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have ���� � ��, � � � � � . This implies that the diagonal elements
of �� are nondecreasing (more precisely, stay the same inside a block,
but increase from a block to the next).
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Downlink Throughput Maximization for OFDMA Systems
With Feedback Channel Capacity Constraints

Chen Chen, Lin Bai, Bo Wu, and Jinho Choi

Abstract—In this correspondence, we study the downlink throughput
maximization for orthogonal frequency-division multiple-access (OFDMA)
systems in the presence of feedback channel capacity constraints. We es-
tablish an information-theoretic lower bound on the capacity of feedback
channel and build the corresponding test channel that achieves this lower
bound. Based on the derived test channel, we formulate two optimiza-
tion problems that maximize the downlink throughput with quantized
channel state information (CSI): i) one problem where throughput is
defined with the ergodic throughput and ii) the other problem with the
outage throughput, from which we can see the performance limit for
given limit feedback channels. We solve the throughput maximization
problem through an iterative approach, which achieves the optimal ergodic
throughput and the near-optimal outage throughput. Numerical results
show that the downlink throughput with a limited feedback of CSI can
be close to that with perfect CSI by exploiting correlation properties of
downlink CSI for quantization.

Index Terms—Limited feedback, orthogonal frequency-division multiple
access (OFDMA), quantized channel information, rate distortion, resource
allocation.

I. INTRODUCTION

Orthogonal frequency-division multiple access (OFDMA) is a
promising multiple-access technique that provides high spectral
efficiency for next-generation broadband wireless systems. In the
downlink of a cellular OFDMA system, the base station (BS) commu-
nicates with users over a set of subcarriers. For systems that employ
frequency-division duplexing (FDD), the BS obtains the downlink
channel state information (CSI) from users through feedback chan-
nels. If perfect CSI is available at the BS, flexible resource allocation
schemes can considerably improve system performance. However,
conveying perfect CSI requires infinite CSI-feedback rate. In practical
communication systems, since the capacity of the feedback channel is
limited, only quantized feedback CSI can be fed back to the BS. As
a result, the performance of resource allocation schemes is degraded
due to imperfect CSI. Analyzing the effect of finite feedback rate in
OFDMA systems turns to be a crucial problem.

In this correspondence, we investigate the performance limit im-
posed on the downlink throughput of an OFDMA system with quan-
tized feedback. The main contributions of our correspondence include
the following.

• We use the rate-distortion theory to derive the minimum quantiza-
tion distortion under a rate constraint of feedback channel. Then,
we evaluate the downlink throughput with the quantized CSI, by
which we can characterize the maximum achievable downlink
throughput for a given capacity of feedback channel. To the best
of our knowledge, maximizing the OFDMA downlink throughput
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from the rate-distortion theory point of view has not been studied
yet.

• We evaluate the downlink throughput based on two informa-
tion-theoretic metrics, the ergodic throughput and the outage
throughput (under the assumption that an ideal channel code is
used). For delay-insensitive services, the ergodic throughput is
a suitable performance measure [1], while for real-time appli-
cations that cannot tolerate long delays, it is more appropriate
to consider the outage throughput [2]. However, to the best
of our knowledge, no work has considered outage throughput
maximization for OFDMA systems.

• We propose the iterative methods to maximize the ergodic
throughput and the outage throughput, respectively. For ergodic
throughput maximization, the iterative method can find the op-
timal solution; for outage throughput maximization, the iterative
method can achieve a near-optimal solution.

Notations: Vectors and matrices are represented by bold. �� de-
notes an��� column vector whose elements are all zeros, �� denotes
an � �� identity matrix, and�� denotes the conjugate transpose of
�. �� � � denotes the statistical expectation, and in particular �� � � �
denotes that with respect to � .

A. Overview

We continue the introduction with a short review of related work
in SubSection I-B. Section II outlines the downlink channel model,
and derives the RDF for the downlink CSI. Section III presents the
expressions of the ergodic throughput and the outage throughput,
and proposes resource allocation algorithms to maximize the ergodic
throughput and the outage throughput, respectively. Numerical results
are presented in Section IV, and conclusions are drawn in Section V.

