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This article is concerned about an optimization-based domain decomposition method for numerical sim-
ulation of the incompressible Navier-Stokes flows. Using the method, an classical domain decomposition
problem is transformed into a constrained minimization problem for which the objective functional is chosen
to measure the jump in the dependent variables across the common interfaces between subdomains. The
Lagrange multiplier rule is used to transform the constrained optimization problem into an unconstrained
one and that rule is applied to derive an optimality system from which optimal solutions may be obtained.
The optimality system is also derived using “sensitivity” derivatives instead of the Lagrange multiplier rule.
We consider a gradient-type approach to the solution of domain decomposition problem. The results of
some numerical experiments are presented to demonstrate the feasibility and applicability of the algorithm
developed in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 255–276, 2011
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I. INTRODUCTION

Numerical methods based on domain decomposition are used in a wide variety of applications as
a powerful technique to compute solutions of partial differential equations. The basic idea of a
domain decomposition method is to split the whole domain into smaller ones so that the overall
solution of a large problem can be obtained by solving smaller problems in subdomains. The
methods are especially good when a computer’s memory is not large enough for the complete
problem or when a domain has an irregular shape, which often happens in practical applications.
Because of the obvious implication for parallel processing, domain decomposition methods have
been greatly studied [1–5].
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Domain decomposition methods can be classified as either a nonoverlapping or an overlap-
ping subdomains problem. The classic domain decoposition method for overlapping subdomains
is the Schwarz alternating method, in which subdomain problems are solved successively with
boundary conditions obtained in the previous iteration. Schwarz’s algorithm has been studied and
developed from various points of view; e.g., [6–10]. Based on Lions’ work [9, 10], Dryja and
Widlund developed and analyzed the additive Schwarz methods for more effective parallel com-
puting in [7, 8]. Another well-known family of domain decomposition method is the so-called
substructuring iteration methods or Schur methods, which are for nonoverlapping subdomain
problems. The main technique of these methods is to reduce an elliptic problem to an operator
equation for lower-dimensional interfaces between subdomains. The main focus in the study of
these methods has been to find and analyze related preconditioners [11]. Of course, it was shown
by Dryja and Widlund [12] that substructuring methods and Schwarz methods can be unified in
certain cases.

In this article, we propose a new optimization-based domain decomposition method by which
we develop and implement an effective numerical algorithm for the Navier-Stokes equations,
which describe the motion of incompressible viscous fluids. Domain decomposition methods
based on optimization strategies have been previously proposed in [13–19]. The basic idea of
these methods is that an appropriate cost functional is minimized so that the optimal solution
satisfies the partial differential equations, which are linear or nonlinear and the constraints force
the solutions on the two subdomains to agree on the common interface. In this article, differently
from the previous articles [14–19], two penalty factors for the cost functional are introduced
to improve the convergence rate, and Robin boundary conditions are used to be the interfaces
conditions (Neumann or Dirichlet boundary conditions used in [14–18], and Nonlinear bound-
ary conditions used in [19]). The optimization-based domain decomposition method considered
here offers some advantageous features. First, compared with some similar methods discussed by
other articles, the method can greatly improve the convergence rate, which is very important in
practical applications. Second, the method provides an effective way to introduce parallelism into
practical problem which may not exhibit obvious, inherent parallelism. In addition, an numerical
algorithm developed by this method is so symmetrical that the same program code can be used in
different subdomains. We have developed a significant amount of research on numerical methods
for steady and unsteady Euler and Navier-Stokes equations [20].

The plan of the article is as follows. In Section II, the optimization-based domain decomposi-
tion method for the Navier-Stokes flows is introduced, and then we give some notations and weak
formulations that will be used throughout the article. In Section III, we show that the Lagrange
multiplier rule may be used to transform the constrained optimization problem into an uncon-
strained one and that rule is applied to derive an optimality system from which optimal solutions
may be obtained. The optimality system is also derived using “sensitivity” derivatives instead of
the Lagrange multiplier rule, and then we consider a gradient-type approach to the solution of
domain decomposition problem. In Section IV, we present some numerical results, which show
the algorithm constructed here is efficient.

II. STATEMENT OF THE DOMAIN DECOMPOSITION METHOD

A. The Problem Model

Let � denote a bounded open set in R
2 with boundary �. Let u denote the velocity vector, p the

pressure, f a given body force, and ν the constant kinematic viscosity; then the Navier-Stokes
system which describes incompressible and viscous fluids is
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FIG. 1. The domain � divided into two nonoverlapping subdomains.




−ν�u + (u · ∇)u + ∇p = f in �

∇ · u = 0 in �

u = 0 on �.
(2.1)

In the simplest case, � is partitioned into two simply connected nonoverlapping subdomains
�1 and �2, so that �̄ = �̄1 ∪ �̄2. The interface between the two subdomains is denoted by �0

so that �0 = �̄1 ∩ �̄2. Let �1 = �̄1 ∩ � and �2 = �̄2 ∩ � (Fig. 1). Regularity conditions on the
common interface �0 will be assumed later.

Consider the following pair of Navier-Stokes systems with mixed boundary conditions:




−ν�u1 + (u1 · ∇)u1 + ∇p1 = f in �1

∇ · u1 = 0 in �1

u1 = 0 on �1

−p1n1 + ν∇u1 · n1 + ku1 = g on �0

(2.2)

and



−ν�u2 + (u2 · ∇)u2 + ∇p2 = f in �2

∇ · u2 = 0 in �2

u2 = 0 on �2

−p2n2 + ν∇u2 · n2 − ku2 = −g on �0.

