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Abstract—Low-density parity-check (LDPC) codes constructed
over the Galois field GF(q), which are also called nonbinary
LDPC codes, are an extension of binary LDPC codes with sig-
nificantly better performance. Although various kinds of low-
complexity quasi-optimal iterative decoding algorithms have been
proposed, the VLSI implementation of nonbinary LDPC decoders
has rarely been discussed due to their hardware unfriendly prop-
erties. In this brief, an efficient selective computation algorithm,
which totally avoids the sorting process, is proposed for Min–Max
decoding. In addition, an efficient VLSI architecture for a non-
binary Min–Max decoder is presented. The synthesis results are
given to demonstrate the efficiency of the proposed techniques.

Index Terms—Galois field, Min–Max decoding, nonbinary low-
density parity-check (LDPC) codes, VLSI.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were first in-
troduced by Gallager [1], along with several message-

passing decoding algorithms. It has been shown that binary
LDPC codes, when decoded using the belief-propagation de-
coding (BP) algorithm, can approach the capacity of the addi-
tive white Gaussian noise channel [2]. However, binary LDPC
codes start to show weakness when the code length is small
or when a high-order modulation is applied in communication
systems. It is shown in [3] that the performance of binary LDPC
codes can significantly be enhanced by a direct extension to
a higher order Galois field. For this class of LDPC codes,
the nonzero entries in the parity-check matrix H are directly
replaced by elements in a Galois field. In [4], it is also shown
that nonbinary LDPC codes have superior performance in the
presence of burst errors. Among various known structured or
nonstructured codes, irregular nonbinary LDPC codes were
proved to be the best performing LDPC codes [5].

A straightforward implementation of the BP algorithm to
decode nonbinary LDPC codes was proposed in [3]. The
computational complexity of the BP algorithm is dominated
by O(q2) sum and product operations for each check-node
processing, where q is the cardinality of the Galois field. The BP
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algorithm can also be implemented in the probability domain
using m-dimensional two-point fast Fourier transforms (FFT)
if the finite field is of characteristic two and order m [6].
Its complexity is dominated by O(q log2 q) sum and product
operations for each check-node processing. Although this im-
provement helps, the probability domain algorithm still needs
complicated operations, including multiplications. In [4], the
authors presented an algorithm that can remove the complicated
multiplications in FFT-BP. However, this approach requires lots
of exponential and logarithm operations, which are usually
implemented with high-complexity lookup tables (LUTs). It
would be impractical when the cardinality of the Galois field
is large.

BP decoding can also be implemented in the logarithmic do-
main. A log-BP and its simplified version, which can be named
max-log-BP, were presented in [7]. This log-BP decoding algo-
rithm does not require message multiplications. In addition, it
does not need normalization and has better numerical character-
istics compared with algorithms implemented in the probability
domain. The max-log-BP shows a degradation of 0.5 dB over
BP decoding for nonbinary LDPC codes based on GF(8) [7].
The computational complexity of these two decoding schemes
are both dominated by O(q2) sum and comparison operations.
The authors in [8] proposed an extended min-sum (EMS) de-
coding algorithm, which is also processed in the log-likelihood
ratio (LLR) domain. EMS decoding, whose complexity is
dominated by O(q log2 q) sum and comparison operations,
uses the incoming messages concerning only a part of the
Galois field during the check-node processing. Another log-
domain decoding algorithm, which has similar computational
complexity compared with EMS, was proposed in [9]. The
authors showed that their algorithm outperforms EMS decoding
in BER performance. Based on the method in [8], Min–Max
decoding was proposed in [10]. This decoding algorithm does
not need any sum operations during the check-node processing.
The computational complexity can be further reduced by using
the selecting algorithm proposed in [8].