B. Related Works

In OFDMA systems using FDD, due to the limited capacity of feed-
back channel, the transmitter can obtain only some level of downlink
CSI from the receivers. Thus, resource allocation with quantized CSI
becomes one of the most critical research topics in OFDM systems.
Quantized feedback in single-user OFDM systems with on-off power
allocations was the focus of [3] and [4]. Adaptive subcarrier selec-
tion, power allocation, and modulation selection using only one bit per
subcarrier were investigated by [5]. Later, an approximate waterfilling
method using order information of the subcarrier channel gains was
proposed by [6]. Limited feedback schemes with multiple quantization
regions of downlink CSI in OFDMA systems were extensively studied
in [7] and [8]. In both works, the design parameters related to quan-
tized CSI, such as quantization levels and feedback period, were opti-
mized to reduce the feedback overhead with a guaranteed system per-
formance for OFDMA systems. In [9], the authors derived close-form
expressions for the ergodic throughput in an OFDMA system assuming
equal power distribution over all subcarriers. However, existing re-
search works for OFDMA systems have focused on simple but subop-
timal quantization methods. Thus, these results could not show the best
achievable performance when the quantization for CSI feedback is opti-
mized in terms of the rate-distortion theory point of view. As mentioned
earlier, we address the performance limit of OFDMA systems with
quantized CSI using the rate-distortion theory in this correspondence.

II. SYSTEM MODEL

Consider an OFDMA system with � subcarriers that will be shared
by� users. We assume that this system employs FDD, and thereby, the
BS obtains the downlink CSI from users’ feedback. With the knowl-
edge of CSI, the BS can perform the subcarrier and power allocation.

A. Downlink Channel Model

The downlink channel is assumed to be a multipath fading channel.
The baseband channel gain from the BS to the �th user on the �th
subcarrier can be written as

���� �

�

���

����	
�	�
� ��� ��� (1)

where 
� is the number of multipath taps, �� is the subcar-
rrier spacing, and ���� and ���� denote the attenuation factor and
the propagation delay of the 
th multipath tap at the �th user’s
channel, respectively. The multipath channel taps at the �th user
������ � � � � �����


 can be modeled as a zero-mean circularly sym-
metric complex Gaussian (ZMCSCG) vector with independent entries
���� � �� �	� ��� �. Then, �� � ������ � � � � �����
 satisfies
�� � �� ����� �, where the ���� ���th entry of �� is

��� �� �� �

�

���

�
�
� 	

�	�
� �� �� ���
� (2)

B. Feedback of Downlink CSI

Now we consider the quantization of downlink CSI and determine
the capacity of feedback channel required to deliver the quantized CSI
using the rate-distortion theory. From this, we can characterize the min-
imum distortion of the quantized CSI for a given capacity of the feed-
back channel.

The user � describes his/her knowledge of downlink CSI �� by an
index �� � �� � ��� 
� � � � � 
� 	, and sends the index �� to the BS.
The BS then reproduces the channel gain ��� from the index �� , where
��� � � ������ � � � � ������
 is the quantized description of �� .

We introduce the distortion measure function with the following
criterion:

����� ���� �

�

���


���� � �����

�
�

Then, we can define the information RDF of �� as [10]

������ � �
�
����� � �� �	��

����� ����

where �� denotes an upper bound on the quantization error, and
����� ���� denotes the mutual information between�� and ��� .

By the source-channel separation theorem [10], the quantization
error�� is achievable if and only if the feedback channel’s capacity of
the user � satisfies �� � ������. Thus, to characterize the feedback
channel’s capacity ��, we need to find the RDF for �� . We have the
following result.

Theorem 1: Suppose that we are given a ZMCSCG vector�� with
the autocorrelation given in (2). Let the eigenvalue decomposition of
�� be

�� � �����
� (3)

where �� is the � � � matrix with orthogonal column vectors and
�� is the � �� diagonal matrix with ������� � ����. Then,

1) The RDF of �� is given by

������ �

�

���

������
����

��
� � � (4)

where

�� �

�

���

��
���� ����	� (5)
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Here, �� is the Lagrangian multiplier which can be decided for
given �� to satisfy (5).

2) The test channel that achieves the RDF is given by

�� � ��� ������ ��� � ��
��� (6)

where ��� � ������� � � � � ����� �� and �� � ������ � � � � ���� ��

are mutually independent ZMCSCG vectors with uncorrelated
components, and ����� � �� ����	
��������� ��� and���� �
�� ������������ ����.

Sketch of Proof: We prove the theorem by transforming the corre-
lated ZMCSCG vector�� to an uncorrelated ZMCSCG vector�� �
������ � � ������� by setting�� � ��

� �� . From (3), we have�� �
�� ��� ����. Let ��� � ��

�
��� . Since�� is unitary and invertible,

we have ����
 ���� � ����
 ���� and ����� ���� � ����� ����.
Now the problem reduces to finding the RDF for the uncorrelated ZM-
CSCG vector �� . Following the similar approach which derives the
RDF of a parallel Gaussian source in [10, Theorem 10.3.3], we can ob-
tain the result in Theorem 1.