(2.3)

where n1 and n2 denote the outward unit normal vectors to �1 and �2 (Fig. 1), respectively. Note
that the last equations in (2.2) and (2.3) are Robin boundary conditions for Navier-Stokes systems.
Of course, other boundary conditions can be chosen, e.g., generalized stress conditions chosen in
[16] and nonlinear transmission conditions chosen in [19]. For the sake of simplicity, we assume
that the Robin coefficient k is independent of (ui , pi), i = 1 and 2.

For an arbitrary choice of g, solutions of (2.2) and (2.3) are not solutions of (2.1), e.g., u1 �= u |�1

and u2 �= u |�2 . In particular, we have that, in general, u1 |�0 �= u2 |�0 . However, we know that
a g exists such that the solutions of (2.2) and (2.3) are indeed the solutions of (2.1); we merely
choose

g = −pn1 + ν∇u · n1 + ku,

where (u, p) is a solution of (2.1).
The optimization-based domain decomposition method finds such a g by minimizing the cost

functional, which measures the difference u1 −u2 along the common interface �0. Various energy
(cost, objective) functionals (of u1, u2 and other auxiliary variables) are defined so that their
minimizers correspond to solutions of (2.2) and (2.3) that satisfy (2.1). With different functionals
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and solution strategies, various domain decomposition algorithms are obtained [14, 16, 19]. In
fact, with special choices of the functionals and the solution strategies for the optimization prob-
lems (such as the approach of alternating variables or alternating directions), various well-known
nonoverlapping algorithms can be derived from the optimization-based framework.

Here, we only restrict our interest to the velocity vector u for our domain decomposition
method and try to find a g that minimizes the L2(�0) norm of u1 − u2 on the common interface
�0. Hence, the functional to be minimized is

J̃ (u1(g), u2(g)) = 1

2

∫
�0

(u1 − u2)
2 d�0, (2.4)

where u1 and u2 are determined from g through (2.2) and (2.3), respectively. It is clear that there
exists a minimizer for J̃ (u1(g), u2(g)); indeed, for the choice

g = −pn1 + ν∇u · n1 + ku,

where (u, p) is a solution of (2.1), we have that u1 = u |�1 and u2 = u |�2 so that
J̃ (u1(g), u2(g)) = 0. To regularize the optimization problem and improve the convergence
rate, instead of minimizing (2.4), we minimize the penalized functional

J (u1(g), u2(g), g) = α

2

∫
�0

(u1 − u2)
2 d�0 + β

2

∫
�0

g2 d�0. (2.5)

where α and β are positive constants that can be chosen to change the relative importance of the
two terms appearing in (2.5). The convergence of the resulting algorithm is evidently affected
by the chosen weights and the choice of independent variables [14]. Hence, a penalty parameter
for the first term of the cost functional is introduced to adjust the convergence. The penalized
cost functional (2.5) we consider here is generalized one from which others can be derived. For
example, the cost functional used in [16] is a direct derivation of (2.5), where α = 1.

In general, the optimization problem we propose to solve is given:

min
g

J (u1(g), u2(g), g), (2.6)

where u1 and u2 are solutions of (2.2) and (2.3), respectively, as a control g in some admissibility
set is given. For the sake of simplicity, we only consider the case of only two subdomains. The
extension of the algorithms and analysis to more subdomains is straightforward.

B. Notations and Weak Formulations for the Navier-Stokes Equations

We start by introducing some notations that will be used throughout this article. Let Hr(�) denote
the standard Sobolev space of order r on a domain �, equipped with the standard norm ‖ · ‖r ,�;
let H r (�) denote the corresponding Sobolev space of vector-valued functions. We then define
the subspaces

H r
0(�) = {v ∈ H r (�) : v = 0 on �}

and, for i = 1 and 2,

H r
�i

(�) = {
v ∈ H r (�i) : v = 0 on �i

}
.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



OPTIMIZATION-BASED DOMAIN DECOMPOSITION METHOD 259

We also define, for i = 1 and 2 and whenever u · v, pq ∈ L2(�i),

(u, v)�i
=

∫
�i

u · v d�i ,

(p, q)�i
=

∫
�i

pq d�i ,

for i = 0, 1 and 2 and whenever u · v, pq ∈ L2(�i),

(u, v)�i
=

∫
�i

u · v d�i ,

(p, q)�i
=

∫
�i

pq d�i .

The following bilinear and trilinear forms on the domain � are defined as follows:

A(u, v) =
∫

�

∇u · ∇v d�, ∀u, v ∈ H 1
0(�),

B(u, w, v) =
∫

�

(u · ∇)w · v d�, ∀u, w, v ∈ H 1
0(�),

C(u, p) =
∫

�

p div u d�, ∀u ∈ H 1
0(�), ∀p ∈ L2(�).

Analogously, we also define bilinear and trilinear forms corresponding to subdomains �i , i =
1 and 2:

Ai (u, v) =
∫

�i

∇u · ∇v d�i , ∀u, v ∈ H 1
�i

(�i), i = 1, 2;

Bi (u, w, v) =
∫

�i

(u · ∇)w · v d�i , ∀u, w, v ∈ H 1
�i

(�i), i = 1, 2;

Ci (u, p) =
∫

�i

p div u d�i , ∀u ∈ H 1
�i

(�i), ∀p ∈ L2(�i), i = 1, 2.

