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A cell-based smoothed radial point interpolation method (CS-RPIM) is developed for fracture problems.
The strain smoothing is performed over background triangular cells. The stiffness matrix is calculated
based on the weakened weak formulation, using shape functions obtained by radial point interpolation
method. A layer of five-node singular elements are used to simulate the singularity around the crack
tip. Different schemes are devised in the five-node elements to perform the strain smoothing. Several
examples are presented to validate the newly developed method. The results are found in excellent
agreement with the exact (or reference) solutions.
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1. Introduction

The stress intensity factor (SIF), which characterizes the stress
and displacement distribution around the crack tip, is of great
importance and one of the most essential parameters for failure
analysis in cracked components. However, analytical solutions for
SIFs only exist for some very simple cases, thus numerical methods
are usually employed for practical problems that are usually com-
plicated in many ways.

To solve complicated engineering problems, many powerful
numerical methods have been proposed, such as finite element
methods (FEM) [1–4], finite difference methods [5,6] and finite vol-
ume methods (FVM) [7,8]. The FEM is currently the most widely
used reliable numerical method in practical application, whereas
it has its own shortcomings. The first shortcoming is ‘‘overly-stiff’’
stiffness matrix, which leads to lower bound to the exact solution
in the energy norm. The second concerns with mesh distortion-re-
lated problems, such as the significant accuracy loss when the ele-
ment is heavily distorted. In FEM, six-node singular triangular
elements are utilized to simulate the singular strain field around
the crack tip, while this method needs transitional elements to
connect the singular elements to the outer common elements.
Recently, the extended finite element method (XFEM) has been
ll rights reserved.
developed for fracture problems [9–12]. However, in the setting
of XFEM, a layer of ‘‘blending’’ elements is used in the transition
zone from the enrichment to the usual FEM approximation. The
usage of the blending elements will produce a local loss of parti-
tions of unity property, which will lead to errors and decrease in
convergence rate [13]. Several approaches [14,15] have been pro-
posed to overcome this shortcoming. XFEM has been extended to
three-dimensional modeling of crack growth problems [16–20].
Karihaloo and Xiao [21,22] extended the hybrid crack element
(HCE) for evaluating the SIF but also the coefficients of the higher
order terms of the crack tip asymptotic field. HCE is formulated
from a simplified variational functional using truncated asymptotic
crack tip displacement. But the exclusion of the rigid body modes
in the truncated asymptotic displacements creates jumps between
these displacements and element compatible boundary displace-
ments. Also some methods are proposed for this shortcoming.

In recent years, a generalized gradient smoothing technique has
been applied and been the foundation of a series of novel and pow-
erful numerical methods [23–27]. A G space theory [28] and weak-
ened weak (W2) formulation [29,30] have been established as a
general fundamental theory for meshfree methods [31]. The gradi-
ent smoothing technique is also applied to finite element method
(FEM) to develop smoothed finite element method (S-FEM [32])
using different kinds of smoothing domains [33]. A node-based
smoothed finite element method (NS-FEM) has been developed
with the smoothing domains constructed based on nodes of the
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elements [33]. NS-FEM is found to provide an upper bound solu-
tion [33,34]. Moreover, Liu et al. [35,36] formulated an edge-based
smoothed finite element method (ES-FEM) which uses smoothing
domains constructed based on edges of elements. One of the most
obvious advantages of ES-FEM is its super convergence property
and high accuracy compared to FEM using the same mesh. With
the displacement field obtained by point interpolation method
(PIM), a node-based smoothed point interpolation method (NS-
PIM) [37–39] has been formulated. The major advantage of PIM
is that the shape functions created possess the Kronecker delta
function property, which allows simple enforcement of essential
boundary conditions as in the conventional FEM. So far, two types
of PIM shape functions have been used with different forms of ba-
sis functions: polynomial basis functions [40,41] and radial basis
functions (RBFs) [42–44]. PIM using radial basis functions (RBFs)
is termed as radial PIM (RPIM). Because of the use of local approx-
imation, the stability needs to be ensured via a weak formulation
with proper shape parameter control [42–44] or W2 formulation
[30]. There are several advantages to use RBF as the basis function
in constructing PIM shape functions [41].

1. Using RBF can effectively resolve the singularity problem in the
moment matrix of the polynomial PIM [31].

2. RPIM shape functions behave very stably with respect to nodal
irregularity and hence are very flexible for arbitrary node
distribution.

3. RPIM shape functions can be easily created for three-dimen-
sional domains, because RBF is a function of distance and the
only variable is the distance.

Making use of the advantages of RPIM, a cell-based radial point
interpolation method (CS-RPIM) is developed for fracture mechan-
ics in this work. In this method, the gradient smoothing procedure
is performed over each background triangular cell, with the dis-
placement field approximated using RPIM.

Due to the 1=
ffiffiffi
r
p

singularity of the strain around the crack tip,
properly capturing such singularity is crucial for a numerical meth-
od. In order to better capture the singularity in the vicinity of the
crack tip, a five-node singular element [34,45] with a

ffiffiffi
r
p

displace-
ment field is adopted in our work, shown in Fig. 1. Several smooth-
ing schemes for the singular elements are devised and applied to
numerical examples. Intensive examples show that the present
singular CS-RPIM improves the accuracy of the solution in terms
of SIFs and strain energy in comparison with the standard FEM-
T3. Excellent agreement between the numerical results of the
present singular CS-RPIM and the corresponding reference solu-
tions is achieved for a wide range of boundary conditions.
Crack tip

l/4

l

Fig. 1. Five-node element.
2. Cell-based radial point interpolation method

2.1. Basic equations for 2D solids

Consider a two-dimensional static elasticity problem defined in
the domain X bounded by C(C = Cu + Ct; Cu \ Ct = 0) governed by
the following equations. Displacement conditions are prescribed
on Cu, and tractions are prescribed on Ct .

LT
drþ b ¼ 0 in X ð1Þ

where Ld is a matrix of differential operator defined as:

Ld
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rT ¼ ½rxx ryy sxy� is the vector that collects stress components and
bT ¼ ½bx by� is the body force vector. The stresses relate the strains
via the constitutive equation or the generalized Hooke’s law as
follows:

r ¼ De ð3Þ

in which D is the matrix of material constants that is defined in Eq.
(4), where E is Young’s modulus and t is Poisson’s ratio.

D ¼ E
1� t2

1 t 0
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In Eq. (3), eT ¼ ½exx eyy 2exy� is the vector of strains that is related
to the displacements by the following compatibility equation.

e ¼ Ldu ð5Þ

where u ¼ ½ux uy�T is the displacement vector. Strains obtained
using Eq. (5) are generally called compatible strains.

There are two types of boundary conditions: Dirichlet (or essen-
tial/displacement) boundary conditions and Neumann (or natural/
stress) boundary conditions.

Dirichlet boundary conditions:

u ¼ uC on Cu ð6Þ

where uC is the vector of the prescribed displacements on the
essential boundary Cu.

Neumann boundary conditions:

LT
nr ¼ tC on Ct ð7Þ

where tC is the vector of the prescribed traction on the natural
boundary Ct, and Ln is the matrix of unit outward normal which
can be expressed as:

Lnðnx;nyÞ ¼
nx 0
0 ny

ny nx

2
64

3
75 ð8Þ
2.2. Edge based T-schemes of node selection

In this work, all the models are discretized with three-node tri-
angular elements, which also serve as smoothing domains. The
points of interest or the quadrature points are located on the edges
of background triangular cells. Therefore, nodes need to be selected
for the displacement interpolation. Cell-based T-schemes for node
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selection have been presented and work well in NS-PIM and ES-
PIM models [33,38]. In this work, edge-based T4 scheme is
adopted. Edges of the triangles can be classified into two groups:
the first is the interior edge, which is located inside the problem
domain; the second is the boundary edge, which is located on
the model boundaries.