Due to the inherent high complexity of nonbinary LDPC
decoding algorithms, the research on the VLSI implementation
of their decoders, which is crucial to real applications, is very
limited. A field-programmable gate array implementation based
on the decoding algorithm using FFT in the log domain was
proposed in [11]. In [12], a kind of VLSI decoder architecture
is proposed, which is based on the EMS decoding. In this
brief, an efficient architecture for decoders using the Min–Max
decoding algorithm is presented. A more hardware-friendly
algorithm is developed to perform the selective computation
part of Min–Max decoding.
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The remainder of this brief is organized as follows.
Section II introduces the Min–Max decoding algorithm for non-
binary LDPC codes. Section III discusses about the reformed
Min–Max computation algorithm and its VLSI implementa-
tion. The overall architecture of the decoder, as well as the
check- and variable-node processing units, will be illustrated in
Section IV. Finally, the conclusions are drawn in Section V.

II. MIN–MAX DECODING FOR NONBINARY LDPC CODES

Let GF(q) = {0, 1, . . . , q − 1} be the Galois field with q
elements. Let H be the q-ary check matrix with M rows and N
columns. The nonzero elements of H are selected from nonzero
symbols of GF(q). Let m(n) denotes a check node (variable
node) of H . M(n) is the set of neighboring check nodes
connected to a variable node n. N(m) is the set of neighboring
variable nodes connected to a check node m. Assume a is a
symbol in GF(q). Let Ln(a) be the a priori information of
the variable node n concerning the symbol a, and let Qn(a)
be the a posteriori information of the same symbol. Rm,n(a)
and Qm,n(a) are used to denote the message from check nodes
m to variable nodes n and the message from variable nodes n
to check nodes m concerning symbols a, respectively. Let cn

be a code symbol of a codeword, and let sn be the most likely
symbol for cn. The Min–Max decoding algorithm is given as
follows:

Min–Max decoding
Initialization:
Ln(a)=ln(Pr(cn =sn | channel)/Pr(cn =a | channel))
Qm,n(a) = Ln(a)
Iterations:
check-node processing
Rm,n(a)= min

(an′ )n′∈N(m)\{n}∈Am,n(a)
( max
n′∈N(m)\{n}

Qm,n′(an′))

Am,n(a) := {an′ |hm,na +
∑

n′∈N(m)\{n}
hm,n′an′ = 0}

variable-node processing
Q′

m,n(a) = Ln(a) +
∑

m′∈M(n)\{m}
Rm′,n(a)

Q′
m,n = mina∈GF(q) Q′

m,n(a)
Qm,n(a) = Q′

m,n(a) − Q′
m,n

Tentatively decoding:
Qn(a) = Ln(a) +

∑

m∈M(n)

Rm,n(a)

c̃n = arg min(Qn(a))
C = [ c̃0 c̃1 · · · c̃N−1 ].

For a better understanding of the preceding algorithm, it is
worth mentioning that Am,n(a) is a set of vectors that consist
of Galois field symbols. Each vector has N(m) − 1 Galois
field symbols, which satisfy the check equation specified in
the Min–Max decoding algorithm. If C is checked to be a
valid codeword or the maximum iteration number is reached,
the decoding process will be terminated. Otherwise, another
decoding iteration will be initiated. The check-node process-
ing, which dominates the overall decoding complexity, can
be implemented using a forward–backward method [10]. It is
important to note that all these messages passed between check
and variable nodes are always positive.

III. EFFICIENT IMPLEMENTATION OF THE

MIN–MAX COMPUTATION

The computational complexity of Min–Max decoding
using the standard implementation is dominated by O(q2) soft-
message comparisons. A selective implementation was pro-
posed in [10] to reduce this complexity by reducing the number
of symbols involved in the Min–Max computation, which is
given as follows:

f(a) = min
h′a′+h′′a′′=ha

a′,a′′∈GF(q)

(max (f ′(a′), f ′′(a′′) ) .

The most complex computation in this selective implemen-
tation is to find the q + 1 smallest ones among 2q values. A
sorting method has the complexity of O(q log2 q). To avoid
the sorting process, the authors in [10] proposed a method
that divides the 2q values into small subsets. However, this
algorithm transformation introduces lots of normalization oper-
ations that are computation hungry and, thus, is not suitable for
VLSI implementation. In the following, a simplified selecting
algorithm is proposed to make the algorithm more hardware
friendly.

