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Abstract

In this paper we consider the realization of DE attractors by self-
diffeomorphisms of manifolds. For any expanding self-map φ : M → M

of a connected, closed p-dimensional manifold M , one can always real-
ize a (p, q)-type attractor derived from φ by a compactly-supported self-
diffeomorphsm of Rp+q, as long as q ≥ p + 1. Thus lower codimensional
realizations are more interesting, related to the knotting problem below
the stable range. We show that for any expanding self-map φ of a stan-
dard smooth p-dimensional torus T p, there is compactly-supported self-
diffeomorphism of Rp+2 realizing an attractor derived from φ. A key in-
gredient of the construction is to understand automorphisms of T p which
extend over R

p+2 as a self-diffeomorphism via the standard unknotted
embedding ıp : T p

→֒ R
p+2. We show that these automorphisms form a

subgroup Eıp of Aut(T p) of index at most 2p − 1.

2000 AMS subject class 37D45 57R25 57R40

1 Introduction

Hyperbolic attractors derived from expanding maps were introduced by Steve
Smale in his celebrated paper [Sm] in the 1960s. Smale posed four families of
basic sets for his Spectral Decomposition Theorem for the non-wandering set of
self-diffeomorphisms of smooth manifolds: Group 0 which are zero dimensional
ones such as isolated points and the Smale horseshoe; Group A and Group DA,
both of which are derived from Anosov maps; and Group DE which are attrac-
tors derived from expanding maps. While the first three families arise easily or
automatically from self-diffeomorphisms of manifolds, it is less obvious whether
and how attractors of Group DE could be realized via self-diffeomorphisms of
manifolds. In this paper, we study the realization problem of DE attractors.
We shall stay in the smooth category.

Definition 1.1. (1) Let M be an connected, closed p-dimensional smooth man-
ifold. A smooth map φ : M → M is said to be expanding if for some complete
Riemannian metric on M , there exist constants c > 0, λ > 1 such that for any
x ∈ N and v ∈ TxM , ‖dφm(v)‖ ≥ cλm ‖v‖, for every integer m > 0.
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(2) Let M , φ be as above. We say φ lifts to a hyperbolic bundle embedding
e : E →֒ E, if π : E → M is a compact unit (Euclidean) q-dimensional disk
bundle over M , and e is a smooth self-embedding of E which descends to φ

under π, and for some positive number r < 1, e sends every fiber q-disk to an
embedded q-subdisk of radius r in the interior of the target fiber. Suppose there
exists such a lift, then Λ =

⋂

i≥0 ei(E) is called a (p, q)-type attractor derived
from the expanding map φ (w.r.t. e), or simply a DE attractor.

(3) Let M,φ,E, e be as above. Let X be a (p + q)-dimensional smooth
manifold, and f : X → X be a self-diffeomorphism of X . If there is a smooth
embedding E ⊂ X such that Λ =

⋂

i≥0 f i(E), we say that f realizes the DE
attractor Λ in manifolds.

Expanding maps of closed manifolds are topologically conjugate to expand-
ing infranil endomorphisms of infranil manifolds ([Gr]). It is also known that
any flat manifold admits an expanding map ([ES]). In his original paper, Smale
only considered trivial (p+1)-disk bundle embeddings which lifts an expanding
map φ, but it seems to be reasonable and necessary to allow twisted bundles
here to ensure Theorem 1.2. For example, if M is an orientable closed non-spin
flat manifold (e.g. [DSS]) while X is spin, it is impossible to realize any DE
attractor of M on X if we restrict ourselves to trivial bundle lifts, simply be-
cause the normal bundle of any embedding of M into X is also non-spin hence
nontrivial.

Proposition 1.2. Suppose M is a connected, closed p-dimensional smooth man-
ifold, p ≥ 1, and φ : M →M is an expanding map. For any q ≥ p+ 1, there is
a compactly-supported self-diffeomorphism of Rp+q, which realizes a (p, q)-type
attractor derived from φ.

Remark 1.3. A self-diffeomorphism of a smooth manifold is said to be compactly-
supported if it fixes every point outside a compact set. This clear implies that
the result holds for any (p+ q)-dimensional manifold X besides Rp+q.

Proposition 1.2 suggests that the realization problem of DE attractors of
codimensions below the ‘stable range’ is more interesting. This is basically
because in lower codimensions, for an arbitrary embedding E ⊂ X (with no-
tations in Definition 1.1), if any, the cores of ei(E) ⊂ X , for different i ≥ 0
may be knotted in different ways. In this sense, the realization problem of
DE attractors is essentially about the knotting problem of embeddings and
satellite knot constructions. On the other hand, as any (p, q)-type attractor Λ
derived from an expanding map φ : M → M is homeomorphic to the inverse
limit lim←− (M,φ) = {(x0, x1, · · · ) ∈

∏∞
n=0 M |xi = φ(xi+1), 0 ≤ i <∞} (some-

times known as a p-dimensional solenoid), it cannot be embedded into any
(p+ 1)-dimensional closed orientable manifold if M is also orientable ([JWZ]).
Thus it becomes natural to wonder whether there are DE attractors realizable
in orientable closed manifolds of codimension 2. When M is diffeomorphic to
the flat p-dimensional torus T p = S1 × · · · × S1 (p copies), probably the sim-
plest p-dimensional manifold admitting expanding maps, the study of unknotted
embeddings of T p into Rp+2 allows us to give a positive answer:
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Theorem 1.4. For any expanding map φ : T p → T p, p ≥ 1, there is a
compactly-supported self-diffeomorphism of Rp+2 which realizes a (p, 2)-type at-
tractor derived from φ.

To get some idea of the proof of Theorem 1.4, consider the toy case when
p = 1. An expanding map φ : S1 → S1 is nothing but a d-fold covering where
d > 1. If e : E →֒ E is a disk bundle embedding lifting φ, and  : E →֒ R

3 is
an embedding, the core of (E) is a knot K ⊂ R3, and the core of  ◦ e(E) is
a satelite knot K ′ with the companion K and the pattern a braid in the solid
torus of winding number d. Note also that E must be a trivial bundle S1×D2 in
this case. If there exists a self-diffeomorphism f of R3 so that f ◦ = ◦e, K, K ′

should have homeomorphic exteriors, so K has to be trivial and the braid could
be, for example, a (d, 1)-cable (in the usual longitude-meridian notations of
classical knot theory). This suggests in the general case we should also consider
unknotted, framing untwisted embeddings  : T p×D2 →֒ R

p+2 (Definitions 3.4
and 4.3) and bundle embeddings e : T p×D2 →֒ T p×D2 respecting the framing.

