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a b s t r a c t

Super-simple designs are useful in constructing codes and designs such as superimposed
codes and perfect hash families. In this article, we investigate the existence of a super-
simple (v, 5, 3) balanced incomplete block design and show that such a design exists if
and only if v ≡ 1, 5 (mod 20) and v ≥ 21 except possibly when v = 45, 65.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A group divisible design (or GDD) is a triple (X, G, B) which satisfies the following properties:

1. G is a partition of a set X (of points) into subsets called groups;
2. B is a set of subsets of X (called blocks) such that a group and a block contain at most one common point;
3. Every pair of points from distinct groups occurs in exactly λ blocks.

The group type (or type) of a GDD is themultiset {|G| : G ∈ G}.We shall use an ‘‘exponential’’ notation to describe types: so
type gu1

1 · · · guk
k denotes ui occurrences of gi, 1 ≤ i ≤ k, in themultiset. A GDDwith block sizes from a set of positive integers

K is called a (K , λ)-GDD. When K = {k}, we simply write k for K . When λ = 1, we simply write K -GDD. A (k, λ)-GDD with
group type 1v is called a balanced incomplete block design, denoted by (v, k, λ)-BIBD.

A design is said to be simple if it contains no repeated blocks. A design is said to be super-simple if the intersection of any
two blocks has at most two elements. When k = 3, a super-simple design is just a simple design. When λ = 1, the designs
are always super-simple. In this paper, when we talk about super-simple BIBDs, we usually mean the case that k ≥ 4 and
λ > 1.

Super-simple designswere introduced by Gronau andMullin [22]. The existence of super-simple designs is an interesting
extremal problem by itself, but there are also useful applications. For examples, such designs are used in constructing
perfect hash families [32] and coverings [9], in the construction of new designs [8] and in the construction of superimposed
codes [29]. There are other useful applications related to super-simple designs [25,19,33,7]. In statistical planning of
experiments, super-simple designs are the ones providing samples with maximum intersection as small as possible.
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It is well known that the following are the necessary conditions for the existence of a super-simple (v, k, λ)-BIBD:
1. v ≥ (k − 2)λ + 2;
2. λ(v − 1) ≡ 0 (mod k − 1);
3. λv(v − 1) ≡ 0 (mod k(k − 1)).

For the existence of super-simple (v, 4, λ)-BIBDs, the necessary conditions are known to be sufficient for λ ∈

{2, 3, 4, 5, 6, 8, 9} (see [6,13–16,34,12,28,22]). For arbitrary k and λ, the usually necessary conditions are asymptotically
sufficient (see [25,23,26]).

For the existence of super-simple (v, 5, λ)-BIBDs, the necessary conditions for λ = 2, 4, 5 are proved to be sufficient
with two exceptions and one possible exception. Gronau, Kreher, and Ling [21] solved the case of λ = 2 with 11 unsettled
values. Later on, these values were removed by Abel and Bennett [1], and Chen andWei [18]. The λ = 4, 5 cases were solved
by Chen and Wei [18,17]. We summarize these known results in the following theorem.

Theorem 1.1 ([18,17,21,1,20]). A super-simple (v, 5, λ)-BIBD exists for λ = 2, 4, 5 if and only if the following conditions are
satisfied:
1. λ = 2, v ≡ 0, 5 (mod 10) and v ≠ 5, 15;
2. λ = 4, v ≡ 0, 1 (mod 5) and v ≥ 15;
3. λ = 5, v ≡ 1 (mod 4) and v ≥ 17, except possibly when v = 21.

In this article, we investigate the existence of super-simple (v, 5, 3)-BIBDs. When k = 5 and λ = 3 the necessary
condition becomes v ≡ 1, 5 (mod 20) and v ≥ 21. We shall show that this necessary condition is also sufficient with two
possible exceptions. Specifically, we shall prove the following.

Theorem 1.2. A super-simple (v, 5, 3)-BIBD exists if and only if v ≡ 1, 5 (mod 20) and v ≥ 21 except possibly when
v = 45, 65.

Some recursive constructions used in this paper are listed in Section 2. Section 3 gives direct constructions which are
based on a computer search. The proof of Theorem 1.2 will be given in Section 4.

2. Recursive constructions

We shall use the following standard recursive constructions. The proofs of these constructions can be found in [14,12].

Construction 2.1 (Weighting). Let (X, G, B) be a super-simple GDD with index λ1, and let w : X → Z+
∪ {0} be a weight

function on X, where Z+ is the set of positive integers. Suppose that for each block B ∈ B , there exists a super-simple (k, λ2)-GDD
of type {w(x) : x ∈ B}. Then there exists a super-simple (k, λ1λ2)-GDD of type {


x∈Gi

w(x) : Gi ∈ G}.

Construction 2.2 (Breaking up Groups). If there exists a super-simple (k, λ)-GDD of type hu1
1 · · · hut

t and a super-simple (hi +

η, k, λ)-BIBD for each i (1 ≤ i ≤ t), then there exists a super-simple (
t

i=1 hiui + η, k, λ)-BIBD, where η = 0 or 1.

To present the next construction, we need the notation of a (v, w, k, λ)-IBIBD. An incomplete balanced incomplete block
design (v, w, k, λ)-IBIBD is a triple (V, H, B) which satisfies the following properties:
1. V is a v-set of points, H is a w-subset of V (called a hole) and B is a collection of k-subsets of V (called blocks);
2. |H ∩ B| ≤ 1 for all B ∈ B;
3. any two points of V appear either in H or in λ blocks of B exactly.

It is obvious that a (v, w, k, λ)-IBIBD is a (v, k, λ)-BIBD indeed when w ∈ {0, 1}. So, the following construction can be
considered as a generalization of Construction 2.2.