A. Proposed Selecting Algorithm

Suppose totally K bits are used to represent an LLR message
and LLRV(j) is used to represent one of the 2q values. Let
LLRV(j)[K − 1] be the most significant bit (MSB) of message
LLRV(j). index and location are two data arrays with the
length of 2q. Since the messages passed in the Min–Max
decoder are all positive, the proposed selective algorithm will
scan from the MSB of 2q values involved in the Min–Max
computation. The location of the q + 1 smallest value will be
identified by the location of “1” in the location array. The
pseudocode describing the selecting algorithm is as follows:

selecting algorithm
for j = 2q − 1 to 0 begin

index(j) = 0;
location(j) = 0;

endfor
requestNum = q + 1;
tmpV = 0;
for i = K − 1 to 0 begin

zeroNum = 0;
for j = 2q − 1 to 0 begin

if (LLRV(j)[i] == 0 & index(j) == 0)
zeroNum + +;

endfor
if (zeroNum == requestNum) begin

for j = 2q − 1 to 0 begin
if (LLRV(j)[i] == 0 & index(j) == 0)

location(j) = 1;
endfor
break and terminate;

endif
if (zeroNum > requestNum) begin

for j = 2q − 1 to 0 begin
if (LLRV(j)[i] == 1 & index(j) == 0)
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Fig. 1. VLSI implementation of the selecting algorithm.

index(j) = 1;
endfor

endif
if (zeroNum < requestNum) begin

for j = 2q − 1 to 0 begin
if (LLRV(j)[i] == 0 & index(j) == 0)
begin

index(j) = 1;
location(j) = 1;

endif
endfor
requestNum = requestNum − zeroNum;
tmpV = tmpV + 2i;

endif
endfor.

It will take K cycles at most for the proposed algorithm
to find these q + 1 smallest values among 2q values if there
do exist such q + 1 values. When the decoding process is
converged (during the last decoding iterations), most of the
2q values are saturated. Under this condition, the number of
finally selected values will be smaller than q + 1, which can
significantly reduce the decoding complexity. To accommodate
this specific hardware situation, all the message values in LLRc,
which are illustrated in Fig. 4, should be initialized to tmpV to
ensure correct Min–Max computation.

B. Implementation of the Proposed Selecting Algorithm

The VLSI implementation of the proposed selecting algo-
rithm is shown in Fig. 1, where each message is stored in a
K-bit register. The comp module has two outputs, which will
be high when the corresponding condition listed in Fig. 1 is
satisfied. RNum is used to store the value of requestNum
specified in the proposed algorithm. The initial value of RNum
is q + 1 and will be overwritten by a new value if C1 is low. A
K-bit register will be used to store the tmpV value. The input
will be shifted into the register from the least significant bit. A
down counter, which is initialized to K, is used to facilitate the
Min–Max computing.

The zeroNum decoder computes the number of zero bits
among the incoming 2q inputs. The design of the zeroNum

Fig. 2. Architecture of the proposed zeroNum decoder.

Fig. 3. (a) Control logic for indexR(j). (b) Control logic for locR(j).

decoder could be complicated when the number of inputs is
large. Suppose the number of inputs is I , there are totally
2I different kinds of input combinations and I + 1 possible
output values (from 0 to I). Therefore, this decoder can be
implemented with combinational logic using various kinds of
logic simplification methods. This method is effective when the
number of inputs is small. For big I , it will be more efficient
to divide a big I into smaller groups, as shown in Fig. 2, where
I = I0 + I1 + · · · + Ip−1. These sub-zeroNum decoders are
constructed using the logic simplification method. For example,
when I is equal to 32, these inputs can be divided into five
groups with Ij = 7 (0 � j � 3) and I4 = 4. The gate count of
a zeroNum decoder with 32 inputs is about 240.

Two single-bit register arrays (indexR and locR) are used in
the proposed implementation of the selecting algorithm. The
control logic for indexR(j) and locR(j) is shown in Fig. 3. L(j)
is equal to LLRV(j)[K − 1 − i] at the ith cycle after initializa-
tion. Synthesis results show that, with SMIC 0.18-µm CMOS
process, the total gate count of the proposed implementation of
the selecting computation is 1.55k for q = 16 under a 200-MHz
clock speed. The complexity of the proposed selecting algo-
rithm is only related to q and the bit width of the message.