The real issue when p ≥ 2 is that  ◦ e and  may still be non-isotopic
even if they have isotopic images, no matter how we choose e and . This is
essentially because there are self-diffeomorphisms of T p that cannot be extended
as a self-diffeomorphism of Rp+2 via a given embedding ı : T p →֒ Rp+2, due to
certain spin obstructions, ([DLWY]). To overcome this difficulty, we say two
embeddings , ′ : T p ×D2 →֒ Rp+2 have different types if they are isotopic up
to image but not isotopic as embeddings, (Definitions 4.3, 3.6, cf. Remark 3.5).
We will show that there are at most finitely many types arising in ◦ei for i ≥ 0,
so that some power of e extends as a (compactly-supported) self-diffeomorphism
of Rp+2 over some  ◦ ek. The key ingredient is the following theorem, where
Aut(T p) ∼= SL(p,Z) is the group of automorphisms on T p, and Eı ≤ Aut(T p)
consists of elements which extend as compactly-supported self-diffeomorphisms
of Rp+2 via ı, (cf. Section 3 and Definition 3.8):

Theorem 1.5. For the standard unknotted embedding ıp : T p →֒ Rp+2, (p ≥ 1),
the subgroup Eıp contains the stabilizer of some nontrivial element in H1(T p;Z2)
under the natural action of Aut(T p). Hence the index of Eıp in Aut(T p) is at
most 2p − 1.

Remark 1.6. In fact, the index of Eıp in Aut(T p) is exactly 2p − 1, combined
with the inequality in the other direction as shown in [DLWY]. Theorem 1.5
may be rephrased as there are at most 2p − 1 modular types (Definition 3.6) of
unknotted embeddings (Corollary 3.9).

Our strategy to prove Theorem 1.4 is to construct a ‘favorite’ lifting e of a
given expanding map φ of T p (represented by a integral matrix of expanding
eigenvalues in this case) using the Smith normal form of integral matrices, so
that whenever an embedding  : T p×D2 →֒ Rp+2 is framing untwisted, the same
holds for  ◦ e. Choosing  to be standardly unknotted and framing untwisted,
we show  ◦ ei are all unknotted of modular types for i ≥ 0. Unlike the toy case,
this is much less obvious in higher dimensions, and the proof involves some
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technical manipulations of integral matrices. After all these are done, one can
apply the finiteness result about modular types to derive Theorem 1.4.

In Section 2, we prove Proposition 1.2 using a classical unknotting theo-
rem. In Section 3, we define unknotted embeddings ı : T p →֒ Rp+2 and their
types, and prove Theorem 1.5. In Section 4, we construct disk bundle embed-
dings lifting expanding maps, and realize the corresponding DE attractor by
compactly-supported self-diffeomorphisms of Rp+2, proving Theorem 1.4. We
also define unknotted, framing untwisted embeddings  : T p × D2 →֒ Rp+2 in
Section 4.

Acknowledgement. The first and the third authors are partially supported
by grant No.10631060 of the National Natural Science Foundation of China.

2 Realizing DE attractors in large codimensions

In this section, we prove Proposition 1.2. This is a consequence of an unknot-
ting theorem of Wen-Tsün Wu in the 1950’s about smooth embeddings into
Euclidean spaces of codimension right below the stable range, ([Wu], cf. also
[Ha] for generalizations).

Proof of Proposition 1.2. When p = 1, M is diffeomorphic to S1 and any ex-
panding map φ : S1 → S1 is a topologically conjugate to a non-zero degree
covering. The realization of (1, 2)-attractors, i.e. classical solenoids, is some-
what well-known, for example, as implicitly contained in [Bo] and [JNW]. We
may assume p ≥ 2 from now on.

Since q ≥ p + 1, we may pick a Whitney embedding of ı : M →֒ Rp+q

of M into R
p+q. By [Gr], we may assume the expanding map φ : M → M

is a covering map induced by an infranil endomorphism. Now φ induces an
immersion ı ◦ φ : M # Rp+q, which can be pertubed along normal directions
into a smooth embedding ı̂ : M →֒ R

p+q by a Whitney type argument, such
that the image ı̂(M) remains in the interior of a compact tubular neighborhood
N ⊂ Rp+q of ı(M).

The result in [Wu] says that for any connected, closed p-dimensional smooth
manifold M (p ≥ 2), any two smooth embeddings of M into Rp+q are smoothly
isotopic to each other. Note the connectedness is an indispensable assumption
here. Applying this unknotting theorem, there is a smooth isotopy F : M ×
[0, 1] → Rp+q, such that F |M×{0} = ı, and F |M×{1} = ı̂. By the isotopy
extension theorem (cf. [Hi, Theorem 1.3]), F extends as a diffeotopy F : Rp+q×
[0, 1]→ Rp+q with compact support. Denote f = F |Rp+q×{1}. By shrinking the
radius of f(N ) by a diffeotopy of Rp+q supported near f(N ) if necessary, we
may assume f(N ) is contained in the interior of N . Identify N as the unit disk
bundle of the normal bundle NRp+q(ı(M)) of ı(M) (w.r.t. any Euclidean fiber
metric) via a diffeomorphism. By a standard differential topology argument, we
may further assume f is diffeotoped supported near f(N ) so that it maps every
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fiber disk into a fiber disk of N , and that it satisfies Definition 1.1 (2). Note
f : Rp+q → Rp+q is also compactly supported by the construction.

Now N may be regarded as a q-disk bundle over M , and f |N : N → N may
be regarded as a hyperbolic bundle embedding lifted from φ, via the natural
identification. Then clearly f realizes a (p, q)-type attractor derived from φ via
the inclusion N ⊂ Rp+q.

It is remarkable at this point that while Proposition 1.2 allows one to re-
alize DE attractors in fairly arbitrary manifolds of sufficiently large dimen-
sions, it is still a ‘local’ realization anyways. In contrast, for example, if a
self-diffeomorphism f of a closed, orientable n-dimensional smooth manifold X

satisfies that the non-wandering set Ω(f) is a union of finitely many DE attrac-
tors and repellers (i.e. attractors of f−1), then X must be a rational homology
sphere, and each DE attractor/repeller must have codimension 2, namely of
type (n− 2, 2), ([DPWY], cf. [JNW] for an example of n = 3).

3 Unknotted T p in Rp+2 and extendable auto-

morphisms

In this section, we introduce and study unknotted embeddings of T p into Rp+2,
and prove Theorem 1.5.

Regard T p as the standard p-dimensional torus obtained by quotienting R
p

by its integral lattice. The natural action of SL(p,Z) on Rp descends to an
action on T p, so there is a subgroup Aut(T p) of the orientation-preserving dif-
feomorphism group Diff+(T

p) consisting of the transformations induced by the
action. The elements of Aut(T p) will be refered as automorphisms of T p. After
choosing a product structure of T p ∼= S1

1 × · · · × S1
p , one may naturally identify

Aut(T p) with SL(p,Z).
We start by investigating some important aspects of unknotted embeddings.