The edge-based T4 scheme selects four nodes for the displace-
ment interpolation of a point located on an interior edge and two
nodes for that located on boundary edge. As depicted in Fig. 2,
when the point of interest (x) is located on an interior edge, two
end nodes and two nodes opposite to the interior edge are selected.
These four nodes are numbered for approximating displacement
field by the radial point interpolation method. When the point of
interest (x) is located on a boundary edge, two end nodes are se-
lected for the displacement interpolation. The displacement along
the boundary edge is assumed to be linear interpolation of the
two end nodes displacements.

2.3. Displacement approximation using RPIM

The displacement field u(x) along the edge is approximated in a
local support domain constructed by a set of selected nodes using
radial basis function Ri(x) augmented with polynomial basis func-
tion Pj(x) [33,46].

uðxÞ ¼
Xn

i¼1

RiðxÞai þ
Xm

j¼1

PjðxÞbj ¼ RTðxÞaþ PTðxÞb ð9Þ

where n is the number of RBFs, which is identical to the number of
nodes in the local support domain for the point (x). m is the number
of polynomial basis functions. Coefficients ai and bj are constants to
be determined.

In the radial basis function Ri(x), the only variable is the dis-
tance between the point of interest (x, y) and a node (xi, yi), where
(xi, yi) is the coordinate of node comprising the support domain.
For a 2D problem, r is defined as:

r ¼ ½ðx� xiÞ2 þ ðy� yiÞ
2�1=2 ð10Þ

There are four types of radial basis functions (RBFs): multi-
quadrics (MQ) function, Gaussian radial function, thin plate spline
(TPS) function and Logarithmic radial basis function. In this work,
the MQ function with parameters ac and q is adopted to construct
RPIM shape functions [41,47].

Riðx; yÞ ¼ ðr2
i þ ðacdcÞ2Þq ð11Þ
Point of interest Point for interpolation

i1

i2

i3

i4 j1

j2

Fig. 2. T4 scheme for node selection for the interpolation at points located at
interior side and boundary side.
Here ac = 4.0, q = 1.03 and dc is the average dimension of the back-
ground triangular cells. Pj(x) is the basis function of monomials
built utilizing the Pascal’s triangles.

Pj ¼ 1 x1 y1 � � � pmðX1Þ½ � ð12Þ

The constants ai and bj are determined by making Eq. (9) satis-
fied at these n nodes in the local support domain. There are m + n
unknowns in Eq. (9), but Eq. (9) consists only n equations. So an-
other m equations should be required. Golberg et al. [44] enforced
the following m constraint conditions to be satisfied.

Xn

i¼1

pjðxiÞai ¼ PT
ma ¼ 0 j ¼ 1;2; . . . ;m ð13Þ

Combining Eqs. (9) and (13) yields the following:

~Ue ¼
Ue

0

� �
¼

Rq Pm

PT
m 0

" #
a
b

� �
¼ Ga0 ð14Þ

where

~Ue ¼ ½u1 u2 � � � un 0 0 � � � 0�ðmþnÞ ð15Þ

aT
0 ¼ ½a1 a2 � � � an b1 b2 � � � bm� ð16Þ

Then the displacement can be rewritten as:

uðxÞ ¼ uTðxÞUe ¼
Xn

i¼1

/iui ð17Þ
2.4. Singular shape function

The most important issue of linear elastic fracture mechanics is
that the stress and strain field around the crack tip possesses the
singularity of the inverse square root. Common elements can not
simulate this kind of stress and strain field. In FEM, singular ele-
ment is used to deal with the singularity around the crack tip.
The most popular singular elements are the eight-node quarter-
point element and the six-node quarter-point element. In these
elements, the middle nodes of the edges linking to the crack tip
are shifted to the quarter points (near the crack tip) of the edges
[49,50,9]. However, using this kind of singular element, transi-
tional elements are needed to ensure the compatible displacement
field between the singular elements and common elements, which
increases the computational cost greatly. In this work, a layer of
singular elements [34,45] containing the crack tip are used within
the framework of CS-RPIM to construct singular strain field. As
shown in Fig. 1, in this singular element an additional node is
added to each edge originating from the crack tip. The location of
the added node is at one quarter point of the edge from the crack
tip. Within this singular element, the displacement is assumed to
contain

ffiffiffi
r
p

term, thus a 1=
ffiffiffi
r
p

singular strain and stress field can
be created. Within this element, displacement field function u(x)
along the edges originating from the crack tip can be approximated
using:

uðxÞ ¼ a0 þ a1r þ a2
ffiffiffi
r
p

ð18Þ

where r is the radial distance between the crack tip and the point
(x). a0, a1, a2 are the interpolation coefficients corresponding to
the given point (x). The coefficients a0, a1 and a2 can be determined
by enforcing Eq. (18) to exactly pass through nodal values of the
three nodes along the edge.

u1 ¼ a0 þ a1r1 þ a2
ffiffiffiffiffi
r1
p

u2 ¼ a0 þ a1r2 þ a2
ffiffiffiffiffi
r2
p

u3 ¼ a0 þ a1r3 þ a2
ffiffiffiffiffi
r3
p

ð19Þ
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where r1, r2 and r3 are the radial distances between the three nodes
and the crack tip, respectively. Solving these three equations for
a1, a2 and a3, and substituting them into Eq. (18) gives us:

uðxÞ ¼ 1þ 2
r
l
� 3

ffiffiffi
r
l

r
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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�4
r
l
þ 4
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r
l
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|fflfflfflfflffl{zfflfflfflfflffl}
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2
6664

3
7775
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9>=
>; ð20Þ

where l is the length of the edge. /1, /2 and /3 are the shape func-
tions for these three nodes on the edge, respectively. u1, u2 and u3

are the displacements of the three nodes. The displacement along
the edge opposite to the crack tip can be constructed by linear
interpolation or RPIM to be displacement-compatible with the
outside elements. As the strain matrix is calculated by the integra-
tion of shape functions multiplied by the component of unit out-
ward vector along the edges of the cell, there will not be
singular term in the integrand, which can result in error in the
process of Gauss quadrature. This is one of the advantages this sin-
gular element shows, compared to other methods. Meanwhile,
there are only two nodes along the edge opposite to the crack
tip, so the displacement field of this singular element is compati-
ble with common elements. Transitional elements of commonly
singular FEM or blending elements of XFEM are not needed in
our method.

2.5. Cell-based smoothed strains

The smoothed strains are obtained using the generalized
smoothing operation defined in Eq. (21) [29], with displacement
fields constructed using RPIM shape functions. The smoothing do-
mains are generally constructed based on the background triangu-
lar cells. In the scheme of present CS-RPIM, the triangular
background cells serve as smoothing domains. Our shape functions
are created for points on the edges of the cells, which are always
continuous.