Construction 2.3 ([12] Filling in Holes). Suppose that there exists a super-simple (k, λ)-GDD of type h1h2 · · · ht , a super-simple
(hi + s, s, k, λ)-IBIBD for each i(1 ≤ i ≤ t − 1), and a super-simple (ht + s, k, λ)-BIBD, then there exists a super-simple
(
t

i=1 hi + s, k, λ)-BIBD.

A transversal design TDλ(k, n) is a (k, λ)-GDD of group type nk. When λ = 1, we simply write TD(k, n). A parallel class in
a design is a collection of blocks that partition the points of the design. If all the blocks of a design can be partitioned into
parallel classes we say that the design is resolvable. A resolvable TD is denoted by RTD.

It is well known that a RTD(k, n) is equivalent to a TD(k+1, n), and a TD(k, n) is equivalent to k−2mutually orthogonal
Latin squares (MOLS) of order n. For a list of lower bounds on the number of MOLS for all orders up to 10000 we refer to [3].
We have the following.

Lemma 2.4 ([3]).
1. A TD(q + 1, q) exists, consequently, a TD(k, q) exists for any positive integer k (k ≤ q + 1), where q is a prime power.
2. A TD(5, n) exists for all n and n ∉ {2, 3, 6, 10}.
3. A TD(6, n) exists for all n ≥ 5 and n ∉ {6, 10, 14, 18, 22}.
4. A TD(7, n) exists for all n ≥ 7 and n ∉ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}.



2398 K. Chen et al. / Discrete Applied Mathematics 161 (2013) 2396–2404

In this paper, we shall also make use of the following known results on GDDs and PBDs.

Lemma 2.5 ([2]). There exists a 5-GDD of type 4u for any u ≥ 5 and u ≡ 0, 1 (mod 5).

Lemma 2.6 ([4,31]). There exists a (v, {5, 6, 7, 8, 9}, 1)-PBD for any v ≥ 21 and v ∉ {22 − 24, 27 − 29, 32 − 34}.

An orthogonal array OAλ(t, k, n) is an k × λnt array over a n-set G, having the property that every t-tuple with entries
from G appears exactly λ times as a column in every t × λnt submatrix. The parameters λ and t are the index and the
strength of the orthogonal array, respectively. In this notation, if λ is omitted it is understood to be one, and if t is omitted
it is understood to be two. It is well known that an OAλ(k, n) is equivalent to a TDλ(k, n). An OAλ(t, k, n) is called r-simple
if any two different columns agree in less than r entries. Clearly, a 3-simple OAλ(k, n) leads to a super-simple TDλ(k, n). An
OAλ(t, k, n) is said to be completely reducible if it is the union of λ OA(t, k, n)s. We have the following.

Lemma 2.7 ([11]). If q is a prime power and t < q, then an OA(t, q + 1, q) exists. Moreover, if q ≥ 4 is a power of 2, then an
OA(3, q + 2, q) exists.

Lemma 2.8 ([24]). If an OA(t, k, n) exists, then there is also a completely reducible t-simple OAns(t − s, k − s, n) for every
non-negative integer s < t.

Corollary 2.9. There exists a super-simple TD3(5, n) for any n ∈ M = {4, 5, 16, 21, 25, 41, 61, 81, 101, 121}.

Proof. For n = 21, there exists an OA(3, 6, 21), see [27]. For each n ∈ M \ {21}, there exists an OA(3, 6, n) by Lemma 2.7.
Applying Lemma 2.8 with s = 1, we obtain completely reducible 3-simple OAn(5, n) for each n ∈ M , this leads immediately
to a 3-simple OA3(5, n), consequently, we get a super-simple TD3(5, n). �

3. Direct constructions

In this section, we shall use direct constructions to obtain super-simple (v, 5, 3)-BIBDs for some small values of v and
some super-simple (5, 3)-GDDs, which will be used as master designs or input designs in our recursive constructions. All of
these designs have been found after computer-assisted searches. In fact, most of them have cyclic groups of automorphism
of order v. So, they are cyclic designs. For a cyclic design, we just need to find base blocks and other blocks can be obtained
by developing with the automorphism.

The checking for super-simplicity can be done by a computer after developing the designs. But there aremore economical
ways to check the super-simplicity of cyclic designs. For example, suppose that a design is obtained by developing m base
blocks modulo v. In order to check whether the design is super-simple, we form the ten 3-subsets of each base block and
develop them modulo v. Thus we get a list of 10mv triples. If these 10mv triples are pairwise distinct, then the design is
super-simple. This criteria can be further reduced as follows. Let S = {b1, b2, b3}, b1 < b2 < b3, be a 3-set contained in a
base block. Instead of developing S modulo v we form the following three representatives of the orbit corresponding to S:

{b1 − bi, b2 − bi, b3 − bi}, i = 1, 2, 3.

We get a list of 30m triples in this way. It is easy to see that if these 30m triples are pairwise distinct, then the design is
super-simple. Considerations of this nature have been implemented in all of the computer searches. It should be mentioned
that the above approach of checking super-simplicity is essentially the same as in [10].

In most cases, we managed to find a multiplier or partial multiplier with an appropriate order so that the required
base blocks can be found in a shorter time. A method we used in computer program is applying multipliers of blocks.
Since our constructions are over Zv , we can use both the addition and the multiplication of Zv . We say that w ∈ Z∗

v is a
multiplier of the design, if for each base block B = {x1, x2, x3, x4, x5}, there exists some g ∈ Zv such that C = w · B + g =

{w · x1 + g, w · x2 + g, w · x3 + g, w · x4 + g, w · x5 + g} is also a base block. We say that w ∈ Z∗
v is a partial multiplier

of the design, if for each base block B ∈ M, where M is a subset of all the base blocks, there exists some g ∈ Zv such that
C = w · B + g is also a base block.