It is reasonable to expect that such embeddings are fairly simple and symmetric,
largely agreeing with our low-dimension intuition. We will parametrize S1 and
D2 as the unit circle and the compact unit disk of C, respectively. The real and
imaginary part of z ∈ C are often written as zx, zy. The standard basis of Rn

is (~ε1, · · · , ~εn), and the m-subspace spanned by (~εi1 , · · · , ~εim) will be written as
Rm

i1,··· ,im . Note there is a natural inclusion of Rn = Rn
1,··· ,n into Rn+1.

Example 3.1 (The standard model). Let ı0 : pt = T 0 →֒ R2 be the map from
the single point to the origin of R2 by convention. Inductively suppose ıp−1 has
been constructed (p ≥ 1) such that ıp−1(T

p−1) ⊂ Int(Dp) ⊂ R
p
2,··· ,p+1. Denote

the rotation of Rp+2 on the subspace R2
2,p+2 of angle arg(u) as ρp(u) ∈ SO(p+2),

for any u ∈ S1. We define ıp : T p = T p−1 × S1
p as:

ıp(v, u) = ρp(u)(
1

2
· ~ε2 +

1

4
· ıp−1(v)).

This explicitly describes an embedding of T p = S1
1 × · · · ×S1

p into R
p+1
2,··· ,p+2.

In Figure 1, the images of ıp−1 and ıp are schematically presented on the left
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and the right respectively. One may imagine ~ε1 points perpendicularly outward
the page. Observe that the image of T p is invariant under ρp(u).

R
p−1

3,··· ,p+1

R
p−1

3,··· ,p+1

~ε2~ε2

~εp+2

ıp−1(T
p−1)

1
2
· ~ε2 + 1

4
·ıp−1(T

p−1)

ıp(T
p)

S1
p

Figure 1: The standard model.

The basic feature of the standard model is that it is highly ‘compressible’, in
the sense of the following lemma. Let B4 ⊂ R4 be the compact 4-dimensional
disk centered at the origin with radius 2.

Lemma 3.2. In the standard model for p ≥ 2, for each i = 2, · · · , p, the
embedding ıp : T p = S1

1 × · · · × S1
p →֒ Rp+2 extends as an embedding:

k1i : B
4 × (S1

2 × · · · × Ŝ1
i × · · · × S1

p) →֒ R
p+2,

where S1
1 × · · ·×S1

p ⊂ B4× (S1
2 × · · ·× Ŝ1

i × · · ·×S1
p) is the standard embedding

(i.e. inclusion) for S1
1 × S1

i ⊂ B4, and the identity on other factors.

Proof. To see the idea consider a standard T 2 = S1
1 × S1

2 in R4. Make a solid
torus D2

1 × S1
2 by filling up the S1

1 factor, and attach a semi-sphere in R4 along
the core of that solid torus. The result is a ‘hat’ whose regular neighborhood is
diffeomorphic to D4. When i > 2, one only cares about S1

1 and S1
i .

The construction is as follows. We first extend ı1 as j1 : D2
1 →֒ C ∼= R2

2,3 in
an obious fashion. Inductively, suppose js−1 : D2

1×S1
2×· · ·×S1

s−1 →֒ Int(Ds) ⊂
Rs

2,··· ,s+1 has been constructed. Then define js : (D
2
1 ×S1

2 × · · ·×S1
s−1)×S1

s →֒
Int(Ds+1) ⊂ R

s+1
2,··· ,s+2 as:

js(v, u) = ρs(u)(
1

2
· ~ε2 +

1

4
· js−1(v)).

After i− 1 steps we obtain ji : D
2
1 × S1

2 × · · · × S1
i →֒ Int(Di+1) ⊂ R

i+1
2,··· ,i+2.

Now let ζs(re
iθ) (0 ≤ r ≤ 1) be the rotation of Rs+2 of angle arccos(r), on the

subspace spanned by ρs(e
iθ)(~ε2) and ~ε1 (from the former toward the latter). We
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may further define k1i,i : (D
2
1 × S1

2 × · · · × S1
i−1)×D2

i →֒ Int(Di+2) ⊂ Ri+2 as,
for example,

k1i,i(v, re
iθ) = ζi(

2r

1 + r2
eiθ)(ji(v, e

iθ)).

Then repeat the standard construction, namely, let k1i,s(~x, u) = ρs(u)(
1
2 ·

~ε2 +
1
4 · k1i,s−1(~x)) for i < s ≤ p. In the end we obtain:

k1i = k1i,p : D2
1 ×D2

i × (S1
2 × · · · Ŝ1

i × · · · × S1
p) →֒ R

p+2.

From the construction, we see that k1i can be extended a bit as an embedding:

k1i : B
4 × (S1

2 × · · · × Ŝ1
i × · · · × S1

p) →֒ R
p+2.

Corollary 3.3. For each i = 1, · · · , p, ıp also extends as an embedding:

ki : D
3 × (S1

1 × · · · × Ŝ1
i × · · · × S1

p) →֒ R
p+2,

where S1
1 ×· · ·×S1

p ⊂ D3× (S1
1 ×· · ·× Ŝ1

i ×· · ·×S1
p) is an unknotted embedding

for S1
i in Int(D3), and the identity on other factors.

Proof. Clearly the inclusion S1
1 × S1

i ⊂ B4 ⊂ C × C in Lemma 3.2 extends as
an embedding S1 × D3 ∼= (S1

1 × D1) × B2 ⊂ B4 ⊂ C × C where S1
1 × D1 is

a tubular neighborhood of S1
1 ⊂ C and B2 is the 2-dimensional disk centered

at the origin with radius 3
2 . Now ki may be defined as k1i composed with the

latter embedding.

We introduce the notion of unknotted embeddings and their types.

Definition 3.4. A smooth embedding ı : T p →֒ R
p+2 is called unknotted if

there is a compactly-supported self-diffeomorphism g : Rp+2 → Rp+2 of Rp+2

such that ı and g ◦ ıp have the same image, i.e. ı(T p) = g ◦ ıp(T p).

Remark 3.5. Since the orientation-preserving diffeomorphism group Diff+(R
n)

deformation-retracts to SO(n), and hence that π0Diff+(R
n) is trivial ([St]),

clearly our definition of unknottedness agrees with the more common notion
that ı(T p) and ıp(T

p) are equivalently knotted is if there is a diffeotopy of Rp+2

taking ı(T p) to ıp(T
p).

Definition 3.6. Two unknotted embeddings ı0, ı1 : T p →֒ Rp+2 are called of
the same type if they are the same up to a self-diffeomorphism of Rp+2, namely
there is a diffeomorphism h : R

p+2 → R
p+2 such that h ◦ ı0 = ı1. This is

an equivalence relation, and the equivalent classes are called types. The type
of ıp is called the standard type. For any τ ∈ Aut(T p), τ defines a modular
transformation on types, namely [ı] 7→ [ı ◦ τ ]. A modular type is obtained by a
modular transformation of the standard type.