It is well known that the forms A(·, ·), B(·, ·, ·), C(·, ·), Ai (·, ·), Bi (·, ·, ·), and Ci (·, ·), for i = 1
and 2, are continuous. Also, A(·, ·) and Ai (·, ·), for i = 1 and 2, satisfy the coercivity property.
C(·, ·) and Ci (·, ·), for i = 1 and 2, satisfy the inf-sup (LBB) condition.

We assume that the given body force f ∈ L2(�). Using the above notations, the weak formu-
lations corresponding to (2.2) and (2.3) are given : find u ∈ H 1

�i
(�i) and pi ∈ L2(�i), for i = 1

and 2 such that{
νA1(u1, v) + B1(u1, u1, v) − C1(v, p1) + k(u1, v)�0 = (f, v)�1 + (g, v)�0 , ∀v ∈ H 1

�1
(�1),

−C1(u1, q) = 0, ∀q ∈ L2(�1)

(2.7)

and{
νA2(u2, v) + B2(u2, u2, v) − C2(v, p2) − k(u2, v)�0 = (f, v)�2 − (g, v)�0 , ∀v ∈ H 1

�2
(�2),

−C2(u2, q) = 0, ∀q ∈ L2(�2)

(2.8)
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Similarly, the weak formulations associated with (2.1) are also given : find u ∈ H 1
0(�) and p ∈

L2(�) such that

{
νA(u, v) + B(u, u, v) − C(v, p) = (f, v)�, ∀v ∈ H 1

0(�),
−C(u, q) = 0, ∀q ∈ L2(�).

(2.9)

To make a summary, in the remainder of this section we give a precise statement of the opti-
mization problem for the domain decomposition method of the Navier-Stokes equations. Let the
admissibility set Uad be defined by:

Uad =
{

g ∈ L2(�0) : there exist (ui , pi) ∈ H 1
�i

(�i) × L2(�i) for i = 1, 2,

so that (2.7) and (2.8) are satisfied and J (u1(g), u2(g), g) < ∞.
}

Thus, the domain decomposition method for Navier-Stokes equations is transformed into the
following optimization problem:

min
g∈Uad

J (u1(g), u2(g), g). (2.10)

Our goal is to find an optimal solution g for the optimization problem (2.10), such that the solutions
of (2.7) and (2.8) are indeed solutions of (2.9).

III. THE OPTIMALITY SYSTEM

In this section, an optimality system is derived by the Lagrange multiplier rule and “sensitivity”
derivatives, respectively. A gradient-type method is also considered.

A. The Lagrange Multiplier Rule

We use a Lagrange multiplier rule to reduce the constrained minimization problem (2.10) to
an unconstrained one, deriving the first-order necessary conditions which the optimal solutions
must satisfy. For (u1, p1, u2, p2, g; ϕ1, µ1, ϕ2, µ2) ∈ H 1

�1
(�1) × L2(�1) × H 1

�2
(�2) × L2(�2) ×

L2(�0) × H 1
�1

(�1) × L2(�1) × H 1
�2

(�2) × L2(�2), define the Lagrangian functional:

L(u1, p1, u2, p2, g; ϕ1, µ1, ϕ2, µ2) = J (u1, u2, g) +
2∑

i=1

(νAi (ui , ϕi ) + Bi (ui , ui , ϕi )

− Ci (ϕi , pi) + (−1)i−1k(ui , ϕi )�0

− (f, ϕi )�i
+ (−1)i(g, ϕi )�0 − Ci (ui , µi)) (3.1)

where ϕ1, µ1, ϕ2, and µ2 are Lagrange multipliers. Hence, the constrained problem (2.10)
can now be transformed into the unconstrained one of finding stationary points of
L(u1, p1, u2, p2, g; ϕ1, µ1, ϕ2, µ2) (3.1). We now apply the necessary conditions for the latter
problem (3.1).

First, we are interesting in finding an expression for the Eulerian derivative of the Lagrangian
functional L(u1, p1, u2, p2, g; ϕ1, µ1, ϕ2, µ2) at ϕ1 in the direction δϕ1 ∈ H 1

�1
(�1), which is
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denoted by ∂ L
∂ϕ1

δϕ1. Easily, an expression for the Eulerian derivative of the Lagrangian functional
L(u1, p1, u2, p2, g; ϕ1, µ1, ϕ2, µ2) (3.1) is given by:

∂ L
∂ϕ1

δϕ1 = νA1(u1, δϕ1) + B1(u1, u1, δϕ1) − C1(δϕ1, p1)

− (f, δϕ1)�1 − (g, δϕ1)�0 + k(u1, δϕ1)�0 . (3.2)

Set ∂ L
∂ϕ1

δϕ1 = 0, and then we have the following equations:

νA1(u1, δϕ1) + B1(u1, u1, δϕ1) − C1(δϕ1, p1) + k(u1, δϕ1)�0

= (f, δϕ1)�1 + (g, δϕ1)�0 , ∀δϕ1 ∈ H 1
�1

(�1). (3.3)

Obviously, the Eq. (3.3) is just the first relation of (2.7). In the same way, ∂ L
∂µ1

δµ1 can be obtained,
and the related expression is shown by:

∂ L
∂µ1

δµ1 = −C1(u1, δµ1). (3.4)

Setting ∂ L
∂µ1

δµ1 (3.4) to be zero yields the following equations:

−C1(u1, δµ1) = 0, ∀δµ1 ∈ L2(�1). (3.5)

The earlier equations is “incompressibility” constraint for (3.3). Thus, the constraint equations
(2.7) are an direct derivation from (3.3) and (3.5). Analogously, ∂ L