Substituting Eq. (17) into Eq. (21) to perform the strain smooth-
ing operation over each triangular background cell, the cell based
smoothed strain ek can be given in Eq. (22).

ekðuÞ ¼
1
As

k

Z
Cs

k

LnuðxÞds ¼ ½�exx �eyy 2�exy�Tk ð21Þ

ek ¼
1
As

k

Z
Cs

k

Ln/uidC ¼
X

i2Ninf l

BiðxkÞui ð22Þ

where e is the matrix of RPIM shape functions, As
k is the area of the

smoothing domain, Cs
k is the boundary of the smoothing domain,

and Ninfl is the number of nodes involved in constructing the dis-
placement fields along the smoothing domain Xs

k. The smoothed
strain matrix BiðxkÞ can be expressed as:

�BiðxkÞ ¼

�bixðxkÞ 0
0 �biyðxkÞ

�biyðxkÞ �bixðxkÞ

2
64

3
75 ð23Þ

where �bixðxkÞ and �biyðxkÞ are obtained as:

�bil ¼
1
As

k

Z
Cs

k

uiðxkÞnlðxkÞdC ð24Þ

Note that the above integrand does not contain any singular term so
that it can be performed using the standard Gauss quadrature. By
Gauss quadrature, the above equation can be expressed as:

�bil ¼
1
As

k

XNseg

m¼1

XNgau

n¼1

wnuiðxkÞnlðxkÞ
" #

ðl ¼ x; yÞ ð25Þ
where Nseg is the number of segments the boundary Cs
k consists of

(Nseg = 3). Ngau is the number of Gauss points used on each segment
and wn is the corresponding weight of Gauss quadrature point.

Based on the CS-RPIM procedure, the entry of the global stiff-
ness matrix of the whole model is a summation of the sub-ma-
trixes of the stiffness matrix associated with all the cell-based
smoothing domains.

KIJ ¼
XNs

k¼1

KIJ;k ð26Þ

where KIJ is the IJth entry of the global stiffness matrix and KIJ;k is
that of the stiffness matrix of the kth smoothing domain, and Ns is
the total number of smoothing domains. Because the strains within
the smoothing domain is assumed to be constant, KIJ;k can be ob-
tained simply by Eq. (27), without integration.

KIJ;k ¼ As
kBT

I DBJ ð27Þ

We note here again that there is no need for numerical integration
for computing the stiffness matrix (unlike the standard weak for-
mulations). All we need is the simple and standard (no-singular)
integration performed in Eqs. (24) and (25).

2.6. Different schemes of strain smoothing in the singular element

In order to capture the singularity of the stress and strain field
around the crack tip more accurately, several smoothing schemes
have been adopted over the five-node singular elements around
the crack tip.

2.6.1. SCS-RPIM-2d
In this scheme, the two quarter nodes are linked with a line,

which divides the five-node element into two smoothing domains
(ADE and BCDE) shown in Fig. 3(a). In the singular element, the dis-
placement fields along edges AB and AC are approximated by Eq.
(20). The displacement along edge DE is assumed to be linear inter-
polation of uD and uE. In order to have a compatible displacement
field with the connected common triangular element, which shares
the same edge BC with the singular element, the displacement field
along BC is approximated by cell-based radial point interpolation
method. The support domain is selected by T4 node selection
scheme just taking nodes A, B and C into consideration, neglecting
nodes D and E. Two smoothing domains comprise the singular ele-
ment. The strain smoothing operation is performed over ADE and
BCDE respectively. This scheme is named as SCS-RPIM-2d to be re-
ferred to in our later discussion.

2.6.2. SCS-RPIM-4d
In order to have the effect of finer mesh around the crack tip,

the singular element is split into four domains in this scheme. Four
more points are added to the middle points of edges AD, DB, AE and
EC, respectively, without increasing the number of DOFs (degrees
of freedom) in the whole model. These four points will partition
the element into four smoothing domains (AFG, FGDE, DHIE and
HIBC) by linking DE, FG and HI, shown in Fig. 3(b). The displace-
ments of these four points can be interpolated by the displacement
of the three nodes on the same edges using Eq. (20). In the singular
element, we approximate displacement fields along FG, DE and HI
by linear interpolation of their own two-end nodes (or points) dis-
placements, respectively. The displacement field along edge BC is
in the same manner as mentioned in scheme SCS-RPIM-2d. The
smoothing operations are performed over four domains indepen-
dently. Due to the four smoothing domains associated with each
singular element around the crack tip, this scheme is thus named
SCS-RPIM-4d.



Fig. 3. Different schemes of strain smoothing (a) SCS-RPIM-2d, (b) SCS-RPIM-4d, (c)
SCS-RPIM-3d, (d) SCS-RPIM-3d2 (different types of shadows stand for different
smoothing domains).
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Fig. 4. (a) Integration domain is enclosed by C = Co + Ci + Cu + Cd. nj = mj on Co, Cu, Cd,
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integration.
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Fig. 5. Plate with edge crack under remote tension.
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2.6.3. SCS-RPIM-3d
In this scheme, two additional points (F, G) are employed to

divide the singular element into three smoothing domains (ADE,
DFGE and FBCG) by linking DE and FG shown in Fig. 3(c). The
smoothing operation can be performed over each of the three do-
mains. This scheme is named as SCS-RPIM-3d. The two points are
arranged to the middle points of DB and EC, without increasing
the number of DOFs. The displacement fields along DE and FG
can be obtained by linear interpolation of the two end nodes (or
points) displacements. The displacement field along BC is obtained
in the same way as mentioned in SCS-RPIM-2d.

2.6.4. SCS-RPIM-3d2
The only difference between this scheme and previous SCS-

RPIM-3d is the locations of the two newly added points (F, G),
which are shifted to the middle points of DB and EC in this scheme.
All other settings are the same with SCS-RPIM-3d. The three do-
mains ADE, DFGE and FBCG are shown in Fig. 3(d). In order to be
different from SCS-RPIM-3d, this scheme is termed as SCS-RPIM-
3d2.

2.6.5. ST5-T3
In order to better validate the way of dealing with singularity in

this paper, ST5-T3 scheme is devised in this paper. In this scheme, a
layer of five-node elements are adopted around the crack tip, and
the singular element is divided into two smoothing domains, with
smoothing operation performed over each of the two domains. All
the other elements are 3-node triangular elements. The displace-
ment field in other elements is in the same manner as that of
FEM-T3. The stiffness matrix is obtained in the same way as what
we do in FEM. Note that in order to have a compatible displace-
ment field with the connected triangular element, which shares
the same edge BC, the displacement field along edge BC is pro-
duced by linear interpolation of uB and uC. Therefore this scheme
is named as ST5-T3.

3. Domain interaction integral methods for 2D fracture
problems

The interaction integral method [9,10] is one of the methods to
calculate stress intensity factor in fracture mechanics. In this meth-
od, there are two states of a cracked body considered. One is the
present state to be solved with the parameters of ðrð1Þij Þ, e

ð1Þ
ij ; uð1Þi ),

and the other is an auxiliary state with the parameters of (rð2Þij ,
eð2Þij ; uð2Þi ), which could be a state of pure mode I or pure mode II.
Two simple conditions exist for the stress intensity factors regard-
ing the auxiliary fields.



Table 1
The effect of the number of Gauss points on the strain energy and KI.

Ngau Strain energy (�10�3) KI

1 1.14196283 1.593119
2 1.15993944 1.646992
3 1.15983803 1.646683
4 1.15983861 1.646683
5 1.15983867 1.646683
6 1.15983867 1.646683
7 1.15983867 1.646683

Table 2
The variation of KI with the integration domain radius.