7



Lemma 3.7. For any unknotted embedding and any type, there is an unknotted
embedding with the same image and of that type.

Proof. Let ı0 be the embedding, and [ı1] be the type. By Definition 3.6, there
is some Rp+2-self-diffeomorphism h1 such that h1 ◦ ı0(T p) = ı1(T

p). Let τ =
ı−1
1 ◦ h1 ◦ ı0 : T p → T p, then h−1

1 ◦ ı1 = ı0 ◦ τ−1. Thus ı0 ◦ τ−1 has the same
image as ı0, and the same type as [ı1].

Related is the notion of extendable automorphisms.

Definition 3.8. Let ı : T p →֒ R
p+2 be a smooth embedding. An automorphism

τ ∈ Aut(T p) is said to be extendable over ı if there is a compactly-supported
self-diffeomorphism of Rp+2 which commutes with τ via ı. The subgroup of
Aut(T p) consisting of extendable automorphisms will be denoted as Eı.

Note Eı◦τ = τ−1Eıτ for any smooth embedding ı and any τ ∈ Aut(T p). It
is also clear that modular-type embeddings are in natural one-to-one correspon-
dence with the right cosets of Eıp in Aut(T p), so Theorem 1.5 may be rephrased
as:

Corollary 3.9. For p ≥ 1, there are at most 2p− 1 modular types of unknotted
embeddings ı : T p →֒ Rp+2.

In the rest of this section, we prove Theorem 1.5.
Fix a product structure T p = S1

1 ×· · ·×S1
p as in Example 3.1, then Aut(T p)

is identified with SL(p,Z) (p ≥ 2). Denote:

Rij = I + Eij , Qij = R−1
ij RjiR

−1
ij ,

where i 6= j, and I is the identity matrix and Eij has 1 for the (i, j)-entry and
all other entries 0. Note that Rij is the full Dehn twist on the sub-torus S1

i ×S1
j

along S1
i , and Qij trades the two factors of S1

i × S1
j .

When p = 2, there are two basic extendable automorphisms for the embed-
ding T 2 = S1

1 × S1
2 ⊂ C× C ∼= R4.

Lemma 3.10. For the standard embedding T 2 = S1
1 × S1

2 ⊂ B4 ⊂ C × C ∼=
R4, the following automorphisms can be extended as self-diffeomorphisms of B4

supported in the interior, (i.e. fixing an open neighborhood of ∂B4):
(1) the twice full Dehn twist along each factor circle;
(2) trading two factors with their orientations preserved.

Proof. (1) It suffices to prove for the first factor. Consider S1
1 × S1

2 ⊂ (S1
1 ×

D1) × D2 = S1
1 × D3 ⊂ R4, where S1

1 × D1 is a tubular neighborhood of S1
1

in the first C, and D2 is the disk bounded by S1
2 in the second C, S1

1 × D3 is
a tubular neighborhood of S1

1 in R4, ∂(S1
1 ×D3) = S1

1 × S2, and ∗ × S1
2 is the

equator of ∗ × S2.
The Dehn 2-twist τ : S1

1 × S1
2 → S1

1 × S1
2 is (x, y) 7→ (x, x2y). The map

x 7→ x2, considered as a map from S1 to SO(2), is of degree 2. Thus the map
x 7→ x2, considered as a map g : S1 → SO(3), is homotopic to a constant

8



map since π1(SO(3)) ∼= Z2. We may extend the map τ : S1
1 × S1

2 → S1
1 × S1

2

to a map τ̃ : S1
1 × S2 → S1

1 × S2, defined by τ(x, y) = (x, g(x)y). Since
g : S1 → SO(3) is homotopic to a constant map, τ̃ is diffeotopic to the identity.
By the isotopy extension theorem (cf. [Hi, Theorem 1.3]), τ̃ can be extended to
a self-diffeomorphism of B4 supported in the interior.

(2) First extend T 2 = S1
1 × S1

2 → S1
1 × S1

2 as f : R4 = C × C → C × C,
by (z, w) 7→ (w̄, z). f is an orientation-reversing diffeomorphism. To adjust to
get an orientation-preserving one, pick a self-diffeomorphism h : R4 → R4, sup-
ported in the interior of B4 ⊂ R4, such that h(T 2) lies on the subspace R3

2,3,4.
Let r1 : R4 → R4 be the reflection with respect to R3

2,3,4, then r1 is orientation-
reversing, and is the identity restricted to h(T 2). Now f1 = (h−1r1h) ◦ f is
orientation preserving, extending the described automorphism on T 2. Further-
more, since f1(z, w) = (−w, z) when |w|2+|z|2 > 4−ε, where ε > 0 is sufficiently
small, we may adjust f1 near the boundary of B4 to get an f2 which is supported
in the interior of B4.

From this observation we have the following lemma for p ≥ 2.

Lemma 3.11. R2
1i, Q1i ∈ Eıp , for 1 < i ≤ p.

Proof. Let τ be either R2
1i or Q1i. From Lemma 3.10, τ |S1

1×S1
i
: S1

1 × S1
i →

S1
1 × S1

i extends as τ̄ : B4 → B4 which is the identity near the boundary.
Therefore by Lemma 3.2,

τ̄ × id : B4 × (S1
2 × · · · × Ŝ1

i × · · · × S1
p)→ B4 × (S1

2 × · · · × Ŝ1
i × · · · × S1

p)

induces a self-diffeomorphism of k1i(B
4 × (S1

2 × · · · × Ŝ1
i × · · · × S1

p)) which is
the identity near the boundary. The latter further extends to a diffeomorphism
of Rp+2 by the identity outside the image of k1i.

These automorphisms are not enough for generating Eıp when p ≥ 3. Extra
extendable ones come from the following geometric construction.

Lemma 3.12. R1pRip ∈ Eıp , for 1 < i < p.

Proof. According to Lemma 3.2, we will first extend η = R1pRip on T p over

B4×(S1
2×· · ·×Ŝ1

i ×· · ·×S1
p), identity near the boundary, then extend it further

as a self-diffeomorphism of Rp+2 via k1i by the identity outside the image. Since
η = τ×id as from (S1

1×S1
i ×S1

p)×(S1
2×· · ·×Ŝ1

i ×· · ·×S1
p−1) to itself, essentially

one must extend:
τ : S1

1 × S1
i × S1

p → S1
1 × S1

i × S1
p ,

as B4 × S1
p → B4 × S1

p . It is easy to see the matrix of τ is





1 0 1
0 1 1
0 0 1



 ,

the (1, i, p) minor of R1pRip. It follows that each column sum of R1pRip is
odd. Rewrite up as w, then we have τ((u1, ui), w) = (µw(u1, ui), w), where
µw(u1, ui) = (wu1, wui) is an action of S1

p on T 2 by flowing along the diagonal-
slope direction.