∂ϕ2
δϕ2 and ∂ L

∂µ2
δµ2 can be defined,

respectively, for which the related expressions are shown by:

∂ L
∂ϕ2

δϕ2 = νA2(u2, δϕ2) + B2(u2, u2, δϕ2) − C2(δϕ2, p2)

− (f, δϕ2)�2 + (g, δϕ2)�0 − k(u2, δϕ2)�0 , (3.6)

and

∂ L
∂µ2

δµ2 = −C2(u2, δµ2). (3.7)

Setting ∂ L
∂ϕ2

δϕ2 and ∂ L
∂µ2

δµ2 to zero, we can get the following:

νA2(u2, δϕ2) + B2(u2, u2, δϕ2) − C2(δϕ2, p2) − k(u2, ϕ2)�0

= (f, δϕ2)�2 − (g, δϕ2)�0 , ∀δϕ2 ∈ H 2
�2

(�2), (3.8)

and

−C2(u2, δµ2) = 0, ∀δµ2 ∈ L2(�2). (3.9)

From (3.8) and (3.9), the constraint equations (2.8) can be also directly derived.
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Next, to find the adjoint momentum equations, ∂ L
∂ui

δui and ∂ L
∂pi

δpi for i = 1, 2 are given by:

∂ L
∂u1

δu1 = α(u1 − u2, δu1)�0 + νA1(δu1, ϕ1) + B1(δu1, u1, ϕ1)

+ B1(u1, δu1, ϕ1) − C1(δu1, µ1) + k(δu1, ϕ1)�0 , (3.10)

∂ L
∂u2

δu2 = −α(u1 − u2, δu2)�0 + νA2(δu2, ϕ2) + B2(δu2, u2, ϕ2)

+ B2(u2, δu2, ϕ2) − C2(δu2, µ2) − k(δu2, ϕ2)�0 , (3.11)

∂ L
∂p1

δp1 = −C1(ϕ1, δp1), (3.12)

and

∂ L
∂p2

δp2 = −C2(ϕ2, δp2). (3.13)

Similarly, setting ∂ L
∂ui

δui and ∂ L
∂pi

δpi for i = 1, 2, to zero, we have the following adjoint equations:




νA1(δu1, ϕ1) + B1(δu1, u1, ϕ1) + B1(u1, δu1, ϕ1) − C1(δu1, µ1) + k(δu1, ϕ1)�0

= −α(u1 − u2, δu1)�0 , ∀δu1 ∈ H 1
�1

(�1)

−C1(ϕ1, δp1) = 0, ∀δp1 ∈ L2(�1),

(3.14)

and


νA2(δu2, ϕ2) + B2(δu2, u2, ϕ2) + B2(u2, δu2, ϕ2) − C2(δu2, µ2) − k(δu2, ϕ2)�0

= α(u1 − u2, δu2)�0 , ∀δu2 ∈ H 1
�2

(�2)

−C2(ϕ2, δp2) = 0, ∀δp2 ∈ L2(�2).

(3.15)

Finally, ∂ L
∂g δg is shown as follows:

∂ L
∂g

δg = −(ϕ1 − ϕ2, δg)�0 + β(g, δg)�0 . (3.16)

Analogously, setting ∂ L
∂g δg to be zero yields the optimality condition:

(g, δg)�0 = 1

β
(ϕ1 − ϕ2, δg)�0 , ∀δg ∈ L2(�0). (3.17)

To summarize, solutions of the optimization problem (2.10) may be determined by solving
the optimality system (2.7), (2.8), (3.14), (3.15), and (3.17). This optimality system is a weak
formulation corresponding to,




−ν�u1 + (u1 · ∇)u1 + ∇p1 = f in �1

∇ · u1 = 0 in �1

u1 = 0 on �1

−p1n1 + ν∇u1 · n1 + ku1 = 1
β
(ϕ1 − ϕ2) on �0,

(3.18)
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−ν�u2 + (u2 · ∇)u2 + ∇p2 = f in �2

∇ · u2 = 0 in �2

u2 = 0 on �2

−p2n2 + ν∇u2 · n2 − ku2 = − 1
β
(ϕ1 − ϕ2) on �0,

(3.19)




−ν�ϕ1 + (∇u1)
T ϕ1 − (u1 · ∇)ϕ1 + ∇µ1 = 0 in �1

∇ · ϕ1 = 0 in �1

ϕ1 = 0 on �1

−µ1n1 + ν∇ϕ1 · n1 + kϕ1 + (u1 · n1)ϕ1 = −α(u1 − u2) on �0,

(3.20)

and 


−ν�ϕ2 + (∇u2)
T ϕ2 − (u2 · ∇)ϕ2 + ∇µ2 = 0 in �2

∇ · ϕ2 = 0 in �2

ϕ2 = 0 on �2

−µ2n2 + ν∇ϕ2 · n2 − kϕ2 + (u2 · n2)ϕ2 = α(u1 − u2) on �0.

(3.21)

Note that the adjoint system (3.14) and (3.15) or (3.20) and (3.21) is linear in the adjoint variablesϕi

and µi , for i = 1, 2. This is important for the efficiency and practicality of the optimization-based
domain decomposition method.