Mesh/rc 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

2.0 1.5982 1.6051 1.6079 1.6093 1.6102 1.6107
2.5 1.5984 1.6050 1.6077 1.6090 1.6098 1.6103
3.0 1.5985 1.6051 1.6079 1.6093 1.6100 1.6105
3.5 1.5985 1.6051 1.6079 1.6093 1.6101 1.6106
4.0 1.5986 1.6052 1.6080 1.6093 1.6101 1.6106
4.5 1.5986 1.6051 1.6078 1.6092 1.6100 1.6105
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Kð2ÞI ¼ 1 and Kð2ÞII ¼ 0; for pure mode I

Kð2ÞI ¼ 0 and Kð2ÞII ¼ 1; for pure mode II
ð28Þ

In fracture mechanics, the general form of J-contour integral can
be expressed as follows:

J ¼
Z

C

1
2
rikeikdxj � rijui;x

� �
njdC ð29Þ

Also the superimposition can be applied to linear elastic fracture
mechanics. Hence, we have:

Kð1þ2Þ
I ¼ Kð1ÞI þ Kð2ÞI

Kð1þ2Þ
II ¼ Kð1ÞII þ Kð2ÞII

ð30Þ

Then the value of J-contour integral for the mixed state of 1 and 2
can be derived.

Jð1þ2Þ ¼
Z

C

1
2

rð1Þij þ rð2Þij

� 	
eð1Þij þ eð2Þij

� 	
d1j

�

� rð1Þij þ rð2Þij

� 	 @ðuð1Þi þ uð2Þi Þ
@x1

!
njdC ð31Þ

Expanding and rearranging Eq. (31) yields:

Jð1þ2Þ ¼ Jð1Þ þ Jð2Þ þ Ið1;2Þ ð32Þ

where I(1,2) is named the interaction integral for states 1 and 2, and
can be expressed as:

Ið1;2Þ ¼
Z

C
rð1Þik eð2Þik dxj � rð1Þij uð2Þi;x � rð2Þij uð1Þi;x

� 	
njdC ð33Þ

J(1+2)can also be given by Eq. (34):

Jð1þ2Þ ¼
Kð1þ2Þ

I

� 	2

E�
þ

Kð1þ2Þ
II

� 	2

E�
ð34Þ

Substituting Eq. (30) into Eq. (34) gives us:

Jð1þ2Þ ¼ Jð1Þ þ Jð2Þ þ 2
E�

K1
I K2

I þ K1
IIK

2
II

� 	
ð35Þ

Comparing Eqs. (32) and (35), we can arrive at
Fig. 6. Mesh of plate with edge crack (21nodes � 41nodes).
Ið1;2Þ ¼ 2
E�

K1
I K2

I þ K1
IIK

2
II

� 	
ð36Þ

Substituting Eq. (28) into Eq. (36) yields:

Kð1ÞI ¼
E�

2
Ið1;Mode IÞ

Kð1ÞII ¼
E�

2
Ið1;Mode IIÞ

ð37Þ

In order to get stress intensity factor, the integral in Eq. (33)
should be obtained. According to the Divergence theorem, the path
integral can be transformed into area integral by multiplying the
integrand of Eq. (33) by a weighting function q. q is set to be 1 in-
side the area enclosed by the integral path and 0 outside the area.
Then Eq. (33) can be rewritten as:

Ið1;2Þ ¼
Z

C
rð1Þik eð2Þik dxj � rð1Þij uð2Þi;x � rð2Þij uð1Þi;x

� 	
njqdC ð38Þ

where C = Co + Ci + Cu + Cd and nj is the unit outward vector of C,
where nj = mj on Co, Cu and Cd, nj = �mj on Ci, shown in Fig. 4.

Using the Divergence theorem and passing to the limit as the
contour Ci is shrunk to the crack tip, gives the following equation
for the area-path interaction integral in domain form:

Ið1;2Þ ¼ �
Z

A
rð1Þik eð2Þik dxj � rð1Þij uð2Þi;x � rð2Þij uð1Þi;x

� 	 @q
@xj

dA ð39Þ

For the above integral, shown in Fig. 4, the domain A is set to be
the collection of all the elements that have a node within a radius
of rj = rc � d (rc is a dimensionless parameter, d is the average
dimension of the singular elements around the crack tip) and this
element set is denoted as N.

The weighting function q is defined as mentioned above. So the
gradient of q within the element belonging to Nin (the nodes of
which are all inside A), has no contribution to the interaction inte-
gral, and non-zero contribution to the integral is obtained only for
elements set Neff with an edge that intersects the boundary of A.
Therefore, Eq. (39) can be rewritten as:

Ið1;2Þ ¼ �
XNeff

n¼1

Z
Aeff ;n

rð1Þik eð2Þik dxj � rð1Þij uð2Þi;x � rð2Þij uð1Þi;x

� 	 @q
@xj

dA ð40Þ

where Aeff,n is domain of the nth element in the elements set Neff.



Table 3
Strain energy (�10�3) using CS-RPIM of plate with edge crack under remote tension with mesh (21 � 41) of different irregularities.

r 0 0.005 0.01 0.02 0.03 0.04 0.05

Strain energy 1.136669 1.136707 1.136780 1.136940 1.136517 1.136269 1.138268
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Fig. 7. Plate with edge crack under tension: the variation of strain energy with different node numbers by different methods.
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Fig. 8. Plate with edge crack under tension: the variation of normalized KI with different node numbers by different methods.
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Table 4
Plate with edge crack under remote tension: strain energy with different meshes and different schemes (�10�3) (reference solution is 1.1637 � 10�3).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

CS-RPIM 1.1367 1.1453 1.1497 1.1524 1.1543 1.1556 1.1566
SCs-RPIM-3d 1.1579 1.1597 1.1606 1.1612 1.1616 1.1619 1.1621
SCS-RPIM-3d2 1.1520 1.1591 1.1613 1.1622 1.1626 1.1629 1.1630
SCS-RPIM-2d 1.1647 1.1642 1.1640 1.1639 1.1639 1.1638 1.1638
SCS-RPIM-4d 1.1570 1.1591 1.1602 1.1608 1.1613 1.1616 1.1619
FEM-T3 1.1207 1.1341 1.1411 1.1455 1.1484 1.1505 1.1521
Singular FEM-T6 1.1620 1.1629 1.1631 1.1633
ST5-T3 1.1569 1.1589 1.1601 1.1607 1.1612 1.1615 1.1618

Table 5
Plate with edge crack under remote tension: normalized KI with different meshes and different schemes (reference solution is 1).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

CS-RPIM 0.9591 0.9722 0.9790 0.9832 0.9861 0.9881 0.9897
SCs-RPIM-3d 0.9913 0.9941 0.9956 0.9965 0.9972 0.9977 0.9980
SCS-RPIM-3d2 0.9782 0.9920 0.9960 0.9978 0.9987 0.9991 0.9995
SCS-RPIM-2d 1.0023 1.0013 1.0011 1.0009 1.0008 1.0008 1.0007
SCS-RPIM-4d 0.9901 0.9931 0.9949 0.9960 0.9967 0.9972 0.9977
FEM-T3 0.9316 0.9536 0.9649 0.9718 0.9764 0.9798 0.9823
Singular FEM-T6 0.9981 0.9994 0.9998 1.0001
ST5-T3 0.9871 0.9918 0.9941 0.9954 0.9962 0.9968 0.9973

τ

Fig. 9. Plate with edge crack under shear.
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4. Numerical implementation

The numerical implementation procedure of the singular CS-
RPIM is listed as follows:

(1) Mesh the domain; obtain node coordinate and element
information.

(2) Find the support domain for edges of common elements
according to edge based T-schemes of node selection, and
edges originating from the crack tip using the schemes listed
in Section 2.6.