In the computer program, we first choose a (partial) multiplier w. Our experiences tell us that choosing a w which has
long orbits in the multiplication group of Zv usually gives better results. Then we start to find base blocks in the following
way. When a base block B is found, the algorithm requires that wB, w2B, . . . , wsB are also different base blocks, where
s is a positive number. If we can find all the base blocks in this way, then wi, 1 ≤ i ≤ s are multipliers of the design.
Otherwise, these are partial multipliers, and the algorithm tries to find the remaining base blocks. To decide the value of s
is also important for the success of the algorithm. In practice, we usually let s be as large as possible at the beginning. Then
the value of s is reduced if the search time is too long.

Lemma 3.1. There exists a super-simple (v, 5, 3)-BIBD for each v ∈ {21, 41, 61, 81}.

Proof. For v = 21, let the point set be Z21. The required base blocks are {0, 1, 2, 4, 16}, {0, 1, 5, 11, 13}, {0, 3, 7, 10, 16}.
Developing these base block modulo 21, we get a super-simple (21, 5, 3)-BIBD.
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For each v ∈ {41, 61, 81}, let the point set be Zv . With a computer program we found the required base blocks, which
are divided into two parts, P and R, where P consists of some base blocks with a partial multiplier m of order s, (i.e., each
base block of P has to be multiplied by mi for 0 ≤ i ≤ s − 1), and R is the set of the remaining base blocks. We list P,m, s
and R below. All base blocks are developed by mod v to form the set of blocks.

v = 41
P : {0, 1, 2, 7, 16}, m = 2, s = 3;
R : {0, 1, 13, 24, 34}, {0, 3, 6, 17, 25}, {0, 3, 10, 15, 35}.
v = 61
P : {0, 1, 2, 4, 21}, {0, 1, 8, 10, 16}, {0, 4, 11, 34, 50}, m = 13, s = 3;
R : ∅.
v = 81
P : {0, 1, 2, 23, 26}, m = 2, s = 7;
R : {0, 9, 18, 45, 70}, {0, 13, 41, 51, 80}, {0, 18, 31, 36, 41}, {0, 15, 34, 43, 69}, {0, 6, 19, 26, 60}. �

Lemma 3.2. There exists a super-simple (25, 5, 3)-BIBD.

Proof. Let the point set be Z25 and the required base blocks are listed below. All base block are developed by the
automorphism group α = (0 1 2 3 4)(5 6 7 8 9)(10 11 12 13 14)(15 16 17 18 19)(20 21 22 23 24).

{0, 1, 2, 6, 23}, {3, 5, 6, 7, 11}, {8, 10, 11, 12, 16}, {13, 15, 16, 17, 21}, {1, 18, 20, 21, 22},
{0, 1, 3, 11, 19}, {5, 6, 8, 16, 24}, {4, 10, 11, 13, 21}, {1, 9, 15, 16, 18}, {6, 14, 20, 21, 23},
{0, 9, 11, 16, 24}, {4, 5, 14, 16, 21}, {1, 9, 10, 19, 21}, {1, 6, 14, 15, 24}, {4, 6, 11, 19, 20},
{0, 5, 10, 15, 20}, {0, 6, 12, 18, 24}, {0, 7, 14, 16, 23}. �

Lemma 3.3. There exists a super-simple (v, 5, 3)-BIBD for each v ∈ M = {281, 381, 461}.

Proof. For each v ∈ M , we take Zv as the point set. Below are the required base blocks, each of which has to be multiplied
by mi, 0 ≤ i ≤ s − 1. All base blocks are developed by mod v.

v = 281:
{0, 6, 16, 26, 74}, {0, 1, 5, 11, 85}, {0, 3, 8, 15, 45}, {0, 1, 2, 4, 149}, {0, 11, 23, 77, 252},
{0, 2, 115, 173, 269},m = 32, s = 7.
v = 381:
{0, 158, 252, 286, 377}, {0, 17, 49, 293, 322}, {0, 1, 75, 77, 379}, {0, 65, 121, 249, 308},
{0, 81, 197, 323, 371}, {0, 54, 166, 300, 361}, {0, 2, 161, 175, 348}, {0, 8, 26, 157, 207},
{0, 39, 162, 214, 298}, {0, 42, 49, 150, 318}, {0, 28, 106, 127, 141}, {0, 85, 110, 137, 302},
{0, 185, 306, 321, 376}, {0, 8, 67, 156, 238}, {0, 6, 141, 144, 150}, {0, 6, 217, 283, 370},
{0, 128, 193, 259, 353}, {0, 185, 220, 318, 362}, {0, 5, 52, 215, 293},m = 19, s = 3.
v = 461:
{0, 1, 2, 4, 8}, {0, 1, 11, 19, 36}, {0, 5, 29, 64, 77},m = 14, s = 23. �

The following super-simple GDDs will be used as master designs or input designs in our recursive constructions.

Lemma 3.4. There exists a super-simple (5, 3)-GDD of group type 4t for any t ∈ T = {6, 11, 16, 21, 31}.

Proof. For each t ∈ T , we construct a super-simple (5, 3)-GDD of group type 4t . Let the point set be Z4t and let the group
set be {{i, i + t, i + 2t, i + 3t} : 0 ≤ i ≤ t − 1}. The required base blocks are listed below. All base blocks are developed by
mod 4t .

t = 6, {0, 1, 2, 5, 9}, {0, 1, 11, 15, 22}, {0, 2, 11, 16, 19}.
t = 11, {0, 13, 26, 29, 34}, {0, 9, 18, 24, 41}, {0, 5, 8, 9, 25}, {0, 17, 18, 30, 37}, {0, 2, 25, 39, 40},
{0, 2, 6, 34, 36}.