B. Sensitivity Derivatives

The optimality system (2.7), (2.8), (3.14), (3.15), and (3.17) may also be derived using “sensitivity”
derivatives instead of the Lagrange multiplier rule. Let

M(g) = J (u1(g), u2(g), g), (3.22)

where, for a given g,

ui (g) : g ∈ L2(�0) → H 1
�i

(�i), for i = 1, 2

are defined as the solutions of (2.7) and (2.8), respectively.
Now, the first derivative of M(g), d M(g)

dg , is defined through its action on variations g̃ by

〈
d M(g)

dg
, g̃

〉
= α(u1 − u2, ũ1 − ũ2)�0 + β(g, g̃)�0 (3.23)

where, for i = 1 and 2, ũi ∈ H 1
�i

(�i) are solutions of the sensitivity system




νA1(ũ1, v) + B1(ũ1, u1, v) + B1(u1, ũ1, v) − C1(v, p̃1) + k(ũ1, v)�0

= (g̃, v)�0 , ∀v ∈ H 1
�1

(�1)

−C1(ũ1, q) = 0, ∀q ∈ L2(�1),

(3.24)

and 


νA2(ũ2, v) + B2(ũ2, u2, v) + B2(u2, ũ2, v) − C2(v, p̃2) − k(ũ2, v)�0

= −(g̃, v)�0 , ∀v ∈ H 1
�2

(�2)

−C2(ũ2, q) = 0, ∀q ∈ L2(�2).

(3.25)
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Thus, ũ1 and ũ2 give the changes in u1 and u2, respectively, that result from the changes g̃ in g.
In this sense, ũ1 and ũ2 can be viewed as sensitivities.

Let u1 and u2 be the solutions of (2.7) and (2.8), respectively, and define ϕ1, µ1, ϕ2 and µ2 to
be the solutions of the adjoint problems (3.14) and (3.15), respectively. Set v = ϕ1, q = µ1 in
(3.24),v = ϕ2, q = µ2 in (3.25), δu1 = ũ1, δp1 = p̃1 in (3.14) and δu2 = ũ2, δp2 = p̃2 in (3.15).
Combining the results yields that

(g̃, ϕ1 − ϕ2)�0 = −α(u1 − u2, ũ1 − ũ2)�0 ,

so that, from (3.23),
〈

d M(g)

dg
, g̃

〉
= β(g, g̃)�0 − (g̃, ϕ1 − ϕ2)�0 . (3.26)

Thus, the first-order necessary condition d M(g)

dg = 0, yields that

β(g, g̃)�0 = (g̃, ϕ1 − ϕ2)�0 , ∀g̃ ∈ L2(�0)

which is exact (3.17), with δg = g̃, where again, ϕ1 and ϕ2 are determined as the solutions of
(3.14) and (3.15), respectively.

Note that (3.26) yields an explicit formula for the gradient of M, i.e.,

d M(g)

dg
= βg − (ϕ1(g) − ϕ2(g))|�0 . (3.27)

where ϕ1(g) and ϕ2(g) are determined from g through (2.7), (2.8), (3.14), and (3.15). Thus, one
has in hand the information needed if one were to use a gradient-type method, e.g., a method
that requires M(g) and d M(g)

dg for a given approximation of g, to solve the optimization problem
(2.10).

C. A Gradient-Type Method

The optimality system (2.7),(2.8), (3.14), (3.15), and (3.17) is a coupled system whose solutions
yield solutions of the optimization problem (2.10). To achieve a parallel algorithm, we must at
least decouple the subdomain problems; to make the individual subdomain problems tractable, we
should uncouple the state and adjoint systems as well. One way of accomplishing this is through
a gradient-type method iteration. Recall that our goal is to determine g ∈ L2(�0) that minimizes
M(g) = J (u1(g), u2(g), g), where u1 and u2 are the solutions of (2.7) and (2.8), respectively.

The gradient-type method we consider is defined as follows. Given a starting guess g(0), let

g(n+1) = g(n) − γ

β

d M(g(n))

dg
, for n = 1, 2, . . . , (3.28)

where γ /β is a step size. Combining with (3.27) yields

g(n+1) = (1 − γ )g(n) + γ

β

(
ϕ

(n)

1 − ϕ
(n)

2

)
|�0 .

where ϕ
(n)

1 and ϕ
(n)

2 are determined from (3.14) and (3.15), respectively, with g replaced by g(n).
In summary, the algorithm is given as follows.
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Algorithm 3.1.

(1) Choose a g(0).
(2) For n = 1, 2, . . .,

A. compute u(n)

1 , p
(n)

1 , u(n)

2 and p
(n)

2 by




νA1

(
u(n)

1 , v
)

+ B1

(
u(n)

1 , u(n)

1 , v
)

− C1

(
v, p(n)

1

)
+ k

(
u(n)

1 , v
)

�0

= (f, v)�1 + (
g(n), v

)
�0

, ∀v ∈ H 1
�1

(�1),

−C1

(
u(n)

1 , q
)

= 0, ∀q ∈ L2(�1)

and




νA2

(
u(n)

2 , v
)

+ B2

(
u(n)

2 , u(n)

2 , v
)

− C2

(
v, p(n)

2

)
− k

(
u(n)

2 , v
)

�0

= (f, v)�2 − (g(n), v)�0 , ∀v ∈ H 1
�2

(�2),

−C2

(
u(n)

2 , q
)

= 0, ∀q ∈ L2(�2)

B. compute ϕ
(n)

1 , µ
(n)

1 , ϕ
(n)

2 and µ
(n)

2 by




νA1

(
δu1, ϕ(n)

1

)
+ B1

(
δu1, u(n)

1 , ϕ(n)

1

)
+ B1

(
u(n)

1 , δu1, ϕ(n)

1

)
− C1

(
δu1, µ(n)

1

)
+k

(
δu1, ϕ(n)