(3) Loop over cells.
(I) Obtain the outward unit normal vector of the edge.

(II) Calculate the smoothed strain gradient matrix B by using
Eqs. (23)–(25) for normal cells and crack tip element cells
according to different schemes, respectively.

(III) Substitute B into Eq. (27) to give the stiffness matrix IJth
entry.

(IV) Assemble the global stiffness matrix of the problem.
(4) Implement boundary conditions including the displacement

boundary conditions and stress boundary conditions.
(5) Solve the equation and obtain the displacements of nodes.
(6) Calculate the parameters needed, such as strain energy,

strain, stress and stress intensity factors.

5. Numerical examples

Three examples are presented in this work to testify our meth-
ods, rectangular plate with a single edge crack under tension, rect-
angular plate with a single edge crack under shear and an inclined
Table 6
The comparison of strain energy and error for plate with edge crack under remote
tension by between SCS-RPIM-2d and singular FEM-T6.

Node number SCS-RPIM-2d (error %) Singular FEM-T6 (error %)

861 0.001164677 (0.086) 0.001162022 (0.142)
3321 0.001164039 (0.0317) 0.001162867 (0.069)
7381 0.001163881 (0.0182) 0.00116314 (0.0455)
13,041 0.001163814 (0.0124) 0.001163274 (0.0340)
crack in rectangular plate under tension. Different schemes are
used in our calculation. Strain energy and stress intensity factors
(SIFs) of different schemes are calculated and compared.

5.1. Rectangular plate with an edge crack under tension

An edge crack in a plate under tension is first analyzed shown in
Fig. 5. The dimensions of the model are: the width b = 1 mm, the
height H = 2 mm and the crack length a = 0.3 mm. The load
r = 1 Pa is loaded on the top edge of the plate. The material param-
eters are: Young’s modulus E = 1 � 103 MPa and the Poisson’s ratio
t = 0.3. The displacements in the y direction are fixed at the bottom
edge and the plate is clamped at the bottom left corner. Assume
the plate is under plane strain.

5.1.1. Influence of the number of gauss points
Gauss quadrature method is used in the process of numerical

integration along each edge of smoothing domains, see Eq. (25).
The number of Gauss points affects both the accuracy of the re-
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Fig. 10. Plate with edge crack under shear: the variation of normalized strain energy with different node numbers by different methods.
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Fig. 11. Plate with edge crack under shear: the variation of normalized KI with different node numbers by different methods.
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sults and the computational cost in our calculation. Thus using
the computed strain energy and SIFs as index parameters, we first
study the influence of the Gauss point number on the numerical
results. In this study, the SCS-RPIM-4d scheme is used with a
mesh of 21 � 41 shown in Fig. 6. The results are listed in Table 1.
From the results, it can be seen that the strain energy and the SIFs
stay nearly constant when more than three Gauss points are
used. So in our later calculation, four Gauss points are used in
the numerical integration along each edge of the smoothing
domain.
5.1.2. Domain independence study
In linear elastic fracture mechanics, the SIFs should be domain

independent. In order to check the validity of our methods, the
influence of the integration domain on the SIFs is studied. The
SCS-RPIM-3d2 is used with several integration domain sizes and
different meshes, and the computed SIFs are listed in Table 2. As
can be seen, with different mesh densities, when rc is greater or
equal to 3.0, the SIFs remain nearly the same for different rc. So
in this work, rc = 3.0 is used to determine the dimension of the
interaction integral domain for all computations.
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Fig. 12. Plate with edge crack under shear: the variation of normalized KII with different node numbers by different methods.

Table 7
Plate with edge crack under shear: strain energy with different meshes and different schemes (�10�5) (reference solution is 8.8879 � 10�5).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

CS_RPIM 8.3748 8.5214 8.6042 8.6593 8.6995 8.7306 8.7557
SCsRPIM_3d 8.6039 8.6821 8.7280 8.7599 8.7842 8.8038 8.8201
SCS_RPIM_3d2 8.2165 8.5548 8.6758 8.7369 8.7745 8.8009 8.8210
SCS_RPIM_2d 8.7028 8.7468 8.7760 8.7981 8.8159 8.8308 8.8437
SCS_RPIM_4d 8.5929 8.6747 8.7225 8.7555 8.7805 8.8006 8.8173
FEM-T3 7.9678 8.2278 8.3638 8.4494 8.5093 8.5542 8.5894
Singular FEM-T6 8.6391 8.7153 8.7571 8.7864
ST5-T3 8.4018 8.5348 8.6008 8.6422 8.6717 8.6945 8.7129

Table 8
Plate with edge crack under shear: normalized KI with different meshes and different schemes (reference solution is 1).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

CS-RPIM 0.9360 0.9567 0.9673 0.9737 0.9781 0.9812 0.9835
SCs-RPIM-3d 0.9814 0.9885 0.9918 0.9936 0.9948 0.9956 0.9962
SCS-RPIM-3d2 0.9355 0.9752 0.9874 0.9925 0.9951 0.9966 0.9975
SCS-RPIM-2d 0.9997 1.0005 1.0007 1.0007 1.0007 1.0007 1.0006
SCS-RPIM-4d 0.9793 0.9871 0.9907 0.9927 0.9941 0.9950 0.9957
FEM-T3 0.8874 0.9251 0.9440 0.9553 0.9629 0.9682 0.9723
Singular FEM-T6 0.9972 0.9987 0.9991 0.9994
ST5-T3 0.9942 0.9960 0.9969 0.9975 0.9979 0.9982 0.9984

Table 9
Plate with edge crack under shear: normalized KII with different meshes and different schemes (reference solution is 1).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141 81 � 161

CS-RPIM 0.9815 0.9862 0.9891 0.9909 0.9921 0.9930 0.9937
SCs-RPIM-3d 0.9883 0.9911 0.9928 0.9938 0.9945 0.9950 0.9953
SCS-RPIM-3d2 0.9590 0.9849 0.9928 0.9959 0.9974 0.9981 0.9985
SCS-RPIM-2d 1.0064 1.0030 1.0016 1.0009 1.0004 1.0000 1.0000
SCS-RPIM-4d 0.9886 0.9913 0.9930 0.9942 0.9947 0.9951 0.9955
FEM-T3 0.9363 0.9556 0.9661 0.9727 0.9772 0.9804 0.9828
Singular FEM-T6 0.9964 0.9974 0.9979 0.9982
ST5-T3 0.9993 0.9997 0.9998 1.0001 1 1.0002 1.0002
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5.1.3. The sensitivity of RPIM to the nodes distribution
All the methods devised in this work are based on RPIM. RPIM is

reported to be effective for arbitrarily distributed nodes. However,
for fracture mechanics it is not clear whether RPIM is sensitive to
nodes distribution. So it is necessary to investigate the influence
of irregularity of the nodes distribution on the results of RPIM.



Table 10
The comparison of strain energy (�10�5) and error for plate with edge crack under
remote tension by between SCS-RPIM-2d and singular FEM-T6.

Node number SCS-RPIM-2d (error %) Singular FEM-T6(error %)

861 8.702759 (2.08) 8.639063 (2.80)
3321 8.775995 (1.26) 8.715257 (1.94)
7381 8.815871 (0.811) 8.757142 (1.47)
13,041 8.843731 (0.497) 8.786392 (1.14)

Fig. 13. An inclined crack in rectangular plate under tension.
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In order to investigate the influence of nodes distribution, we
introduce a parameter r to cause irregularity in the meshes in
Fig. 6. A number c is randomly produced from (0, 1).