For t = 16, 21, 31, as before, the base blocks are divided into two parts, P and R, such that each of the base blocks of P
has to be multiplied bymi for 0 ≤ i ≤ s − 1.

t = 16
P: {0, 1, 2, 4, 35},m = 3, s = 4;
R: {0, 7, 21, 28, 47}, {0, 11, 22, 24, 39}, {0, 13, 14, 25, 33}, {0, 20, 24, 46, 54}, {0, 4, 12, 19, 25}.
t = 21
P: {0, 1, 2, 10, 46}, {0, 1, 5, 12, 32}, {0, 5, 11, 35, 69}, {0, 14, 27, 33, 55},m = 25, s = 3;
R : ∅.
t = 31
P: {0, 1, 2, 4, 34}, {0, 1, 12, 47, 61}, {0, 2, 6, 13, 58}, {0, 3, 27, 44, 61}, {0, 6, 14, 22, 43},
{0, 8, 17, 36, 59},m = 5, s = 3;
R : ∅. �
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Lemma 3.5. There exists a super-simple (5, 3)-GDD of group type 5t for any t ∈ T = {9, 13, 17, 29}.

Proof. For each t ∈ T , we construct a super-simple (5, 3)-GDD of group type 5t . Let the point set be Z5t and let the group
set be {{i, t + i, 2t + i, 3t + i, 4t + i} : 0 ≤ i ≤ t − 1}.

When t = 9, the required design is generated by developing the following base blocks modulo 45.

{0, 15, 16, 21, 44}, {0, 7, 19, 30, 32}, {0, 8, 20, 37, 39}, {0, 3, 5, 10, 24},
{0, 1, 8, 12, 42}, {0, 3, 13, 17, 23}.

When t ∈ {13, 17, 29}, below are the required base blocks, each of which has to be multiplied by mi, 0 ≤ i ≤ s − 1. All
the base blocks are then developed by mod 5t .

t = 13, {0, 1, 2, 4, 60}, {0, 2, 9, 14, 44}, {0, 3, 22, 37, 43},m = 16, s = 3.
t = 17, {0, 1, 56, 64, 83}, {0, 2, 33, 40, 72}, {0, 5, 38, 61, 79}, {0, 12, 18, 54, 65}, {0, 14, 15, 50, 76},
{0, 25, 37, 77, 82},m = 13, s = 2;
t = 29, {0, 1, 2, 4, 26}, {0, 2, 12, 22, 33}, {0, 3, 13, 62, 82},m = 4, s = 7. �

Lemma 3.6. There exists a super-simple (5, 3)-GDD of group type 8t for any t ∈ T = {6, 11}.

Proof. For each t ∈ T , we construct a super-simple (5, 3)-GDD of group type 8t . Let the point set be Z8t and let the group set
be {{i, t + i, 2t + i, . . . , 7t + i} : 0 ≤ i ≤ t − 1}. The required base blocks are listed below. All the base blocks are developed
by mod 8t .

t = 6, {0, 11, 16, 31, 39}, {0, 2, 13, 21, 23}, {0, 9, 10, 13, 26}, {0, 21, 22, 29, 44}, {0, 2, 9, 43, 47},
{0, 3, 17, 32, 37}.
t = 11, 3i

{0, 1, 2, 4, 19}, 0 ≤ i ≤ 6, {0, 32, 64, 72, 84}, {0, 19, 29, 60, 68}, {0, 16, 40, 45, 53},
{0, 13, 29, 30, 78}, {0, 2, 26, 32, 62}. �

Lemma 3.7. There exists a super-simple (5, 3)-GDD of group type (20)t for each t ∈ {7, 8}.

Proof. For each t ∈ {7, 8}, let the point set be Z20t and let the group set be {{i, t + i, . . . , 19t + i} : 0 ≤ i ≤ t − 1}. Below
are the required base blocks, which are divided into two parts, P and R, such that each of the base blocks of P has to be
multiplied bymi for 0 ≤ i ≤ s − 1. All the base blocks are developed by mod 20t .

t = 7
P: {0, 1, 2, 52, 124}, {0, 1, 5, 53, 100}, {0, 2, 5, 62, 88}, {0, 4, 13, 43, 110}, {0, 6, 31, 67, 78},
{0, 55, 80, 86, 124},m = 19, s = 3;
R: ∅.
t = 8
P: {0, 2, 6, 11, 15}, {0, 5, 11, 30, 63}, {0, 10, 27, 44, 109},m = 7, s = 4;
R: {0, 3, 22, 103, 109}, {0, 31, 81, 83, 157}, {0, 20, 58, 102, 159}, {0, 4, 35, 53, 122}, {0, 87, 98, 99, 100},
{0, 20, 43, 66, 134}, {0, 31, 60, 67, 146}, {0, 28, 85, 90, 139}, {0, 7, 14, 27, 37}. �

4. The proof of Theorem 1.2

In this section, we shall complete the proof of Theorem 1.2. We shall divide it into two cases, v ≡ 1 (mod 20) and
v ≡ 5 (mod 20).

Case 1: v ≡ 1 (mod 20)
In this case, we will prove that there exists a super-simple (v, 5, 3)-BIBD for any v ≡ 1 (mod 20) and v ≥ 21. Let a, b be

integers and let [a, b]120 be the set of positive integers v such that v ≡ 1 (mod 20) and a ≤ v ≤ b.

Lemma 4.1. There exists a super-simple (5, 3)-GDD of group type (20)t for any t ∈ T = {5, 6, 9, 10, 11, 13}.

Proof. For each t ∈ {5, 9, 13}, starting from a super-simple (5, 3)-GDD of group type 5t coming from Corollary 2.9 and
Lemma 3.5, applying Construction 2.1 with a TD(5, 4) coming from Lemma 2.4, we obtain a super-simple (5, 3)-GDD of
group type (20)t .

For each t ∈ {6, 11}, starting from a super-simple (5, 3)-GDD of group type 4t (from Lemma 3.4) and applying
Construction 2.1 with a TD(5, 5) coming from Lemma 2.4, a super-simple (5, 3)-GDD of group type (20)t is obtained.