1

)
�0

= −α
(

u(n)

1 − u(n)

2 , δu1

)
�0

, ∀δu1 ∈ H 1
�1

(�1)

−C1

(
ϕ

(n)

1 , δp1

)
= 0, ∀δp1 ∈ L2(�1),

and



νA2

(
δu2, ϕ(n)

2

)
+ B2

(
δu2, u(n)

2 , ϕ(n)

2

)
+ B2

(
u(n)

2 , δu2, ϕ(n)

2

)
− C2

(
δu2, µ(n)

2

)
−k

(
δu2, ϕ(n)

2

)
�0

= α
(

u(n)

1 − u(n)

2 , δu2

)
�0

, ∀δu2 ∈ H 1
�2

(�2)

−C2

(
ϕ

(n)

2 , δp2

)
= 0, ∀δp2 ∈ L2(�2).

C. compute g(n) by

g(n+1) = (1 − γ )g(n) + γ

β

(
ϕ

(n)

1 − ϕ
(n)

2

)
|�0 .

Of course, we also need to incorporate a stopping criteria into the algorithm and the whole
algorithm is implemented at the discrete level.

Remark 3.1. The uncoupling of the subdomain problems and the parallelism of this algorithm
are obvious. Within each of steps (2)A and (2)B, the subdomain problems may be solved in par-
allel. The only data that must be transferred between processors are the values of ui and ϕi , for
i = 1 and 2, along the common interface.

Remark 3.2. In Algorithm 3.1, α and β are the penalty parameters inherited from the functional
J (u1, u2, g) and γ is an additional parameter that can be chosen for improving the convergent
properties of the algorithm. We can choose a suitable step size by controlling γ if β is fixed. Note
that, if γ = 1, the gradient method is equivalent to a simple iteration scheme of the optimality
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system (2.7), (2.8), (3.14), (3.15), and (3.17). Of course, we can reconsider the minimization prob-
lem (2.10) from a point of view of nonlinear least squares problem, and use the conjugate gradient
method to get a faster converging algorithm. But, it increases the complexity of algorithm so that
the algorithm needs more code to implement. On the contrary, without losing the simplicity, the
algorithm can be improved by adapting α, when γ and β are fixed.

Remark 3.3. The uncoupling of the state and adjoint systems is also obvious since we are now
solving them sequentially in steps (2)A and (2)B. Thus, the systems that must be solved within
each subdomain are of the size of a single Navier-Stokes system. However, note that the adjoint
systems solved in step (2)B are linear in their dependent variables ϕi and µi , for i = 1 and 2.
Hence, the costs associated with step (2)B are small compared with those for step (2)A which
involves a nonlinear system for its dependent variables ui and pi , for i = 1, 2 and, as a result, the
cost per iteration of the algorithm is pretty much the same as that for other methods.

IV. NUMERICAL EXPERIMENTS

In this section, numerical results for the incompressible Navier-Stokes flows based on the
optimization-based domain decomposition method are reported, where the PDEs (2.7), (2.8),
(3.14), and (3.15) are solved by finite element method. The play of the optimization-based domain
decomposition method for different models is presented. The finite element grid for the fluid region
uses triangular mesh which is generated by a Delaunay-Voronoi mesh generator (see B. Moham-
madi and O. Pironneau [21]). The computations have been carried out on a home PC with AMD
Athlon(tm) 64 × 2 Dual Core Processor 2.12 GHz and 1 GB memory.

A. Test 1: Square Cavity Flow Problem

In the first test, we consider a square cavity flow model with unit quare domain � = (0, 1) ×
(0, 1) ∈ R

2 shown in Fig. 2. � is divided into two subdomains �1 = (0, 1) × (0.5, 1) and
�2 = (0, 1) × (0, 0.5) with the common interface �0 = (0, 1) × {0.5}. For the square cavity flow
problem, two cases are discussed. Case 1 is the square cavity vortex flow driven by a body force,
and case 2 the lid-driven square cavity flow problem. In the numerical experiment, the Robin

FIG. 2. The square cavity flow model.
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coefficient k is dependent on (ui , pi), i = 1 and 2. Thus, for the convenience of description, the
Robin coefficient k in state equations (2.7) and (2.8) is denoted as k1, whereas that in adjoint Eq.
(3.14) and (3.15) is denoted to be k2. The L2(�) norm is define by

|u|0,� =
(∫

�

u2 d�

) 1
2

. (4.1)

Case 1. The square cavity vortex flow driven by body force. In this case, set Reynolds number
Re = 1

ν
= 500, k1 = 60, k2 = 0.001. We adjust the data f so that the Navier-Stokes system (2.1)

has the following exact solution

(
u
p

)
=


10x2(x − 1)2y(y − 1)(2y − 1)

−10y2(y − 1)2x(x − 1)(2x − 1)

10(2x − 1)(2y − 1)


 . (4.2)

This model we choose for the numerical test has zero boundary conditions for u. For the gradient-
type method (algorithm 3.1), the step size γ /β is fixed as 2 for the penalty parameter β = 10−8,
i.e., γ is chosen to be 2 × 10−8. We use the stopping criterion defined by the L2(�) relative error

|u − ue|0,�

|ue|0,�

< 6.1 × 10−2

between the domain decomposition solution u and the exact solution ue (4.2). The domain decom-
position solution u is obtained by solving the subdomain problems on a coarse grid shown in Fig. 3.
To be compared with the domain decomposition solution u, the direct solution ud is also given
via finding a solution to the Navier-Stokes system (2.9) on the same coarse grid as that for the
domain decomposition problem.