Xir ¼ Xr þ hxrð2c � 1Þ
Yir ¼ Yr þ hyrð2c � 1Þ

ð41Þ

Here (Xr, Yr) are the nodes coordinate of regular mesh (Xir, Yir) are
the nodes coordinate of irregular mesh. hx is the average distance
of two adjacent nodes in X direction and hy is the average distance
of two adjacent nodes in Y direction. Different values of r are used to
introduce different degrees of irregularity. The strain energy of the
first example with 21 � 41 nodes meshes against the irregularity
Fig. 14. Plate with an inclined crack: (a) mesh of the whole mo
parameter r is listed in Table 3. From Table 3, it can be seen that
the strain energy doesn’t demonstrate much fluctuation with the
change of r. The largest difference of the strain energy between
the irregular mesh and the regular mesh is 0.14%, which is insignif-
icant. Consequently the influence of irregularity on the results of
CS-RPIM can be neglected.

5.1.4. The results
In this work different mesh densities (21 � 41, 31 � 61, 41 � 81,

51 � 101, 61 � 121, 71 � 141 and 81 � 161) are used to discretize
the model, as shown in Fig. 6. For the purpose of comparison,
numerical results obtained using the FEM-T3 and the singular
FEM-T6 are also provided, as well as the methods presented in this
work.

The reference solution for strain energy is calculated using the
singular FEM-T6 with a very fine mesh (340,630 nodes). The exact
solution of SIF is obtained by Eq. (42).

K Ir ¼ Cr
ffiffiffiffiffiffi
pa
p

ð42Þ

where C is given in Eq. (43):

C ¼ 1:12� 0:231
a
b

� 	
þ 10:55

a
b

� 	2
� 21:72

a
b

� 	3

þ 30:39
a
b

� 	4
ð43Þ

Here a and b are the crack length and the width of the plate,
respectively.

SIFs are normalized by the exact solutions given in Eq. (42). The
strain energy and the normalized SIFs obtained using different
methods with different mesh densities are plotted in Figs. 7 and
8, and the detailed values are listed in Tables 4 and 5. It can be seen
that the strain energy and the SIFs of the CS-RPIM and different
schemes of singular CS-RPIM are closer to the reference solution
or exact solution than those of FEM-T3 with the same DOFs. Among
the different schemes proposed in this work, SCS-RPIM-2d pro-
vides an upper bound solution for both strain energy and SIFs with
excellent accuracy and other schemes also provide more accurate
solution than FEM-T3. This can be an evidence of the high
del (73nodes � 73nodes) and (b) mesh around of the crack.
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Fig. 15. An 45� inclined crack in rectangular plate under tension: the variation of strain energy with different node numbers by different methods.
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Fig. 16. An 45� inclined crack in rectangular plate under tension: the variation of normalized KI with different node numbers by different methods.
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efficiency of the singular element around the crack tip adopted in
this paper. The strain energy errors of SCS-RPIM-2d and singular
FEM-T6 compared to the reference solution are listed in Table 6.
From the comparison, it can be seen that the results of SCS-
RPIM-2d are closer to the reference solution than singular FEM-T6.

5.2. Rectangular plate with an edge crack under shear

In the previous example, we only considered pure Mode I case,
for which our method can have more accurate results than FEM-
T3. Now we consider an edge cracked rectangular plate under re-
mote shear tractions, which is a mixed-mode case containing both
mode I and II. The dimension of the plate is 16 mm � 7 mm, the
crack length a = 3.5 mm and boundary conditions are shown in
Fig. 9. The Young’s modulus E = 3 � 107 Pa and Poisson’s ratio
m = 0.25 are used in this case. The load s = 1.0 Pa is applied on
the top edge of the model. The model is under plane strain condi-
tion. The mesh densities adopted in this example are the same as
the previous example. Also different methods are applied to this
example.
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Fig. 17. An 45� inclined crack in rectangular plate under tension: the variation of normalized KII with different node numbers by different methods.
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Fig. 18. An 60� inclined crack in rectangular plate under tension: the variation of strain energy with different node numbers by different methods.
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The reference solutions of strain energy and SIFs are obtained
using the singular FEM-T6 with a very fine mesh (401,677 nodes).
The computed SIFs, KI and KII, are normalized by the reference solu-
tions KIr and KIIr, respectively.

The strain energy and the normalized SIFs for this example ob-
tained using different numerical methods are plotted and listed in
Figs. 10–12 and Tables 7–9. It can be seen again that the strain en-
ergy and the SIFs obtained by different schemes of SCS-RPIM ap-
proach the exact solutions much better than those of the
standard FEM-T3 with the same mesh. The singular element de-
vised in this work proves to be effective again. The strain energy
obtained by SCS-RPIM-2d and that by singular FEM -T6 are listed
and compared in Table 10. Also the error of the strain energy to
the reference solution is listed. From the table we can see that
SCS-RPIM-2d has a more accurate strain energy compared to sin-
gular FEM-T6 with the same number of nodes.

5.3. An inclined crack in rectangular plate under tension

Each of the specimens in the previous two examples only con-
tains one crack tip. To demonstrate the wide applicability of our
method, an inclined crack with two crack tips in rectangular plate
under tension is considered in this example, shown in Fig. 13. The
plate is 10 mm � 10 mm, with a h inclined crack from the horizon-
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Fig. 19. An 60� inclined crack in rectangular plate under tension: the variation of normalized KI with different node numbers by different methods.
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Fig. 20. An 60� inclined crack in rectangular plate under tension: the variation of normalized KII with different node numbers by different methods.

Table 11
Plate with an 45� inclined crack under tension: strain energy with different meshes
and different schemes (�10�6) (reference solution is 1.5874 � 10�6).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 1.5832 1.5850 1.5857 1.5861 1.5862
SCs-RPIM-3d 1.5869 1.5871 1.5872 1.5873 1.5873
SCS-RPIM-3d2 1.5871 1.5874 1.5874 1.5874 1.5874
SCS-RPIM-2d 1.5876 1.5876 1.5875 1.5875 1.5875
SCS-RPIM-4d 1.5868 1.5870 1.5871 1.5872 1.5872
FEM-T3 1.5821 1.5842 1.5851 1.5856 1.5858
Singular FEM-T6 1.5870 1.5873 1.5874 1.5874 1.5874
ST5-T3 1.5869 1.5871 1.5872 1.5873 1.5873

Table 12
Plate with an 45� inclined crack under tension: normalized KI with different meshes
and different schemes (reference solution is 1.0216).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 1.0095 1.0123 1.0145 1.0159 1.0163
SCS-RPIM-3d 1.0190 1.0195 1.0198 1.0201 1.0202
SCS-RPIM-3d2 1.0172 1.0181 1.0188 1.0192 1.0193
SCS-RPIM-2d 1.0187 1.0192 1.0196 1.0197 1.0198
SCS-RPIM-4d 1.0163 1.0173 1.0182 1.0187 1.0189
FEM-T3 0.9968 1.0076 1.0135 1.0140 1.0142
Singular FEM-T6 1.0181 1.0193 1.0201 1.0203 1.0203
ST5-T3 1.0122 1.0158 1.0173 1.0181 1.0183
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Table 13
Plate with an 45� inclined crack under tension: normalized KII with different meshes
and different schemes (reference solution is 1.0112).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 0.9976 1.0009 1.0035 1.0050 1.0055
SCS-RPIM-3d 1.0059 1.0073 1.0080 1.0084 1.0085
SCS-RPIM-3d2 1.0064 1.0091 1.0093 1.0099 1.0095
SCS-RPIM-2d 1.0143 1.0130 1.0120 1.0118 1.0117
SCS-RPIM-4d 1.0071 1.0080 1.0087 1.0091 1.0092
FEM-T3 0.9966 1.0033 1.0043 1.0050 1.0056
Singular FEM-T6 1.0100 1.0103 1.0105 1.0106 1.0106
ST5-T3 1.0088 1.0095 1.0099 1.0101 1.0102