For t = 10, starting from a 5-GDD of group type 410 coming from Lemma 2.5 and applying Construction 2.1 with a super-
simple (5, 3)-GDD of type 55 coming from Corollary 2.9, a super-simple (5, 3)-GDD of group type (20)t is obtained. �

Lemma 4.2. There exists a super-simple (v, 5, 3)-BIBD for any v ∈ M = [101, 261]120.
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Proof. For v = 241, starting from a super-simple (5, 3)-GDD of group type 86 coming from Lemma 3.6 and applying
Construction 2.1 with a TD(5, 4) (from Lemma 2.4), we obtain a super-simple (5, 3)-GDD of group type (40)6. Since there
exists a super-simple (40+ 1, 5, 3)-BIBD from Lemma 3.1, applying Construction 2.2 with η = 1, we obtain a super-simple
(241, 5, 3)-BIBD.

For each other v ∈ M , we can write v = 20t + 1, where t ∈ {5, 6, 7, 8, 9, 10, 11, 13}. There exists a super-simple (5, 3)-
GDD of group type (20)t from Lemmas 3.7 and 4.1. Since there exists a super-simple (20+ 1, 5, 3)-BIBD (from Lemma 3.1),
applying Construction 2.2 with η = 1, we obtain a super-simple (20t + 1, 5, 3)-BIBD. �

Lemma 4.3. There exists a super-simple (v, 5, 3)-BIBD for any v ∈ M = [301, 481]120 \ {381, 461}.

Proof. For v ∈ {301, 321, 401, 421}, we can write v = 20t + 1, where t ∈ {15, 16, 20, 21}. Starting from a 5-GDD of group
type 4t (from Lemma 2.5) and applying Construction 2.1 with a super-simple (5, 3)-GDD of type 55 (from Corollary 2.9),
we obtain a super-simple (5, 3)-GDD of group type (20)t . Since there exists a super-simple (20 + 1, 5, 3)-BIBD from 3.1,
applying Construction 2.2 with η = 1, we obtain a super-simple (v, 5, 3)-BIBD.

For v = 341, 361, starting from a super-simple (5, 3)-GDD of group type 517 or 59 (from Lemma 3.5) and applying
Construction 2.1 with weight 4 or 8, respectively, we obtain a super-simple (5, 3)-GDD of group type (20)17 or (40)9. Here,
the input design TD(5, 4) and TD(5, 8) both come from Lemma 2.4. Since there exist a super-simple (20 + 1, 5, 3)-BIBD
and a super-simple (40 + 1, 5, 3)-BIBD from Lemma 3.1, applying Construction 2.2 with η = 1, we obtain a super-simple
(341, 5, 3)-BIBD and a super-simple (361, 5, 3)-BIBD.

For v = 441, 481, starting from a super-simple (5, 3)-GDD of group type 811 or 46 (from Lemmas 3.6 or 3.4), respectively,
and applying Construction 2.1 with a weight 5 or 20, respectively, we obtain a super-simple (5, 3)-GDD of group type
(40)11 or (80)6. Here, the input designs TD(5, 5) and TD(5, 20) both come from Lemma 2.4. Since there exist a super-simple
(40 + 1, 5, 3)-BIBD and a super-simple (80 + 1, 5, 3)-BIBD (from Lemma 3.1), applying Construction 2.2 with η = 1, we
obtain a super-simple (441, 5, 3)-BIBD and a super-simple (481, 5, 3)-BIBD. �

Lemma 4.4. There exists a super-simple (v, 5, 3)-BIBD for any v ∈ M = [501, 601]120.

Proof. By removing 5− a points from the last group of a TD(6, 5), we get a {5, 6}-GDD of group type 55a1, where a ∈ [0, 5].
Starting from this GDD and applying Construction 2.1 with weight 20, we obtain a super-simple (5, 3)-GDD of group type
(100)5(20a)1. Here, the input super-simple (5, 3)-GDD of group types (20)5 and (20)6 both come from Lemma 4.1. Since
there exist a super-simple (100 + 1, 5, 3)-BIBD from Lemma 4.2 and a super-simple (20a + 1, 5, 3)-BIBD from Lemma 3.1,
applying Construction 2.2 we obtain a super-simple (500 + 20a + 1, 5, 3)-BIBD. It is easy to calculate that for each v ∈ M ,
we can write v = 500 + 20a + 1, where a ∈ [0, 5]. �

Lemma 4.5. There exists a super-simple (v, 5, 3)-BIBD for any v ∈ {621, 641, 661, 681}.

Proof. For v = 621 or 661, starting from a super-simple (5, 3)-GDD of group type 431 or 411 (from Lemma 3.4) and
applying Construction 2.1 with weight 5 or 15 respectively, we get a super-simple (5, 3)-GDD of group type (20)31 or
(60)11 respectively. Here, the used TD(5, 5) and TD(5, 15) both come from Lemma 2.4. Since there exist a super-simple
(20+ 1, 5, 5)-BIBD and a super-simple (60+ 1, 5, 3)-BIBD (from Lemma 3.1), a super-simple (621, 5, 5)-BIBD and a super-
simple (661, 5, 3)-BIBD are obtained by Construction 2.2.

For v = 641, starting from a super-simple (5, 3)-GDD of group type (20)8 from Lemma 3.7 and applying Construction 2.1
with a TD(5, 4), we get a super-simple (5, 3)-GDD of group type (80)8. Since there exists a super-simple (80+1, 5, 5)-BIBD
from Lemma 3.1, a super-simple (641, 5, 5)-BIBD is obtained by Construction 2.2.

For v = 681, starting from a super-simple (5, 3)-GDD of group type 517 (from Lemma 3.5) and applying Construction 2.1
with a TD(5, 8), we get a super-simple (5, 3)-GDD of group type (40)17. Since there exists a super-simple (40+1, 5, 5)-BIBD
from Lemma 3.1, applying Construction 2.2, we obtain a super-simple (681, 5, 5)-BIBD. �

Theorem 4.6. There exists a super-simple (v, 5, 3)-BIBD for any v ≡ 1 (mod 20) and v ≥ 21.