9



We extend τ as follows. First, via the inclusion T 2 = S1
1 × S1

i ⊂ S3 (in fact,
the sphere centered at the origin with radius

√
2), the diagonal-slope fibration

on T 2 extends as the Hopf fibration on S3, and µw also extends as µ̃w : S3 → S3

by flowing along the fiber loops. Thus τ extends as τ̃ : S3 × S1
p → S3 × S1

p ,
τ̃(x,w) = (µ̃w(x), w).

On the other hand, µ̃w can be regarded as S1
p → Diff+(S

3) which is given
by a Lie group left multiplication, regarding S1

p as a subgroup of S3. Thus µ̃w

extends as S3 → Diff+(S
3) by the Lie group left multiplication. This implies

that µ̃w is homotopic to the constant identity in π1Diff+(S
3) (since any circle

is null-homotopic in the 3-sphere). Thus τ̃ is diffeotopic to the identity. By the
isotopy extension theorem, τ̃ can be extended to a diffeomorphism τ̄ of B4×S1

p ,
which is the identity near the boundary.

Now η̄ = τ̄ × id is a self-diffeomorphism of (B4×S1
p)× (S1

2 × · · ·× Ŝ1
i × · · ·×

S1
p−1), or diffeomorphically, of B4× (S1

2 ×· · ·× Ŝ1
i ×· · ·×S1

p), being the identity
near the boundary. Finally extend η̄ to a diffeomorphism Rp+2 → Rp+2 via k1i
with the identity outside the image.

We need an elementary matrix lemma below. The technical result (2) is
needed in Section 4.

Lemma 3.13. (1) The subgroup G of SL(p,Z) generated by R2
1i, Q1i (1 < i ≤ p)

and R1pRip (1 < i < p) consists of all the matrices U ∈ SL(p,Z) whose entry
sum of each column is odd.

(2) For any 1 ≤ i ≤ p, any U ∈ SL(p,Z) can be written as KJ such that K
is a word in R2

1j, Q1j, 1 < j ≤ p, and J has the minor J∗
ii = 1.

Proof. (1) Because R2
ij = Q1iR

2
1jQ

−1
1i , Qij = Q1iQ1jQ

−1
1i , for 1 < i 6= j ≤ p,

we have R2
ij , Qij ∈ G (i 6= j). Also R1kRjk = Q−1

kp R1pRjpQkp (k 6= 1, j, p), and

RikRjk = Q1iR1kRjkQ
−1
1i (i 6= 1, j, k), we have RikRjk ∈ G (i, j, k mutually

different). Multiplying by R2
ij from the left of a matrix adds twice of the j-th

row to the i-th, and by RikRjk adds the k-th row to both the i-th and the j-th,
and by Qij switches the i-th row and j-th row up to a sign. We claim that any
U ∈ SL(p,Z) with odd column sums becomes diagonal in ±1’s under finitely
many such operations, by a Euclid type algorithm described below.

Suppose U = (uij)1≤i,j≤p. In the first column there are an odd num-
ber of odd entries, say ui1,1, · · · , ui2m+1,1. Adding the i1-th row simultane-
ously to the i2-th, · · · , i2m+1-th rows (i.e. multiplying U from the left by
Ri2i1Ri3i1 · · ·Ri2mi1Ri2m+1i1) if necessary, we may assume only one entry is odd,
and switching that row with the first row if necessary, we may further assume
u11 is the only odd entry in the first column. Now there is some nonzero entry
with a minimum absolute value, say ur1. As U ∈ SL(p,Z), ur1 cannot divide
all other entries in this column unless ur1 = ±1, so if ur1 6= ±1, there must
be some us1 with |us1| > |ur1| and ur1 cannot divide us1. By adding (or sub-
tracting) an even times of the r-th row to the s-th, the us1 becomes u′

s1 such
that −|ur1| < u′

s1 < |ur1|. Because this operation does not change parity, we
may repeat this process until we get a matrix with u11 = ±1, and other en-
tries in the first column being even. Then add (or subtract) several even times
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of the first row to other rows, we obtain a matrix U ′′ with the entries in the
first column being zero except u11 = ±1. Apply the process recursively on the
(p − 1)× (p− 1)-submatrix U ′′

11 = (u′′
ij)2≤i,j≤p, and use u22 = ±1 to kill other

even entries in the second column, and so on. In the end U becomes a diagonal
matrix with ±1’s on the diagonal.

Finally, the claim means that any U with odd column sums can be written
as U = KD where K is a word in R2

ij , Qij , RikRjk, and D is diagonal in ±1’s.
Moreover, D must have even −1’s on the diagonal since the determinant is 1,
for example, at the i1, · · · , i2m place, 0 ≤ 2m ≤ p, then D = Q2

i1i2
· · ·Q2

i2m−1i2m
.

Therefore U = KD ∈ G.
To see any element U ∈ G has odd column sums, note that this condition

is the same as saying that XŪ = X where X is the row vector (1, · · · , 1) ∈ Z
p
2,

where Ū is the modulo 2 reduction of U . As all the R2
1i, Q1i (1 < i ≤ p) and

R1pRip (1 < i < p) fix X , so does G. Therefore G consists of elements in
SL(p,Z) with odd column sums.

(2) Instead of doing row operations, do the first step of the algorithm by
column operations on the i-th row of U−1 to make the (i, r)-th entry ±1. Switch
the i-th and r-th column, and multiplyQ2

ir if necessary to make the (i, i)-th entry
+1. In other words, the (i, i)-th entry of U−1K is 1 for some word K in R2

1i,
Q1i. Then let J = (U−1K)−1.

Proof of Theorem 1.5. By Lemma 3.11 and Lemma 3.12, G ≤ Eıp , where G

is the subgroup of SL(p,Z) as in Lemma 3.13. By Lemma 3.13 (1), G is the
stabilizer of the row vector (1, · · · , 1) ∈ Z

p
2 under the right action of SL(p,Z)

on the row vector space Z
p
2. Note that with the chosen product structure of

T p, this action is naturally identified with the action of Aut(T p) on H1(T p;Z2),
thus Eıp contains the stabilizer of a nontrivial element in H1(T p;Z2). It follows
that the [Aut(T p) : Eıp ] ≤ 2p−1 since Aut(T p) acts invariantly and transitively
on the subset of nontrivial elements of H1(T p;Z2).