Table 16
Plate with an 60� inclined crack under tension: normalized KI with different meshes
and different schemes (reference solution is 1.0219).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 1.0128 1.0153 1.0176 1.0185 1.0189
SCS-RPIM-3d 1.0176 1.0192 1.0204 1.0207 1.0207
SCS-RPIM-3d2 1.0174 1.0212 1.0217 1.0218 1.0219
SCS-RPIM-2d 1.0246 1.0235 1.0228 1.0225 1.0225
SCS-RPIM-4d 1.0176 1.0194 1.0203 1.0207 1.0210
FEM-T3 0.9982 1.0085 1.0128 1.0148 1.0156
Singular FEM-T6 1.0119 1.0208 1.0217 1.0218 1.0218
ST5-T3 1.0121 1.0192 1.0202 1.0209 1.0212

Table 17
Plate with an 60� inclined crack under tension: normalized KII with different meshes
and different schemes (reference solution is 1.0120).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 1.0010 1.0039 1.0059 1.0072 1.0077
SCS-RPIM-3d 1.0088 1.0101 1.0105 1.0107 1.0109
SCS-RPIM-3d2 1.0086 1.0109 1.0111 1.0113 1.0113
SCS-RPIM-2d 1.0144 1.0134 1.0128 1.0126 1.0126
SCS-RPIM-4d 1.0093 1.0100 1.0104 1.0106 1.0107
FEM-T3 0.9938 1.0009 1.0040 1.0056 1.0064
Singular FEM-T6 1.0026 1.0102 1.0118 1.0119 1.0119
ST5-T3 1.0096 1.0112 1.0115 1.0117 1.0118

Table 18
The comparison of strain energy (�10�6) and error for plate with an 60� inclined crack
under tension by between SCS-RPIM-3d2 and singular FEM-T6.

Node number SCS-RPIM-3d2 (error %) Singular FEM-T6 (error %)

1369 1.57446 (0.0306) 1.5869076 (0.0204)
3721 1.57480 (0.00902) 1.5873046 (0.00457)
7225 1.57488 (0.00394) 1.5873678 (0.00203)
11,881 1.57492 (0.00140) 1.5873928 (0.000762)
14,641 1.57493 (0.000763) 1.5874062 (0.000127)
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Fig. 21. Convergence rate of different methods for the plate with edge crack under
remote tension.
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Fig. 22. Convergence rate of different methods for the plate with edge crack under
shear.

Table 14
The comparison of strain energy (�10�6) and error for plate with a 45� inclined crack
under tension by between SCS-RPIM-3d2 and singular FEM-T6.

Node number SCS-RPIM-3d2 (error %) Singular FEM-T6 (error %)

1369 1.58709 (0.027) 1.5869076 (0.0342)
3721 1.58735 (0.00630) 1.5873046 (0.00916)
7225 1.58740 (0.00315) 1.5873678 (0.00518)
11,881 1.58742 (0.00189) 1.5873928 (0.00360)
14,641 1.58743 (0.00126) 1.5874062 (0.00276)

Table 15
Plate with an 60� inclined crack under tension: strain energy with different meshes
and different schemes (�10�6) (reference solution is 1.574942 � 10�6).

Mesh 37 � 37 61 � 61 85 � 85 109 � 109 121 � 121

CS-RPIM 1.57272 1.57362 1.57400 1.57422 1.57429
SCs-RPIM-3d 1.57478 1.57483 1.57486 1.57488 1.57489
SCS-RPIM-3d2 1.57446 1.57480 1.57488 1.57492 1.57493
SCS-RPIM-2d 1.57523 1.57511 1.57506 1.57504 1.57503
SCS-RPIM-4d 1.57466 1.57476 1.57481 1.57484 1.57486
FEM-T3 1.57228 1.57334 1.57380 1.57405 1.57414
Singular FEM-

T6
1.57462 1.57487 1.57491 1.57493 1.57494

ST5-T3 1.574982 1.574957 1.574955 1.574955 1.574955
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tal line in the center of the plate. The crack length is 2a ¼
ffiffiffi
2
p

mm.
In this simulation, two values of h, 45� and 60� will be used. The
Young’s modulus of the plate is E = 30 MPa and the Poisson’s ratio
t = 0.3. The tension load r = 1 Pa is applied on the top edge. The
plate is assumed to be under plane strain condition.

We discretize the model with different mesh densities (37 � 37,
61 � 61, 85 � 85, 109 � 109 and 121 � 121). The mesh of the
model is shown in Fig. 14. The reference solution of strain energy
and SIFs are calculated by singular FEM with 766,305 and
578,582 nodes for h = 45�, 60�, respectively. The results are plotted
in Figs. 15–20 and listed in Tables 11–13 and 15–17. Note that the
computed KI, KII are normalized by KIr, KIIr given by Eq. (44)

K Ir ¼ K I0 cos2 h

K IIr ¼ K I0 cos h sin h
ð44Þ

where KI0 is the stress intensity factor of pure Mode I crack, when
h = 0�.
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Fig. 23. Convergence rate of different methods for an 45� inclined crack in
rectangular plate under tension.
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Fig. 24. Convergence rate of different methods for an 60� inclined crack in
rectangular plate under tension.
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Fig. 25. Efficiency of different methods for the plate with edge crack under remote
tension.
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K I0 ¼ r
ffiffiffiffiffiffi
pa
p

ð45Þ

From the results, we can see CS-RPIM and different schemes of
singular CS-RPIM provide more accurate solutions than FEM-T3.
SCS-RPIM-2d provides a very tight upper bound solution and the
other methods give lower bound solutions in strain energy norm.

In addition, the error of the strain energy to the reference solu-
tion is listed in Tables 14 and 18. From the tables, we can see that
SCS-RPIM-3d2 has a more accurate strain energy compared with
singular FEM-T6 when h = 45�, but when h = 60� the results are less
accurate than singular FEM-T6.
Table 19
Time cost of different methods for plates with an edge crack problem with different mesh

Mesh 21 � 41 31 � 61 41 � 81

CS-RPIM 0.09741 0.39404 1.06010
SCs-RPIM-3d 0.10116 0.39899 1.07329
SCS-RPIM-3d2 0.09837 0.39795 1.22076
SCS-RPIM-2d 0.10104 0.39939 1.07254
SCS-RPIM-4d 0.09899 0.39428 1.06177
FEM-T3 0.03758 0.14104 0.38937
Singular FEM-T6 0.08447 0.95402
ST5-T3 0.03884 0.14268 0.38366
5.4. Convergence rate and efficiency of SCS-RPIM

To investigate convergence and efficiency of the present meth-
ods, the first example is employed with different mesh densities.
The convergence rates of different methods adopted in this work
are calculated and compared. To investigate quantitatively the
numerical results, the error indicator in energy norm is defined
as follows:

Ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUnum � Uref j

Uref

s
ð46Þ
densities (the time cost is the average value of ten times calculation).