Figure 3 shows a coarse grid with 1681 nodes and 3200 triangles. The performances of the
individual algorithm we develop, in terms of iterations, CPU time and L2(�) relative error for

FIG. 3. Finite element mesh, left: the coarse grid with 1681 nodes and 3200 triangles; right: the fine grid
with 3721 nodes and 7200 triangles.
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TABLE I. The performances of the individual algorithm.

α Iterations CPU time (sec) L2(�) relative error

1 2121 2 × 9572.6 0.0604706
50 42 2 × 212.219 0.0604159

100 22 2 × 108.929 0.0602501
150 15 2 × 77.312 0.0603425
200 12 2 × 61.633 0.0604321
250 Divergence – –

Direct solution – 1 × 34.235 0.0602215

different α, are presented in Table I. The CPU time and the L2(�) relative error for the direct
solution are also shown in the last row of Table I. It is observed that with the increase of α, less
and less iterations are needed till the algorithm diverges at α = 250. Only from a point of view
of the cost functional, when α = 1, our cost functional is the very same one constructed in [16],
and the method converges most slowly, with 2121 iterations being needed. Hence, comparing
our gradient-type method with the one used in [16], we note that the algorithm can be greatly
improved by adjusting the penalty parameter α. On the other hand, the algorithm is parallel so
that it can be carried on a distributed computer. If the algorithm is carried out on a distributed
computer, Table I shows that the domain decomposition method would cost CPU time 61.633 sec
while 34.235 sec is spent to find a direct solution. At first glance it would seem that the domain
decomposition method costs more CPU time than the direct computation, but if an ideal speedup
rate 2 is given and the domain is only divided into four subdomains, the CPU time and memory
can be saved. In practical applications, the computational domain is always large enough so that
it can be divided into more subdomains.

The comparison of the velocity fields in � between the exact solution and the domain decom-
position solution is given in Fig. 4, when α = 200. The horizontal component of the velocity
fields for the exact solution and the domain decomposition solution is also given in Fig. 5, and the
vertical one given in Fig. 6. Figs. 4–6 show that the domain decomposition solution has such a
good approximation to the exact solution that the method we consider is effective and acceptable.

FIG. 4. Velocity field, left: the exact solution; right: the domain decomposition solution.
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FIG. 5. The horizontal component of the velocity, left: the exact solution; right: the domain decomposition
solution.

Case 2. The lid-driven square cavity flow. Analogously, set Reynolds number Re = 1
ν

= 100,
k1 = 60, k2 = 0.001 and f = (0, 0)T . The boundary conditions are


u =

(
1
0

)
, on (0, 1) × {1},

u =
(

0
0

)
, on other.

(4.3)

The step size γ /β is also fixed as 2 for the penalty parameter β = 10−8, i.e., γ is chosen to be
2 × 10−8. We also use the similar stopping criterion defined by the L2(�) relative error

FIG. 6. The vertical component of the velocity, left: the exact solution; right: the domain decomposition
solution.
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TABLE II. The performances of the individual algorithm.

α Iterations CPU time (sec) L2(�) relative error

50 151 2 × 673.915 0.00992334
80 110 2 × 518.525 0.00946079

100 94 2 × 417.289 0.00982460
120 98 2 × 443.273 0.00926018
150 107 2 × 466.328 0.00971019
200 Divergence – –

Direct solution – 1 × 63.531 –

|u − ud |0,�

|ud |0,�
< 1.0 × 10−2,

where u is a domain decomposition solution and ud a direct solution witch is given by directly
solving the Navier-Stokes system (2.9) with the boundary conditions (4.3) on the fine grid shown
in Fig. 3. Similarly, the domain decomposition solution is obtained on the same course grid as
that used in the case 1.

The fine grid with 3721 nodes and 7200 triangles is shown in Fig. 3. The performances of the
individual algorithm, in terms of iterations, CPU time and L2(�) relative error for different α,
are presented in Table II, and the CPU time for the direct solution is also placed in the last row of
the table. Table II shows that with the increase of α, the iterations converge more and more fast
until α = 120, and after which more and more iterations are required till the method diverges at
α = 200. We see that the number of iterations can be greatly reduced when α changes from 50 to
100. Comparing the iterations in this case with those in the previous case, we find that more iter-
ations for this case are needed to meet the tolerance criterion. If the computation is carried out on
the parallel computer, Table II shows that at least 417.289 sec is required to solve the subdomain
problems while only 63.531 sec is spent on finding a direct solution to the complete problem. In
the same way, when enough subdomain problems are solved by our parallel algorithm, the CPU
time will be less than that by the direct method.

FIG. 7. Velocity field, left: the direct solution; right: the domain decomposition solution.
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FIG. 8. The horizontal component of the velocity, left: the direct solution; right: the domain decomposition
solution.

When α = 100, the comparison of the velocity fields between the direct solution ud and
the domain decomposition u is given in Fig. 7. We also give the horizontal component of the
velocity fields in Fig. 8, and the vertical one given in Fig. 9. Figures 7–9 show that the domain
decomposition solution matches with the direct solution very well.

B. Test 2: Backward-Facing Step Problem

In the second example, an backward-facing step problem is considered. The domain
� = (0, 20) × (0, 1.5)\(0, 2) × (0, 0.5) shown in Fig. 10 is divided into two subdomains

FIG. 9. The vertical component of the velocity, left: the direct solution; right: the domain decomposition
solution.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



272 KONG, MA, AND LU

FIG. 10. The backward-facing step model.