Proof. For v ∈ [21, 681]120, the desired designs are given in Lemmas 3.1, 3.3 and 4.2–4.5.
For v ≥ 700 and v ≡ 1 (mod 20), we can write v = 20u + 1, where u ≥ 35. Starting from a (u, {5, 6, 7, 8, 9}, 1)-PBD

(from Lemma 2.6), applying Construction 2.1 with weight 20, we obtain a super-simple (5, 3)-GDD of type (20)u. Here, the
input super-simple (5, 3)-GDDs of types (20)t with t ∈ {5, 6, 7, 8, 9} come from Lemmas 3.7 and 4.1. Since there exists a
super-simple (20 + 1, 5, 3)-BIBD, a super-simple (v, 5, 3)-BIBD is obtained by Construction 2.2. �

Case 2: v ≡ 5 (mod 20)
In this case, we shall show that there exists a super-simple (v, 5, 3)-BIBD for any v ≡ 5 (mod 20) and v ≥ 25 except

possibly when v = 45, 65.

Lemma 4.7. There exists a super-simple (21, 5, 5, 3)-IBIBD.
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Proof. We first construct a special super-simple (16, 4, 3)-BIBD over Z16. The blocks are listed below, which are partitioned
into 5 classes C1, C2, C3, C4, C5 such that each point occurs in exactly 3 times in each class.

Let H = {∞1, ∞2, ∞3, ∞4, ∞5}, V = Z16 ∪ H and B = {B ∪ {∞i} : B ∈ Ci, i = 1, 2, . . . , 5}. It is readily checked that
(V, H, B) is a super-simple (21, 5, 5, 3)-IBIBD.

C1: {0, 1, 2, 3}, {0, 4, 8, 12}, {0, 5, 10, 15}, {1, 4, 11, 14}, {1, 5, 9, 13}, {2, 6, 10, 14},
{2, 7, 8, 13}, {3, 7, 11, 15}, {3, 6, 9, 12}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15},

C2: {0, 1, 4, 5}, {0, 2, 8, 10}, {0, 3, 12, 15}, {1, 2, 13, 14}, {1, 3, 9, 11}, {2, 3, 6, 7},
{4, 6, 12, 14}, {4, 7, 8, 11}, {5, 6, 9, 10}, {5, 7, 13, 15}, {8, 9, 12, 13}, {10, 11, 14, 15},

C3: {0, 1, 6, 7}, {0, 2, 9, 11}, {0, 3, 13, 14}, {1, 2, 12, 15}, {1, 3, 8, 10}, {2, 3, 4, 5},
{4, 6, 13, 15}, {4, 7, 9, 10}, {5, 6, 8, 11}, {5, 7, 12, 14}, {8, 9, 14, 15}, {10, 11, 12, 13},

C4: {0, 4, 9, 13}, {0, 6, 8, 14}, {0, 7, 11, 12}, {1, 5, 8, 12}, {1, 6, 10, 13}, {1, 7, 9, 15},
{2, 4, 10, 12}, {2, 5, 9, 14}, {2, 6, 11, 15}, {3, 4, 8, 15}, {3, 5, 11, 13}, {3, 7, 10, 14},

C5: {0, 5, 11, 14}, {0, 6, 9, 15}, {0, 7, 10, 13}, {1, 4, 10, 15}, {1, 6, 11, 12}, {1, 7, 8, 14},
{2, 4, 11, 13}, {2, 5, 8, 15}, {2, 7, 9, 12}, {3, 4, 9, 14}, {3, 5, 10, 12}, {3, 6, 8, 13}. �

Lemma 4.8. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {85, 165, 245, 485, 565, 645, 965}.

Proof. For v = 85, using a super-simple (5, 3)-GDD of type (16)5 coming from Corollary 2.9, a super-simple (21, 5, 5, 3)-
IBIBD (from Lemma 4.7) and a super-simple (21, 5, 3)-BIBD (from Lemma 3.1), and applying Construction 2.3, we obtain a
super-simple (85, 5, 3)-BIBD.

For other v ∈ M , we can write v = 16t +5, t ∈ {10, 15, 30, 35, 40, 60}. There exists a 5-GDD of type 4t from Lemma 2.5.
Applying Construction 2.1with a super-simple (5, 3)-GDDof type 45 fromCorollary 2.9, we get a super-simple (5, 3)-GDDof
type (16)t . Since there exist a super-simple (21, 5, 5, 3)-IBIBD (from Lemma 4.7) and a super-simple (21, 5, 3)-BIBD (from
Lemma 3.1), applying Construction 2.3, we obtain a super-simple (v, 5, 3)-BIBD. �

Lemma 4.9. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {105, 205, 305, 405, 505, 605}.

Proof. For each v ∈ M , we can write v = 5g , g ∈ {21, 41, 61, 81, 101, 121}. Using a super-simple (5, 3)-GDD of type g5

(from Corollary 2.9) and a super-simple (g, 5, 3)-BIBD (from Theorem 4.6), and applying Construction 2.2 with η = 0, we
get a super-simple (v, 5, 3)-BIBD. �

Lemma 4.10. There exists a super-simple (v, 5, 3)-BIBD for v ∈ {125, 145, 225, 265, 765, 865}.

Proof. For v = 125, using a super-simple (5, 3)-GDD of type (25)5 (from Corollary 2.9) and a super-simple (25, 5, 3)-BIBD
(from Lemma 3.2), and applying Construction 2.2 with η = 0, we get a super-simple (125, 5, 3)-BIBD.

For v = 145. A {5, 6}-GDD of type 66 can be obtain by removing a block from a TD(6, 7) (from Lemma 2.4). Applying
Construction 2.1withweight 4, we get a super-simple (5, 3)-GDD of type (24)6, here the required super-simple (5, 3)-GDDs
of types 45 and 46 come from Corollary 2.9 and Lemma 3.4 respectively. Since there exists a super-simple (25, 5, 3)-BIBD,
applying Construction 2.2 with η = 1, we obtain a super-simple (145, 5, 3)-BIBD.