51 � 101 61 � 121 71 � 141 81 � 161

2.37530 4.63882 8.50523 14.7457
2.39860 4.71257 8.67087 14.6700
2.72114 5.24141 9.98416 16.4369
2.40030 4.76836 8.84753 14.5232
2.38649 4.63925 8.57171 14.5967
0.79852 1.52512 2.59908 4.31259

4.04367 12.1366
0.80944 1.54554 2.63865 4.28795



Table 20
Condition number of different methods for plates with an edge crack under tension with different mesh densities (�105).

Mesh 21 � 41 31 � 61 41 � 81 51 � 101 61 � 121 71 � 141

CS-RPIM 2.0375 4.5514 8.0900 12.6664 18.2907 24.9699
SCs-RPIM-3d 3.6481 8.0913 14.3379 22.4105 32.3269 44.1000
SCS-RPIM-3d2 760.41 5147.4 19066.6 51664.4 115533 226830
SCS-RPIM-2d 3.3651 7.4520 13.1953 20.6154 29.7288 40.5475
SCS-RPIM-4d 3.8887 8.6264 15.2873 23.8955 34.4700 47.0246
FEM-T3 2.1457 4.8372 8.6338 13.5506 19.5984 26.7857
Singular FEM-T6 6.7329 26.5391 59.8711
ST5-T3 3.1140 6.9451 12.3352 19.3046 27.8696 38.0417

Table 21
The results of area integration, path integration and Gauss quadrature.

Shape function Area integration Path integration Gauss quadrature

@N
@x

@N
@y

Nnx Nny Nnx Nny

N1 �0.0625l �0.0625l �0.0625l �0.0625l �0.0621l �0.0621l
N2 0 0.0208l 0 0.0208l 0 0.0210l
N3 0.0208l 0 0.0208l 0 0.0210l 0
N4 0.1250l �0.0833l 0.1250l �0.0833l 0.1250l �0.0839l
N5 �0.0833l 0.1250l �0.0833l 0.1250l �0.0839l 0.1250l
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where Uref denotes the strain energy of reference solution and Unum

stands for the strain energy of numerical solution. The errors in
strain energy norm against h for four different models are plotted
in Figs. 21–24. h is the average distance between two adjacent
nodes. From these figures, it can be seen that SCS-RPIM-3d2 has
the highest convergence rate among the methods adopted in this
paper in all these four models. SCS-RPIM-2d has an excellent accu-
racy in energy norm in most of these four models. In the third and
fourth models, we use uneven meshes with more nodes near the
crack tip shown in Fig. 14. However, the dimension h is obtained
by the average distance of two adjacent nodes. So in these two mod-
els, we can have convergence rate even higher than 1.

The efficiency of different methods for the plate with edge crack
under remote tension is plotted in Fig. 25. From the figure, it can be
seen that SCS-RPIM-2d has the highest efficiency. The time cost for
each method is listed in Table 19, which is the average value of ten
times calculations on computer.

The condition number of the global stiffness matrix, cond(K), is
an important indicator for the numerical property of a numerical
method. When an iteration solver is used to solve the algebraic sys-
tem equation, it affects directly the number of iterations needed to
obtain a converged solution in the manner of niter /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
condðKÞ

p
. The

condition number of different methods for the first example
against node numbers is plotted in Fig. 26 and listed in Table 20.
As it can be seen, CS-RPIM has the smallest condition number
among all the methods in this work with the same mesh. SCS-
RPIM-3d, SCS-RPIM-2d and SCS-RPIM-4d perform better than sin-
gular FEM-T6 in condition number. However, SCS-RPIM-3d2
doesn’t perform well as it does in convergence rate and efficiency.
l

Fig. 27. Isosceles rectangular singular element around the crack tip.
6. Conclusion

In this work, a cell-based smoothed radial point interpolation
method (CS-RPIM) is developed and applied to the fracture prob-
lems. A five-node element is used to simulate the singular behavior
of stress and strain in the vicinity of the crack tip. Several different
schemes of SCS-RPIM are devised for strain smoothing operation
over the five-node element. The present methods are used to solve
some fracture problems and the results are compared with those of
FEM-T3 and singular FEM-T6. The comparison has demonstrated
the effectiveness of the proposed methods. Some conclusions can
be drawn as follows:
1. The number of the Gauss points affects the accuracy of the com-
puting, in this work the number of the Gauss points is set to 4.
Also, the domain independence of stress intensity factors (SIFs)
is observed.

2. CS-RPIM can have more accurate results than FEM-T3 with the
same mesh. Among the different singular schemes, SCS-RPIM-
2d generally provides very tight upper bound for strain energy
and SIFs. Other schemes generally give much tighter lower
bound solutions compared to the FEM-T3.

3. Among all the methods adopted in this paper, SCS-RPIM-3d2
has the highest convergence rate, SCS-RPIM-2d has the highest
efficiency, and CS-RPIM has the smallest condition number.

Appendix.

Owing to the 1=
ffiffiffi
r
p

singular strain in the crack tip, there is still
doubt whether it is feasible to apply the divergence theorem to the
area integration. In order to testify our results are accurate, in this
appendix we would like to compare the results of the path integra-
tion with the exact results of the area integration.

We use an isosceles rectangular singular element with the
dimension shown in Fig. 27. The shape functions along the edge
are as follows:

N1 ¼ 1þ 2
r
l
� 3

ffiffiffi
r
l

r
; N2 ¼ 2

r
l
�

ffiffiffi
r
l

r
; N4 ¼ �4

r
l
þ 4

ffiffiffi
r
l

r
ð47Þ
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Here r is the distance between the point and the crack tip. l is the
length of the edge originating from the crack tip.

The shape functions of the points inside the triangular element
are as follows:

N1 ¼ 1þ 2
xþ y

l
� 3

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

l

r

N2 ¼ 2
xþ y

l
�

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

l

r !
� x

xþ y

N3 ¼ 2
xþ y

l
�

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

l

r !
� y

xþ y

N4 ¼ �4
xþ y

l
þ 4

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

l

r !
� x

xþ y

N5 ¼ �4
xþ y

l
þ 4

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

l

r !
� y

xþ y

ð48Þ

Here (x, y) is the coordinate of the point inside the element. Then
the derivatives of the shape functions with respect to x, y are listed
as follows:

@N1

@x
¼ 2

l
� 3

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðxþ yÞ

p ;
@N1

@y
¼ 2

l
� 3

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðxþ yÞ

p
@N2

@x
¼ 2

l
� 2lðxþ yÞ � xl

2ðlðxþ yÞÞ3=2 ;
@N2

@y
¼ 1

2
xffiffi

l
p ðxþ yÞ�

3
2

@N3

@x
¼ 1

2
yffiffi

l
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2;

@N3
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l
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xffiffi
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p ;

@N5

@y
¼ �4

l
þ 4

2lðxþ yÞ � yl

2ðlðxþ yÞÞ3=2

ð49Þ

We integrate the derivatives over the triangular domain 1-4-5,
because the singularity only exists in 1-4-5 triangular domain. The
results are listed in the following table. Also the integration of the
shape functions along the boundary is calculated and compared.
The results of four Gauss quadrature points are also listed in Table
21 and compared. From Table 21, it can be seen that the integration
of the singular derivatives of the shape functions over the triangu-
lar domain are exactly the same with the results of the path inte-
gration of the shape functions multiplied by the unit outward
vector component along the boundary of the triangular domain.
That is to say that Divergence theorem is applicable for the singular
shape functions. The results of Gauss quadrature are very close to
the exact values.
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