�1 = (0, 10)×(0, 1.5)\(0, 2)×(0, 0.5) and �2 = (10, 20)×(0, 1.5). In Fig. 10, �0 = 10×(0, 1.5)

denotes the common interface of subdomains �1 and �2, �ti top boundaries, �di bottom bound-
aries for �i , i = 1 and 2, respectively. The boundaries corresponding to the subdomian �i are
∂�i = �i ∪ �0, for i = 1 and 2, where �1 = �in ∪ �t1 ∪ �d1, �2 = �out ∪ �t2 ∪ �d2.

The boundary conditions are




u =
(

0
0

)
, on

⋃2
i=1(�ti ∪ �di),

u =
(

4(y − 0.5)(1.5 − y)

0

)
, on �in(−pn1 + ν

∂u1
∂x

n1 = 0
u2 = 0

)
, on �out,

(4.4)

where n1 signifies the horizontal component of the outward normal n on the �out , ui , i = 1, 2, the
horizontal and vertical component of velocity u, respectively.

In this example, similarly, set Reynolds number Re = UL

ν
= 1×0.5

ν
= 10, k1 = 100, k2 =

0.000001, and f = (0, 0)T , where L is the height of the step and U the velocity at the entrance
at the center of the parabolic profile. For the gradient-type method (algorithm 3.1), the step size
γ /β is also fixed as 2 for the penalty parameter β = 10−8, i.e., γ is chosen to be 2 × 10−8. We
still use the similar stopping criterion defined by the L2(�) relative error

|u − ud |0,�

|ud |0,�
< 3.5 × 10−2

between the domain decomposition solution u and the direct solution ud . We find the domain
decomposition solution on the coarse grid shown in Fig. 11, whereas the direct solution to the

FIG. 11. The coarse grid with 4101 nodes and 7750 triangles, above: subdomain �1, below: subdomain �2.
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FIG. 12. The fine grid with 4917 nodes and 9312 triangles, above: subdomain �1, below: subdomain �2.

Navier-Stokes system (2.9) with the boundary conditions (4.4) is given on the fine grid shown in
Fig. 12.

Figures 11 and 12 show the course grid with 4101 nodes and 7750 triangles, and the fine grid
with 4917 nodes and 9312 triangles, respectively. The performances of the individual algorithm,
in terms of iterations, CPU time and L2(�) relative error for different α, are also presented in
Table III. The CPU time for the direct solution is also shown on the last row of the Table III.
Comparing the CPU time for the direct solution with that for the domain decomposition solution,
we can find that if more than four subdomain problems are solved with the parallel processing,
the CUP time spent on the subproblems will less than that spent on the complete problem. In
Table III, we very easily note that with the increase of α, less and less iterations are needed until
α = 250, and after this the gradient-type algorithm requires more iterations to meet the stopping
criterion till iterates diverge at α = 300. Therefore, there exists the best α so that the gradient-type
algorithm has the fastest convergence rate, e.g., α = 250 in this test.

Remark 4.1. Table I–III, all of them show that if α is too large, the gradient-type method would
diverge. To seek out the reason why the algorithm diverges at large α, we should recall the cost
functional used in this article. In the cost functional (2.5), the first term represents the gaol of
our optimization and the second term is the penalty term necessary to regularize the solution.
Obviously, if the second term for the cost functional vanishes, the corresponding optimization
problem will be ill-conditioned. Thus, with the increase of α, the first term for the cost functional
becomes more and more important, and then, with α going critical, the first term become rela-
tively dominant in the cost functional such that the corresponding minimization problem is so
ill-conditioned that the gradient-type algorithm diverges.

TABLE III. The performances of the individual algorithm.

α Iterations CPU time (sec) L2(�) relative error

50 96 2 × 1021.48 0.03437008
100 48 2 × 510.74 0.03436998
150 30 2 × 329.234 0.03436998
200 20 2 × 217.031 0.03436988
250 15 2 × 161.172 0.03437008
300 23 2 × 235.836 0.03447972
350 Divergence – –

Direct solution – 1 × 77.688 –
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FIG. 13. Velocity field, above: the direct solution; below: the domain decomposition solution.

FIG. 14. The horizontal component of the velocity, above: the direct solution; below: the domain
decomposition solution.

The comparison of the velocity fields in�between the direct solution ud and the domain decom-
position solution u is given in Fig. 13, when α = 250. We also give the horizontal component of
the velocity fields in Fig. 14, and the vertical one given in Fig. 15. Figs. 13–15 illustrate that the
domain decomposition solution and the direct solution match very well.

V. CONCLUSION

An optimization-based domain decomposition method for numerical simulation of the incom-
pressible Navier-Stokes flows has been studied. The nonoverlapping domain decomposition
algorithm was remodeled into a constrained minimization problem for which the objective func-
tional measures the jump in the dependent variables across the common boundaries between
subdomains; the constraints are the Navier-Stokes equations in the subdomains with suitably
chosen boundary conditions along the common interfaces. The optimality system was derived
by the Lagrange multiplier rule and “sensitivity” derivatives, respectively. A gradient method-
based approach to the solution of domain decomposition problem was considered. The results of

FIG. 15. The vertical component of the velocity, above: the direct solution; below: the domain
decomposition solution.
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some numerical experiments were also presented to demonstrate the feasibility and applicability
of the algorithm we developed. However, to make the method practical and competitive with
other methods, further studies including the dependence of Robin coefficient k on the solutions
(ui , pi), i = 1, 2, are needed, mostly in the realm of efficient implementations.
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