For v ∈ {225, 765}, we write v = 45m,m ∈ {5, 17}. Starting from a super-simple (5, 3)-GDD of type 59 coming from
Lemma 3.5, applying Construction 2.1 with a TD(5,m) (from Lemma 2.4), we get a super-simple (5, 3)-GDD of type (5m)9.
Since there exists a super-simple (5m, 5, 3)-BIBD (from Lemmas 3.2 or 4.8), applying Construction 2.2 with η = 0, a super-
simple (v, 5, 3)-BIBD is obtained.

For v = 265, by Lemma 2.4 there exists a RTD(6, 11). Taking a parallel class as groups we can get a {6, 11}-GDD of type
611. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD of type (24)11, here the required super-
simple (5, 3)-GDDs of types 46 and 411 come from Lemma 3.4. Since there exists a super-simple (25, 5, 3)-BIBD, applying
Construction 2.2 with η = 1, a super-simple (265, 5, 3)-BIBD is obtained.

For v = 865. Using a super-simple (5, 3)-GDD of type 46 from Lemma 3.4, and applying Construction 2.1with a TD(5, 36)
(from Lemma 2.4), we obtain a super-simple (5, 3)-GDD of type (144)6. Since there exists a super-simple (145, 5, 3)-BIBD
from above, applying Construction 2.2 with η = 1, we obtain a super-simple (865, 5, 3)-BIBD. �

Lemma 4.11. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {185, 285, 345, 365}.

Proof. For v = 185. A {5, 6}-GDD of type 5861 is given in [30]. Applying Construction 2.1 with weight 4, we get a super-
simple (5, 3)-GDDof type (20)8(24)1, here the required super-simple (5, 3)-GDDs of types 45 and46 come fromCorollary 2.9
and Lemma 3.4 respectively. Since there exists a super-simple (21, 5, 3)-BIBD and a (25, 5, 3)-BIBD (from Theorem 4.6 and
Lemma 3.2), applying Construction 2.2 with η = 1, we obtain a super-simple (185, 5, 3)-BIBD.

For v = 285. Let (V, B) be a resolvable (65, 5, 1)-BIBD given in [5], which has 16 parallel classes P0, P1, . . . , P15. Let
X = {∞1, ∞2, ∞3, ∞4, ∞5, ∞6} and let V ′

= V ∪ X, G′
= {G : G ∈ P0 ∪ X}, B ′

= {B ∪ {∞i} : B ∈ Pi, i =

1, 2, . . . , 6} ∪ {B ∈ Pi : i = 7, . . . , 15}. Then (V ′, G′, B ′) is a {5, 6}-GDD of type 51361. Applying Construction 2.1 with
weight 4, we get a super-simple (5, 3)-GDD of type (20)13(24)1, where the required super-simple (5, 3)-GDDs of types 45

and 46 come from Corollary 2.9 and Lemma 3.4 respectively. Since there exist a super-simple (21, 5, 3)-BIBD and a super-
simple (25, 5, 3)-BIBD, applying Construction 2.2 with η = 1, a super-simple (285, 5, 3)-BIBD is obtained.
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For v = 365. Since there exists a resolvable (85, 5, 1)-BIBD coming from [5], using a similar method of the case of
v = 285, we can get a super-simple (365, 5, 3)-BIBD.

For v = 345. By Lemma 2.4, there exists a RTD(5, 16)(V, G, B) with 16 parallel classes P0, P1, . . . , P15. Let X =

{∞1, ∞2, ∞3, ∞4, ∞5, ∞6} and let V ′
= V ∪ X, G′

= {G : G ∈ P0 ∪ X}, B ′
= {B ∪ {∞i} : B ∈ Pi, i = 1, 2, . . . , 6} ∪ {B ∈

Pi : i = 7, . . . , 15} ∪ {B ∈ G}. Then (V ′, G′, B ′) is a {5, 6, 16}-GDD of type 51661. Using Construction 2.1 with weight 4 we
get a super-simple (5, 3)-GDD of type (20)16(24)1, here the input designs of super-simple (5, 3)-GDDs of types 45 and 46

come from Corollary 2.9 and Lemma 3.4 respectively. Since there exist a super-simple (21, 5, 3)-BIBD and a super-simple
(25, 5, 3)-BIBD, applying Construction 2.2 with η = 1, a super-simple (345, 5, 3)-BIBD is obtained. �

Lemma 4.12. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {325, 425, 525, 625, 725, 825, 925}.

Proof. For each v ∈ M , we can write v = 20n + 25, where n ∈ {15, 20, 25, 30, 35, 40, 45}. By removing n − 6 points
from the last group of a TD(6, n) coming from 2.4 we obtain a {5, 6}-GDD of type n561. Applying Construction 2.1 with
weight 4, we get a super-simple (5, 3)-GDD of type (4n)5(24)1, here the input super-simple (5, 3)-GDDs of types 45 and
46 come from Corollary 2.9 and Lemma 3.4 respectively. Since there exist a super-simple (4n + 1, 5, 3)-BIBD and a super-
simple (25, 5, 3)-BIBD (from Theorem 4.6 and Lemma 3.2 respectively), applying Construction 2.2 with η = 1, we obtain a
super-simple (v, 5, 3)-BIBD. �

Lemma 4.13. There exists a super-simple (v, 5, 3)-BIBD for v ∈ {385, 465, 665}.

Proof. For v = 385. By Lemma 2.4, there exists a RTD(6, 16), taking a parallel class as groups we can get a {6, 16}-GDD
of type 616. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD of type (24)16, here the input
super-simple (5, 3)-GDDs of types 46 and 416 come from Lemma 3.4. Since there exists a super-simple (25, 5, 3)-BIBD from
Lemma 3.2, applying Construction 2.2 with η = 1, a super-simple (385, 5, 3)-BIBD is obtained.