4 Realizing DE attractors of T p in codimension

2

We prove Theorem 1.4 in this section. To fix the notation, we write (u1, · · · , up)
for the coordinate of a point u in T p = S1

1 × · · · × S1
p , and write (u, z) for the

coordinate of a point in T p×D2. We use T p−1
i to denote S1

1×· · ·× Ŝ1
i ×· · ·×S1

p .
With the fixed product structure, expanding maps of T p may be identified

with expanding endomorphisms, i.e. which are represented by p × p integral
matrices whose eigenvalues all have absolute values strictly greater than 1. We
identify expanding maps and automorphisms of T p with their matrices, and
often write them as φA, τU , etc.

Given an expanding map φ : T p → T p, we wish to use an unknotted em-
bedding to realize an attractor derived from φ. It is not hard to lift it as a
hyperbolic bundle embedding first. Note that the normal bundles of orientable
codimension 2 submanifold of Rp+2 must have trivial Euler classes, and hence
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are trivial bundles (cf. [MS, Corollary 11.4]), we should consider self-embeddings
e of trivial disk bundles which lifts an expanding map φ. For simplicity, we also
assume from now on that φ has positive degree, possibly after passing to φ2.

Proposition 4.1. Let φ : T p → T p be any orientation-preserving expanding
map. There is a hyperbolic bundle embedding e : T p×D2 →֒ T p×D2 lifted from
φ.

Proof. Let A be the matrix of φ. Recall that a Smith normal form ([Ne] Theorem
II.9) of a positive-determinant integral matrix A is a decomposition A = U∆V ,
where U, V ∈ SL(p,Z), and ∆ is a diagonal matrix diag(δ1, · · · , δp), with positive
integral diagonal entries δi, such that δi divides δi+1 for each 1 ≤ i ≤ p− 1. Let
∆i = diag(1, · · · , δi, · · · , 1), then:

A = U∆1 · · ·∆pV.

We first lift each factor to a bundle embedding eU , eV , e∆i
: T p×D2 →֒ T p×D2.

To lift τU , define, for example, eU (u, z) = (τU (u), u
m1

1 · · ·u
mp
p z) for chosen

integers m1, · · · ,mp. Similarly lift τV to eV . To lift φ∆i
, first pick a hyperbolic

bundle embedding bδi : S
1
i ×D2 →֒ S1

i ×D2 such that bδi(ui, z) = (uδi
i , b̄i(ui, z))

sends the solid torus into itself as a connected thickened closed braid with wind-
ing number δi, shrinking evenly on the disk direction. Then define:

e∆i
(u, z) = (φ∆i

(u), b̄i(ui, z)) = (bδi × id
T

p−1

i
)(u, z).

Finally, take the composition e = eU ◦ e∆1
◦ · · · ◦ e∆p

◦ eV , and we obtain a
hyperbolic bundle embedding lifted from φ.

Although the lifting is far from unique, for our purpose of use we must
pick a topologically simple one, composing which does not make the embedding
‘knottier’ or ‘more twisted’ in Rp+2.

Example 4.2 (The favorite lifting). Define eU (u, z) = (τU (u), z), eV (u, z) =
(τV (u), z), and e∆i

(u, z) = bδi × id
T

p−1

i
with:

bδi(ui, z) = (uδi
i ,

1

2
ui +

1

δ2i
u1−δi
i z).

The chosen braid bδi is a (δi, 1)-cable with respect to the given trivialization of
S1
δi
× D2. It is presented in Figure 2 as δi = 3, where the framing change is

indicated by bδi(S
1
i × {1} and its image.

This specific choice of bδi gives us a favorite lifting e = eU ◦e∆1
◦· · ·◦e∆p

◦eV
of φ.

An embedding  : T p×D2 →֒ Rp+2 is, in general, understood by knowing its
core restriction ı = |Tp×{0}, and the framing. We need the following definition.

Definition 4.3.  : T p ×D2 →֒ Rp+2 is called unknotted, if its core restriction
ı is unknotted. The type of  is the type of ı. The embedding  is said to have
untwisted framing, if (T p × {1}) is null-homologous in the complement of the
core ı(T p) in Rp+2.
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bδi (S
1
i × {1})

S1
i × {1}

glue up without twist

the (δi, 1)-cable bδi

Figure 2: The favorite lifting, illustrated as δi = 3.

Proposition 4.4. Unknotted embeddings with untwisted framing are unique of
their types, up to compactly-supported self-diffeomorphisms of Rp+2 . Namely,
for unknotted embeddings 0, 1 with untwisted framing of the same type, there is
a compactly-supported self-diffeomorphism h : Rp+2 → Rp+2 of Rp+2 such that
h ◦ 0 = 1.

Proof. By definition we may first find a compactly supported self-diffeomorphism
h of Rp+2 so that ı1 = h ◦ ı0, and in the smooth category one may assume
h| : 0(T p×D2)→ 1(T

p×D2) is conjugate to the normal-bundle map, namely,

1(u, z) = h(0(u, gu(z))),

for gu ∈ SO(2). Thus there is a continuous map g : T p → SO(2). Note the
set [T p, SO(2)] of homotopy classes of maps from T p to SO(2) is in bijection to
H1(T p;Z) ∼= Hom(H1(T

p),Z), as SO(2) ∼= S1 is an Eilenberg-MacLane space
K(Z, 1). We may assume gu(z) = um1

1 · · ·u
mp
p z, for some integers m1, · · · ,mp.

In fact, m1, · · · ,mp are determined so that g∗ξ = m1 [S
1
1 ]

∗ + · · · + mp [S
1
p ]

∗

in H1(T p;Z). Here ξ is the generator of H1(SO(2)) ∼= Z giving the nat-
ural orientation of the normal bundle, and ([S1

1 ]
∗, · · · , [S1

p ]
∗) is the basis of

H1(T p) dual to the basis ([S1
1 ], · · · , [S1

p ]) of H1(T
p). Because h(0(u, 1)) is null-

homologous in Rp+2 − h(ı0(T
p)) by the untwisted-framing assumption of 0, it

is not hard to check that the p-torus defined by h(0(u, gu(1)), u ∈ T p, repre-
sents g∗ξ under the Alexander duality Hp(R

p+2 − ı1(T
p)) ∼= H1(T p). Because

1(u, 1) = h(0(u, gu(1)), this p-torus is also null-homologous in Rp+2 − ı1(T
p)

by the untwisted-framing assumption on 1. We see g∗ξ = 0, so mi = 0 for
1 ≤ i ≤ p. Thus gu(z) = z for any z ∈ D2, and 1 = h ◦ 0.

