaning, and could reflect different aspects
of the molecule. Based on the interpretation of these descrip-
tors, it could be clearly seen that the affinity between the li-
gand and MT3/QR2 was a complicated problem. They were
related to several properties of the molecular structures, such
as the compositions, steric factors, polarity, the ability to
form hydrogen bond of the ligands, and the hydrophobic inter-
action between the ligands and MT3/QR2. These properties
are consistent with the result in Ref. [11].
4.2. Results of GS-SVM model
From Table 1 and Fig. 4, it can be seen that the linear model
was not sufficiently accurate, and the factors influencing the
affinity values of drugs were complicated and not all of
them were in linear correlation with the affinities. Therefore,
the non-linear model was built by GS-SVM based on the
same subset of descriptors. Similar to other statistical
methods, the performance of SVM was influenced by several
parameters. These parameters included the type of kernel
function, 3 of 3-insensitive loss function and the capacity pa-
rameter C. There were several kernel functions used in training
and predicting, such as linear, polynomial, sigmoid, radial ba-
sis function, etc. However, radial basis function was
Fig. 4. Experimental values vs. predicted values for the training set and the test

set by linear regression (LR).
commonly used, for its good general performance and few pa-
rameters. The form of the radial basis function in R is

Kðxi; xÞ ¼ expf� gjx� xijg2

where g is a constant, the parameter of the kernel; x and xi are
two independent variables; g controls the amplitude of the
Gaussian function, therefore, it controls the generalization
ability of SVM. So it is very important to find an optimum
value for g.

The optimal value for 3 depends on the type of noise pres-
ent in the data, which is usually unknown. Even if enough
knowledge of the noise is available to select an optimal value
for 3, there is the practical consideration of the number of re-
sulting support vectors. 3-Insensitivity prevents the entire
training set meeting boundary conditions and so allows for
the possibility of sparsity in the dual formulation’s solution.
So, choosing the appropriate value of 3 is critical from theory.
The last parameter C was a regularization parameter that con-
trolled the tradeoff between maximizing the margin and min-
imizing the training error.

In the previous research, traditional SVM was used to find
the optimal values for these parameters to solve the regression
problems. It usually used a single fact analysis method to find
the best model. The results of this method would be local op-
timization. In fact, the factors of SVM influenced each other,
when it was used to accomplish the regression problem, so it
was not the best choice. In our work, GS-SVM was used to ob-
tain the global optimization. This method used multifact cor-
relation analysis to find the best model, so it was more
effective than the traditional SVM. Using the grid search
method, it was concluded that the parameter ‘3’ influenced
the results slightly. So we only show the relationship between
C, g and the important statistical parameters of the regression
models (Fig. 5 (AeD)). The higher the values of R2 for the
training set and test set, the better the results, and the lower
the RMSE and AARD, the better the results. So the best values
were selected as 140, 0.02, and 0.05 for C, g, and 3, respec-
tively. The predicted results are shown in Table 1 and Fig. 6.
The statistical parameters for the best regression model are
shown in Table 4. On comparing, the non-linear regression
model SVM was better than the results of linear regression,
but not very satisfying.
4.3. Results of PPR model
In order to find a more accurate model, we also tried to use
another non-linear regression method e PPR, which is a simple
but powerful tool for seeking interesting projections of high-
dimensional data into lower-dimensional space and, therefore,
can overcome the curse of dimensionality. In this investiga-
tion, the PPR algorithm also had several parameters, which
needed to be adjusted, such as ‘nterms’, ‘max. terms’, ‘optle-
vel’, and ‘span’. The parameter ‘nterms’ controls the number
of variables to be entered in the model, ‘max. terms’ is the
maximum number of terms to choose from when building
the model, ‘optlevel’ means the levels of optimization which



Fig. 5. Using the grid search method to find the best parameters of SVM in predicting the training set and the test set. (A) the coefficients of determination (R2) for

the training set; (B) the coefficients of determination (R2) for the test set; (C) the root mean square error (RMSE) for the test set; (D) the absolute average relative

deviation (AARD) for the test set.
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differ in how thoroughly the models are refitted during this
process, and ‘span’ defines the fraction of the observations
in the span of running the lines smoother. Here, we also
used the grid search method to find the best values for these
parameters. The optimal values for ‘nterms’, ‘max. terms’,
‘optlevel’, and ‘span’ were determined as 5, 3, 9 and 0, respec-
tively. The results of this method are shown in Table 1 and
Fig. 7; the statistical parameters of this regression model are
collected in Table 4. It could be clearly seen that this method
was the most efficient way to search the affinities for these
drugs.
4.4. Comparison of the results obtained by
different approaches
The prediction results by the three methods, LR, GS-SVM
and PPR are collected in Table 1, and the statistical parameters
for these three methods are listed in Table 4. From the compar-
ison, it could be clearly seen that the non-linear regression
methods gave promising results. Although we improved the
traditional SVM method and tried to get the best results, the
results were not far improved. However, the other simple
non-linear regression method PPR gave very good prediction
results compared to the other two methods. In Ref. [11], the
3D-comparative molecular field analysis (CoMFA) method
was employed to predict inhibitory activity of the same com-
pounds. The coefficients of determination were 0.897 and
0.875 for the training set and test set, respectively. By compar-
ing the results of CoMFA and PPR methods, it also concluded
that the PPR method was a very promising tool to predict the
affinities between the MT3/QR2 and ligands.

5. Conclusions

In our research, the classical feature selection method GA
was used to select the main relevant descriptors and build a lin-
ear model. The GS-SVM and PPR methods were used to con-
struct the non-linear QSAR model based on the same selected
parameters. Both the linear and non-linear models provided
good results, at the same time, the non-linear PPR models



Fig. 6. Experimental values vs. predicted values for the training set and the test

set by support vector machine (SVM).

2868 H. Du et al. / European Journal of Medicinal Chemistry 43 (2008) 2861e2869
produced the best results with good predictive capability, so
the following conclusions could be obtained: (a) the classical
GA method was an effective method for variable selection,
and the selected parameters could account for the fact that
the structural features of the compounds were related to the af-
finities between MT3/QR2 and ligands; (b) non-linear rela-
tionship could accurately describe the relationship between
the structural parameter and the affinities of the MT3/QR2 li-
gands; (c) PPR was proved to be a very useful tool in the pre-
diction of the affinities of the ligands, and it was a very
promising machine learning method and would gain more ex-
tensive applications. In short, our study has found an efficient
way to research the affinities between the MT3/QR2 melato-
nin binding site and the ligands, and should facilitate the de-
sign and development of new selective MT3/QR2 ligands.
Furthermore, the proposed approach can also be extended to
other similar QSAR investigations.
Fig. 7. Experimental values vs. predicted values for the training set and the test

set by projection pursuit regression (PPR).
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