For v = 465. Deleting 10 points from the last group of a RTD(6, 21) (from Lemma2.4) and taking a parallel class as groups,
we can get a {5, 6, 11, 21}-GDD of type 611510. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD
of type (24)11(20)10, here the input super-simple (5, 3)-GDDs of type 4s, s ∈ {5, 6, 11, 21}, come from Corollary 2.9 and
Lemma 3.4. Since there exist a super-simple (21, 5, 3)-BIBD and a super-simple (25, 5, 3)-BIBD (from Theorem 4.6 and
Lemma 3.2 respectively), applying Construction 2.2 with η = 1, a super-simple (465, 5, 3)-BIBD is obtained.

For v = 665. Deleting 20 points from the last group of a RTD(6, 31) (from Lemma2.4) and taking a parallel class as groups,
we obtain a {5, 6, 11, 31}-GDD of type 611520. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD
of type (24)11(20)20, here the input super-simple (5, 3)-GDDs of type 4w, w ∈ {5, 6, 11, 31}, come from Corollary 2.9 and
Lemma 3.4. Since there exist a super-simple (21, 5, 3)-BIBD and a super-simple (25, 5, 3)-BIBD, applying Construction 2.2
with η = 1, a super-simple (665, 5, 3)-BIBD is obtained. �

Lemma 4.14. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {445, 545, 745, 845}.

Proof. For each v ∈ M , we canwrite v = 20m+24+1, wherem ∈ {21, 26, 36, 41}. Deletem−6 points from the last group
of a TD(6,m), we get a {5, 6}-GDD of typem561. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD
of type (4m)5(24)1, here the input super-simple (5, 3)-GDDs of types 45 and 46 come from Corollary 2.9 and Lemma 3.4
respectively. Since there exist a super-simple (25, 5, 3)-BIBD and a super-simple (4m + 1, 5, 3)-BIBD from Lemmas 3.2,
4.8–4.10, applying Construction 2.2 with η = 1, a super-simple (v, 5, 3)-BIBD is obtained. �

Lemma 4.15. There exists a super-simple (v, 5, 3)-BIBD for any v ∈ {705, 805, 905}.

Proof. For each v ∈ {705, 805, 905}, we can write v = 20n+ 105, where n ∈ {30, 35, 40}. By removing n− 26 points from
the last group of a TD(6, n) coming from 2.4, we obtain a {5, 6}-GDD of type n5(26)1. Applying Construction 2.1 with weight
4, we get a super-simple (5, 3)-GDD of type (4n)5(104)1, here the input super-simple (5, 3)-GDDs of types 45 and 46 come
from Corollary 2.9 and Lemma 3.4 respectively. Since there exist a super-simple (4n + 1, 5, 3)-BIBD and a super-simple
(105, 5, 3)-BIBD coming from Theorem 4.6 and Lemma 4.9, respectively, applying Construction 2.2 with η = 1 we get a
super-simple (v, 5, 3)-BIBD. �

Lemma 4.16. There exists a super-simple (945, 5, 3)-BIBD.

Proof. We first obtain a {5, 6}-GDD of type (40)5(36)1 by removing 4 points from the last group of a TD(6, 40). Applying
Construction 2.1 with 4, we get a super-simple (5, 3)-GDD of type (160)5(144)1, here the input super-simple (5, 3)-GDDs
of types 45 and 46 come from Corollary 2.9 and Lemma 3.4 respectively. Since there exists a super-simple (161, 5, 3)-BIBD
and a super-simple (145, 5, 3)-BIBD (from Theorem 4.6 and Lemma 4.10), applying Construction 2.2 with η = 1, we obtain
a super-simple (945, 5, 3)-BIBD. �

Lemma 4.17. There exists a super-simple (v, 5, 3)-BIBD for v ∈ M = {585, 685, 785, 885}.
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Proof. For each v ∈ M , we can write v = 20n + 85, where n ∈ {25, 30, 35, 40}. We obtain a {5, 6}-GDD of type n5(21)1 by
removing n − 21 points from the last group of a TD(6, n). Applying Construction 2.1 with weight 4, we get a super-simple
(5, 3)-GDD of type (4n)5(84)1, here the input super-simple (5, 3)-GDDs of types 45 and 46 come from Corollary 2.9 and
Lemma 3.4 respectively. Since there exist a super-simple (4n + 1, 5, 3)-BIBD and a super-simple (85, 5, 3)-BIBD (from
Theorem 4.6 and Lemma 4.8 respectively), applying Construction 2.2 with η = 1, we obtain a super-simple (v, 5, 3)-
BIBD. �

Theorem 4.18. There exists a super-simple (v, 5, 3)-BIBD for v ≡ 5 (mod 20) and v ≥ 25 except possibly when v = 45, 65.

Proof. For v ∈ [25, 965]520 \ {45, 65}, the associated super-simple designs are given in Lemma 3.2 and Lemmas 4.8–4.17.
For v ≡ 5 (mod 20) and v ≥ 985, it can be written as v = 20n + u + 1, where n ≥ 45, n ≡ 0 (mod 5) and

u + 1 ∈ {85, 105, 125, 145, 165}. By removing n − u/4 points from the last group of a TD(6, n), we can obtain a {5, 6}-
GDD of type n5(u/4)1. Applying Construction 2.1 with weight 4, we get a super-simple (5, 3)-GDD of type (4n)5u1, here the
input super-simple (5, 3)-GDDs of types 45 and 46 come from Corollary 2.9 and Lemma 3.4 respectively. Since there exist a
super-simple (4n+1, 5, 3)-BIBD and a super-simple (u+1, 5, 3)-BIBD (from Theorem 4.6 and Lemmas 4.8–4.10), applying
Construction 2.2 with η = 1, we obtain a super-simple (v, 5, 3)-BIBD. �

The proof of Theorem 1.2. The proof follows directly from Theorems 4.6 and 4.18. �
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