By the second part of Theorem 1, the probability distributions of
���� and ��� are

���� � �� ��� ����� ��� � �� ��� ��� ���� (7)

where �� � ���� �
�
� and �� � ��	����������� ���� � � � �

�������� � ����. The 	th diagonal element of �� , denoted by 
����,
can be regarded as the variance of quantization error for����. From (6)
and (7), the conditional pdf of���� for a given ����� is���� � ����� �
�� � ������ 


�
����. Thus, the actual power gain ���� � ������� condi-

tioned on ����� � � ������� is


������������ �
�


����
�
�

��
�


����
��������� (8)

where ��� � � is the 0th-order modified Bessel function of the first kind.
Note that although we only consider the distortion due to the quanti-
zation in this correspondence, it is straightforward to take into account
feedback delay through the prediction error as shown in [11, eq. (7)].

III. DOWNLINK THROUGHPUT MAXIMIZATION WITH QUANTIZED CSI

For a given capacity of the feedback channel, we have characterized
the distortion in Section II-B. With the quantized downlink CSI, the
resource allocation can be carried out for a given performance measure.
Here, we consider maximizing the ergodic throughput and the outage
throughput.

A. Definition of the Performance Measures

1) Ergodic Throughput: The ergodic throughput is defined as the
average data rate over all possible fading states. For a given quantized
power gain, �����, the ergodic throughput of the 	th subcarrier, pro-
vided that this subcarrier is assigned to the �th user, is expressed as

� �
������� ������ � �� � �� ������� � ������� � ������ (9)

where �� denotes the input signal-to-noise ratio (SNR) of the 	th sub-
carrier, which is proportional to the transmit power on the 	th subcar-
rier. In the following, the terms “input SNR” and “transmit power” are
used without distinction.

2) Outage Throughput: Given �����, the outage probability on the
	th subcarrier to the �th user is

� � ��������� � ������� � � � ������ (10)

where � is the transmission rate. It can be shown that the maximum
transmission rate � that can maintain the outage probability � is

����� ������ �� � ������ � ���
��
� � �� ����

where ���� � �� ��� is the inverse function of �� � �� ��� �

������� � � � ������ which denotes the cumulative distribution
function (cdf) of ���� conditioned on �����. Here, we define the
outage throughput as the maximum expected information successfully
delivered to users,

� 	
������� ������ � �	




��� ������� ������ ��� (11)

Setting �� � ���� � �� ��� and substituting (8) into (11) yield

� 	
������� ������ � �	


�

�� 	
������� ������ ��� (12)

where

�� 	
������� ������ ��� � �

������

����

�
���

����

������������ (13)

where ���� �� �
��

�
����� �
 �����������. The following the-

orem shows that the outage throughput � 	
������� ������ is well defined.

Theorem 2: Given �� 	 � and ����� 	 �, there exists a unique
globally optimal �� that maximizes �� 	

������� ������ ���.
Proof: It has been proved in [12, Theorem 2.7] that

����


��


�� is concave in � for � � �� � 	 �. Thus, it is

easy to see that �� �� 	
������� ������ ��� � �� ������ � ����� �

���� �������
����� ����
����� is concave in ��. In addition, we

have ������
�� 	
������� ������ ��� � �, and

� � ���
� ���

�� 	
������� ������ ���

� ���
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where we have used L’Hospital’s rule and the upper bound ���� �� �
�
������ ������ [13]. Thus, there exists a unique and globally op-
timal �� that maximizes �� 	

������� ������ ���.

B. Problem Formulation

Now we can formulate the downlink throughput maximization
problem as follows:

�	

� ��

�

���

�

���

�������������� ������

������  �
� ���� � �� 
	�
� �� � �� �

���� � ��� ��� �� 	 � 
�� 	
(15)

where ���� can be either � �
��� for ergodic throughput maximization or

� 	
��� for outage throughput maximization, ���� denotes the subcarrier



444 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011

allocation indicator, �� is the positive constraint such that
�
�� �

�.1 Here, the first constraint ensures that each subcarrier is assigned
to one user exclusively, and the second constraint is for total transmit
power, denoted by �� .

Note that in (15), we only need ���� � ������
� rather than ����.

Thus, it could be more efficient to feed back ����� than ����� to min-
imize the CSI-feedback rate for a fixed distortion or to minimize the
distortion for a fixed CSI-feedback rate. However, as shown above,
the feedback of the channel gains allows the information-theoretic ap-
proach to relate the actual channel gain to the feedback channel gain
for a given fixed CSI-feedback rate.