Proposition 4.4 says a topologically ‘simple’ embedding  is determined by its
type. We must show our favorite lifting e is topologically simple, namely com-
posing e preserves the untwisted-framing property, the unknotted-ness. More-
over, we must show that any modular-type embedding remains modular after
composing e, in order to use the finiteness result of Corollary 3.9. When p = 1,
there is no type issue, and the rest are the following well-known facts in classical
knot theory:

13



Lemma 4.5. (1) bδi(S
1
i ×{1}) is homological to δi times S1

i ×{1} in S1
i ×D2−

bδi(S
1
i × Int(D2)). Hence if  : S1

i ×D2 →֒ R3 has untwisted framing, then ◦ bδi
has untwisted framing.

(2) Furthermore if  in (1) is also unknotted, then bδi(S
1
i ×{0}) is the (δi, 1)-

torus knot, which is unknotted.

We prove the general case in Lemmas 4.6, 4.8.

Lemma 4.6. If  : T p ×D2 →֒ Rp+2 has untwisted framing, then  ◦ e also has
untwisted framing.

Proof. Obviously the composition with eU , eV preserves untwisted framing as
they are identity on the fiber D2. We claim e∆1

, · · · , e∆p
preserves untwisted

framing, then provided that  has untwisted framing, so does  ◦ eU , and hence
so does ( ◦ eU ) ◦ e∆1

, and so on. Finally  ◦ e also has untwisted framing.
Since e∆i

= bδi × id
T

p−1

i
: S1

i ×D2 × T
p−1
i →֒ S1

i ×D2 × T
p−1
i , by Lemma

4.5 (1), we have e∆i
(T p×{1}) is homological to δi times T p×{1} in T p×D2−

e∆i
(T p × Int(D2)). Thus if  : T p × D2 →֒ Rp+2 has untwisted framing, then

 ◦ e∆i
has untwisted framing.

Showing that e also preserves the unknotted-ness needs more effort. We first
investigate an essential case when e is just e∆i

, and  is a special candidate of
its type.

We will call p : T p×D2 →֒ Rp+2 standard, if p has untwisted framing, and
p|Tp×{0} = ıp.

To help visualize how ◦e(T p×D2) unknots itself, remember that a standard
type p can be written as ki ◦ gi, for i = 1, ..., p, where:

gi : S
1
1 × · · · × S1

p ×D2 ⊂ (S1
1 × · · · × Ŝ1

i × · · · × S1
p)×D3

is the identity on factors S1
j , j 6= i, and S1

i ×D2 ⊂ D3 is the thicken-up of the

circle lying on the equatorial disc of D3, centered at the origin with radius one
half, (cf. Corollary 3.3).

Lemma 4.7. Suppose 1 ≤ i ≤ p, and J = p ◦ eJ , where J ∈ SL(p,Z) satisfies
the minor J∗

ii = 1. Then J ◦e∆i
is also unknotted. Moreover, the type of J ◦e∆i

is modular.

Proof. Without loss of generality, we may assume i = 1. Denote gJ = g1 ◦ eJ .
The commutative diagram below has included all the maps involved so far:

T
p−1
1 ×D3

k1

%%KKKKKKKKKK

T p ×D2

π

��

e∆1 // T p ×D2

gJ
88qqqqqqqqqq

π

��

eJ // T p ×D2

π

��

g1

OO

p //
R

p+2

T p
φ∆1 // T p

τJ // T p

ıp
88rrrrrrrrrrr
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There is a basic picture for p = 2 to keep in mind. In this case, we are trying
to unknot the core of J ◦ e∆1

(T 2 ×D2) in R4. Let K ′|1 be a (δ1, 1)-torus knot
in D3, whose carrier torus is placed parallel to the xy-plane centered at the
origin. K ′|1 is of course an unknot. Let r be an integer. Imagine an S1-family
of unknots K ′|w in D3, such that for any w ∈ S1, K ′|w is obtained by rotating
K ′|1 about the z-axis by an angle r arg(w). We may simultaneously cap off all
these knots by picking a disk bounded by K ′|1 and rotate it about the z-axis
so that at the time w it is bounded by K ′|w. See Figure 3. This implies that

D3
0

D3
π
2

D3
πD3

3π
2

w

Figure 3: An S1-family of rotating (δ1, 1)-torus knots, illustrated as δ1 = 2.

K ′ =
⋃

w∈S1 K
′|w is an unknotted torus in S1 × D3 (in the sense that it is

diffeotopic to S1 × S1 ⊂ S1 ×D3). Therefore, if S1 ×D3 is further embedded
in R

4, the image of K ′ is also an unknotted torus in R
4. As we will see below,

K ′ is exactly gJ ◦ e∆1
(T 2 × {0}). When p > 2, there is a similar picture, where

we will have a T
p−1
1 -family instead of just an S1-family. Another difference is

that when p = 2, the smooth mapping class group π0Diff+(T
2) is isomorphic

to SL(2,Z) so the new embedding is automatically modular, but in the general
case, this is no longer true so we need to analyze more carefully.

Specifically, we wish to diffeotope the core K ′ = gJ ◦ e∆1
(T p × {0}) back to

K = g1(T
p × {0}) within T

p−1
1 ×D3, before including the latter into Rp+2 via

k1. The (δ1, 1)-torus knot K
′ ⊂ T

p−1
1 ×D3 may be viewed as a T

p−1
1 -family of

(hopefully) unknotted loops in D3. One may regard S1
2 , · · · , S1

p as independent
clocks, and at every ‘moment’ (u2, · · · , up) we see a loop in D3. It turns out
that this is a (δ1, 1)-torus knot rotating around a fixed axis. Then we may
simultaneously diffeotope the loops back to the standard place in D3. The key
to reading out this picture is understanding the intersection loci of K ′ on fibers
D3, namely K ′|(u2,··· ,up) = K ′ ∩ ({(u2, · · · , up)} ×D3).

Denote v = φ(u) = τJ ◦ φ∆1
(u), and ~ω(u1) = u1x · ~ε1 + u1y · ~ε2 a rotating

vector in R2
1,2. Then:

g1(u, z) = ((u2, · · · , up),
1

2
· ~ω(u1) +

1

3
[zx · ~ω(u1) + zy · ~ε3]).
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ε̄1

ε̄2

ε̄3
1
3
(zx~ω(u1) + zyε̄3)

1
2
~ω(u1)

Figure 4: The image of (u1, z) under g1 : S1
1 ×D2 →֒ D3.

Composing eJ(u, z) = (τJ (u), z) with e∆1
(u, z) = (φ∆1

(u), 1
2u1 +

1
δ21
u1−δ1
1 z),

we have:
gJ ◦ e∆1

(u, 0) = ((v2, · · · , vp), b(u)),

where vj means the S1
j -component of v = φ(u), and:

b(u) =
1

2
· ~ω(v1) +

1

6
[u1x · ~ω(v1) + u1y · ~ε3].