C. VLSI Architecture for the Min–Max Computation

The VLSI architecture of the Min–Max computation [10]
unit (MMCU) is shown in Fig. 4. The address generator mod-
ule is designed to generate message pairs participating in the
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Fig. 4. VLSI architecture of the MMCU.

Min–Max computation from LLR values that have just been
located. AddrMEM is a dual-in and dual-out memory used to
store the addresses of selected LLR values. The length of this
memory is q + 1. These addresses are Galois field symbols
related to corresponding LLR messages. At the positive edge
of the “over” signal, each value of LLRc will be initialized to
tmpV if C0 is high. Otherwise, all of them will be initialized to
K-bits 1.

The operation of the address generator can be divided into
two processes, namely, address mapping and address output.
The address-mapping algorithm is shown as follows:

address mapping algorithm
addr = 0; Ca = 0; Cb = 0; WRa = 0; WRb = q;
for i = 0 to q − 1 begin

if (locR(i) == 1) begin
AddrMEM(WRa) = addr;
Ca = Ca + 1; WRa + +;

endif
if (locR(q + i) == 1) begin

AddrMEM(WRb) = addr;
Cb = Cb + 1; WRb −−;

endif
addr + +;

endfor.

It is easy to see that the mapping process will take q cycles
in total. Ca and Cb are used to record the number of selected
LLR values in LLRa and LLRb, respectively. If either the first
q bits or the last q bits of locR are all zero when the selecting
algorithm is finished, the Min–Max computation process can
be terminated at once. The address output process will be
initiated once the mapping process is done. A pair of LLR
value addresses will appear at the output ports of AddrMEM at
each cycle. These addresses will be used to select proper LLR
values, which will engage in the Min–Max computation, from
LLRa and LLRb. LLRc is used to store the temporary Min–Max

Fig. 5. (a) Storage pattern of address memory units. (b) Read control of
address memory units.

computation results. One of the q LLR values from LLRc will
be selected to join the Min–Max computing using the write
address (WR_addr), which is generated using arithmetic over
the Galois field, as shown in Fig. 4. Totally, Ca × Cb cycles are
needed for the address output process. These LLR addresses
are stored in AddrMEM with the pattern shown in Fig. 5(a). A
simple finite-state machine is employed to control the value of
RDa and RDb, which are shown in Fig. 5(b).

The total cycles needed to finish a Min–Max computation are
N1 + q + Ca × Cb, where N1 is not greater than K. Synthesis
results show that, with SMIC 0.18-µm CMOS process, the total
gate count of the proposed MMCU is 5.5k at 200 MHz for q =
16 and K = 5. The LLR message registers occupy about 50%
of all the hardware resource.

IV. MIN–MAX DECODER ARCHITECTURE

A. CNU and VNU Architectures

The VLSI architecture of a check-node unit (CNU) used in
the Min–Max nonbinary LDPC decoder is just the same as
the proposed MMCU, except that LLRc is stored in message
memory such as on-chip synchronous dynamic random access
memory. The CUN will read and write the message memory
when performing the Min–Max computation. The variable-
node unit (VNU) architecture is an extension of that used
in binary LDPC decoders and can directly be implemented
according to the Min–Max decoding algorithm.

B. Overall Architecture of the Min–Max LDPC Decoder

Due to the high complexity of the Min–Max decoding al-
gorithm, it is unlikely that the decoder can be implemented in a
high level of parallelism. A partially parallel architecture, which
is shown in Fig. 6, is desirable for nonbinary Min–Max LDPC
decoder design.

There are p (p < M) CNUs and m (m < N) VNUs in the
proposed decoder architecture. The memory part of the pro-
posed decoder mainly consists three parts, namely, check-to-
variable message memory (CVM), variable-to-check message
memory (VCM), and Galois field symbol memory, which is
used to record all the nonzero elements of a nonbinary parity-
check matrix. The check-node processing will be performed
in a forward–backward fashion [10]. During the forward
step, which includes dc − 2 Min–Max computations, dc − 3



LIN et al.: EFFICIENT VLSI ARCHITECTURE FOR NONBINARY LDPC DECODERS 55

Fig. 6. Overall architecture of the Min–Max nonbinary LDPC decoder.

TABLE I
COMPARISONS BETWEEN DIFFERENT DECODING ALGORITHMS

temporary Min–Max computation messages and one updated
check-to-variable message will be generated and stored in
CVM. During the backward step, which includes 2(dc−2)
Min–Max computations, the remaining dc − 1 check-to-
variable messages will be computed using messages from both
CVM and VCM. The VNUs will compute updated variable-to-
check messages once all the check nodes have been processed.

C. Comparison With Other Decoding Algorithms

It would be meaningful to compare the implementation of
the Min–Max decoding algorithm with other approaches in [11]
and [12], which are based on FFT-BP and EMS algorithms,
respectively. The CNU complexity, which is dominated by
the implementation of the elementary computation such as the
Min–Max computing, is the bottleneck of the nonbinary LDPC
decoder. Thus, in Table I, we list the main hardware component
of the CNU for different algorithms, as well as the actual
operations performed by hardware. The table is based on GF(q)
and K-bit quantization assumption.

It is worth mentioning that the total gate count of the
zeroNum decoder and the control logic for indexR and locR
is estimated to be 29q. For the GF(64)-LDPC code used in

[12], the performance of the EMS algorithm is very close to
that of BP when nm is equal to 32. The estimated gate count
of these elementary implementations is also listed in Table I.
It can be found that the FFT-BP algorithm, which usually
needs more quantization bits than EMS and Min–Max, become
hardware demanding when q is large. The implementation
of the VNU based on FFT-BP also needs at least q LUTs
for computing log(x)-function, which will significantly cause
hardware overhead. When near-BP performance is required
(nm = 32 for q = 64), the CNU elementary part of EMS
and Min–Max approaches have similar hardware complexity.
However, the proposed design needs fewer comparisons than
that in [12], particularly when not so many iterations are
needed for decoding a codeword. For decoders based on the
EMS algorithm, messages received from the channel should
be presorted before being fed into the CNU. This will increase
the overall implementation complexity of the EMS algorithm.
The proposed implementation achieves a good tradeoff between
decoding performance, hardware cost, and power consumption.

V. CONCLUSION

This brief has presented an efficient algorithm that can
be used in the implementation of the Min–Max nonbinary
decoding algorithm. An original VLSI implementation of the
MMCU has been proposed. Under SMIC 0.18-µm CMOS
process, the total gate count of the proposed MMCU is 5.5k at
200 MHz with q = 16 using five-bit quantization. The check-
and variable-node processor unit architectures, as well as the
overall decoder architecture, have been discussed in detail. To
the best of our knowledge, this is the first VLSI implementation
of the MMCU.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capac-
ity approaching irregular low-density parity-check codes,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[3] M. Davey and D. J. C. Mackay, “Low-density parity check codes over
GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[4] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recoding,” IEEE Trans. Magn., vol. 39, no. 2,
pp. 1081–1087, Mar. 2003.

[5] D. J. C. Mackay, S. T. Wilsion, and M. Davey, “Comparison of construc-
tion of irregular Gallager codes,” IEEE Trans. Commun., vol. 47, no. 10,
pp. 1449–1454, Oct. 1999.

[6] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q),” in Proc. IEEE Inf. Theory Workshop, 2003, pp. 70–73.

[7] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding
of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. Commun., Paris,
France, Jun. 2004, pp. 772–776.

[8] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC
codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643,
Apr. 2007.

[9] C.-H. Liao, C.-Y. Wang, C.-H. Liu, and T.-D. Chiueh, “An O(q log q)
log-domain decoder for non-binary LDPC over GF(q),” in Proc. IEEE
APCCAS, Macao, China, Nov. 2008, pp. 1644–1647.

[10] V. Savin, “Min–Max decoding for non binary LDPC codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008,
pp. 960–964.

[11] C. Spagnol, E. Popovici, and W. Marnane, “FPGA implementations of
LDPC over GF(2m) decoders,” in Proc. IEEE SiPS, 2007, pp. 273–278.

[12] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Architec-
ture of a low-complexity non-binary LDPC decoder for high order fields,”
in Proc. IEEE ISCIT , Sydney, Australia, Oct. 2007, pp. 1201–1206.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