Because J∗
11 = 1 is the (1, 1)-th entry of J−1, uδ1

1 = v1v
−r2
2 · · · v−rp

p for
some integers r2, · · · , rp, so v1 = uδ1

1 vr22 · · · v
rp
p . Therefore at the ‘moment’

(v2, · · · , vp) ∈ T
p−1
1 , K ′|(v2,··· ,vp) is a (δ1, 1)-torus knot in D3 defined by b(u),

and as vj = eiθj , K ′|(v2,··· ,vp) rotates about the ~ε3-axis by an angle rjθj .
Note that a (δ1, 1)-torus knot in D3 is unknotted, so there is a diffeotopy ht :

D3 → D3 supported in the interior, such that h0 = idD3 and h1(K
′|(1,··· ,1)) =

K|(1,··· ,1). To unknot K ′ simultaneously on fibers, define ρ : T p−1
1 → SO(3),

with ρ(v2, · · · , vp) being the rotation about the ~ε3-axis by an angle r2θ2 + · · ·+
rpθp, where vj = eiθj . The ‘unknotting’ diffeotopy may be defined as:

Ht : T
p−1
1 ×D3 → T

p−1
1 ×D3

with:

Ht((v2, · · · , vp), ~x) = ((v2, · · · , vp), ρ(v2, · · · , vp) ◦ ht ◦ (ρ(v2, · · · , vp))−1(~x)).

Since Ht is supported in the interior, when we embed T
p−1
1 ×D3 into Rp+2

by k1, Ht induces a diffeotopy on k1(T
p−1
1 ×D3) supported in the interior, which

extends as a diffeotopy of Rp+2. This diffeotopy takes J ◦ e∆1
(T p × {0}) back

to p(T
p × {0}), so the former is unknotted too.
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To see the ‘moreover’ part, note that both g1, H1 ◦ gJ ◦ e∆1
embed T p×{0}

into T
p−1
1 ×D3 with the same image. Let B denote the matrix obtained from J

by multiplying each entry of the first column by δ1 and then replacing the first
row by (1, 0, · · · , 0). Since J∗

11 = 1, B ∈ SL(p,Z). By comparing:

H1 ◦ gJ ◦ e∆1
(u, 0) = (v2, · · · , vp, ρ(v2, · · · , vp) ◦ h1 ◦ (ρ(v2, · · · , vp))−1 ◦ b(u)),

with:

g1 ◦ eB(u, 0) = (v2, · · · , vp,
1

2
~ω(u1)),

we see that the self-diffeomorphism (H1 ◦ gJ ◦ e∆1
) ◦ (g1 ◦ eB)−1 : T p → T p

can be written as F : T p−1
1 × S1 → T

p−1
1 × S1, such that F ((v2, · · · , vp), z) =

((v2, · · · , vp), f(v2, · · · , vp)(z)), where f : T p−1
1 → Diff+(S

1). Because Diff+(S
1) ≃

SO(2), f is homotopic to f0 : T p−1
1 → SO(2), where f0(v2, · · · , vp) = vm2

2 · · · vmp
p

for some integers m2, · · · ,mp, and F is diffeotopic to the automorphism F0 :

T
p−1
1 × S1 → T

p−1
1 × S1, F0((v2, · · · , vp), z) = ((v2, · · · , vp), vm2

2 · · · vmp
p z). Let

M denote the matrix obtained from the p× p identity matrix by replacing the
first row by (1,m2, · · · ,mp). Then the type of J ◦ e∆1

is a modular transfor-
mation of the standard type by MB.

The general case that composing e preserves the unknotted-ness and remains
modular is as follows.

Lemma 4.8. If  is unknotted of modular type with untwisted framing, then
 ◦ e : T p ×D2 →֒ Rp+2 is also unknotted of modular type.

Proof. Clearly ̂ = ◦eU is unknotted with modular type and untwisted framing.
Note ̂ ◦ e∆1

is unknotted if and only if so is h ◦ ̂ ◦ e∆1
for any Rp+2 self-

diffeomorphism h. By Proposition 4.4, the unknotted-ness of ̂ ◦ e∆1
depends

only on the type of ̂. Since ̂ is of modular type, suppose J = p ◦ eJ has the
same type as ̂. Moreover, J may be picked so that J∗

11 = 1 by Lemma 3.13(2).
Then by Lemma 4.7, J ◦ e∆1

remains unknotted with modular type. Therefore
̂ ◦ e∆1

is unknotted with modular type. By Lemma 4.6, ̂ ◦ e∆1
has untwisted

framing.
Repeat this argument so (̂ ◦ e∆1

) ◦ e∆2
is unknotted with modular type and

untwisted framing, and so on we see that ̂ ◦ e∆1
· · · e∆p

is also unknotted with
modular type. Finally ( ◦ eU ◦ e∆1

◦ · · · ◦ e∆p
) ◦ eV is also unknotted since it

has the same image of the core as  ◦ eU ◦ e∆1
◦ · · · ◦ e∆p

, and the type change
is modular. We conclude that  ◦ e is still unknotted of modular type.

Proof of Theorem 1.4. Pick an unknotted embedding  : T p × D2 →֒ Rp+2 of
modular type with untwisted framing. (We can in fact require the core image
to be any unknotted T p in Rp+2, by Lemma 3.7.) By Lemma 4.6 and Lemma
4.8,  ◦ ei (i ≥ 0) are all unknotted of modular type with untwisted framing. By
Corollary 3.9, at least two of ◦ei (0 ≤ i ≤ 2p−1) are of the same type. Suppose
 ◦ ek and  ◦ el (0 ≤ k < l ≤ 2p − 1) are of the same type. Pick the embedding
̂ = ◦ek : T p×D2 →֒ R

p+2 instead of , and let d = l−k. There is a compactly-
supported self-diffeomorphism h of Rp+2 such that h ◦ ̂ = ̂ ◦ ed by Proposition

17



4.4. This is to say, ed can be realized by an embedding ̂ : T p × D2 →֒ Rp+2

with extension h.
Therefore,

Λ =

∞
⋂

i=0

ei(T p ×D2) =

∞
⋂

i=0

edi(T p ×D2),

embeds into Rp+2 by ̂ as an attractor of h, so we have realized an expanding
attractor derived from φ.

References

[Bo] H. Bothe, The ambient structure of expanding attractors. II. Solenoids in
3-manifolds. Math. Nachr. 112 (1983), 69–102.

[DLWY] F. Ding, Y. Liu, S. Wang, J. Yao, Spin structure and codimension-two
homeomorphism extension. Preprint, 2010. arXiv:0910.4949.

[DPWY] F. Ding, J. Pan, S. Wang, J. Yao, Manifolds with Ω(f) a union of DE
attractors are rational homology spheres. Ergodic Theory Dynam. Systems 30
(2010), no. 5, 1399–1417.

[DSS] K. Dekimpe, M. Sadowski, A Szczepański, Spin structures on flat mani-
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