C. Joint Subcarrier and Power Allocation Algorithm

When the transmit power �� is fixed, the original problem (15) is
decomposed into � independent subproblems:

���
�

�

�������������� ������

	
��
�� ��
�

���� � �� ���� � ��� ��	 (16)

Thus, the optimal subcarrier allocation is given by

���� �
� �� 
 � ������� ���������� ������

� ���
���	
	
(17)

When the subcarrier assignment ���� is fixed, the problem in (15)
becomes

���
�

�

�� �� ������ ��� ���

	
��
�� ��
�

�� � �� � �� � � (18)

where 
� � ������� ���� denotes the assigned user on the �th sub-
carrier. We solve the power allocation problem through the dual ap-
proach. The dual of (18) is

���
���

��
� (19)

where

��
� � ���
� ������ ��

�

�� �� ������ ��� ���� 

�

�� � ��

�
�

���
� ��

��� �� ������ ��� ���� 
��� � 
��

where 
 is the Lagrangian multiplier of the first constraint in (18).
Given 
, the optimal power allocation on the �th subcarrier is

�� � ������
�

�� �� ����� ��� ���� 
�	 (20)

To find the optimal global optimal multiplier
, we can use the bisection
method [15]. Note that for ���� � � �

���, the problem in (18) is a convex
optimization problem, and the dual approach yields the water-filling
solution, which achieves the optimum of (18) [16]; for ���� � � �

���,
since the problem in (18) is nonconvex, using the dual approach we
can only obtain an upper bound on the optimum of (18), and the final
power allocation ��� may not satisfy

�
��� � �� . In order to project

the power allocation to the feasible region, we multiply the final power
allocation on each subcarrier ��� by �� � �

���.

1In this correspondence, we assume that the � ’s are given by quality of
service (QoS) constraints or priorities of users [14, eq. (3.1), p. 32].

TABLE I
JOINT SUBCARRIER AND POWER ALLOCATION ALGORITHMS

TABLE II
COMPARISONS OF THE SUBOPTIMAL OUTAGE THROUGHPUT AND

THE UPPER BOUND ON THE OPTIMUM. (a) � �� � 10 dB,
�� �� � � ������ ������� � �, (b) � �� � 10 dB,
� � ��� � �, and (c) �� �� � � ������������

� � ��� � �

When both subcarrier assignment and power allocation can be ad-
justed, we can iteratively allocate subcarriers and power, which is de-
scribed in Table I. Each iteration of the algorithm contains two steps.
First, we evaluate the achievable throughput of all users on all subcar-
riers with the power allocation obtained in the previous iteration, and
perform subcarrier allocation using (17). Then, we update the transmit
power �� on all subcarriers using the proposed dual approach given
by (20). Note that for ���� � � �

���, the optimal subcarrier and power
allocation must simultaneously satisfy (17) and the water-filling solu-
tion given by the dual approach. Thus, similar to the discussion in [17,
Sec. IV-B], the iterative method gives the global maximum of ergodic
throughput. For ���� � � 	

���, since the dual approach in Step 4 is sub-
optimal, the iterative method yields a suboptimal solution.

IV. NUMERICAL RESULTS

We present several numerical results to demonstrate the performance
of OFDMA systems under rate-distortion limit using the proposed al-
gorithms. Our simulation is based on the COST259 channel model for
a typical urban environment with��������

�� � � [18]. To simulate im-
perfect CSI, we generate IID realizations of �� and �� according to
Theorem 1. Then, we can generate ��� and �� under rate-distortion
limit using (6).

First, we compare the suboptimal outage throughput given by the
proposed iterative method with the upper bound on the optimum in
Table II. To obtain this upper bound, we consider all possible subcar-
rier allocations and assign the transmit power using the dual approach
without projecting the final power allocation back to the feasible re-
gion. We assume �� � �
 � � � � subcarriers, and � � � users.
We can see that the performance gap between the suboptimum and the
optimum is less than 0.01, and thus, the iterative method for the outage
throughput maximization is near-optimal.
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Fig. 1. Comparisons with RVQ: (a) RDF versus mean quantization error; (b) er-
godic throughput versus capacity of feedback channel.

Next, assuming that there are � � � subcarriers with �� � ��

and � � � users with �� � ��� , we compare the system perfor-
mance under the rate-distortion limit with an extension of the random
vector quantization (RVQ) method [19]. In this method, the codebook
�� � ������ � � � �����

� at each user � consists of �� indepen-
dently chosen vectors with���� � �� ��� � ���. Each user quantizes
its channel to the quantization vector closest to its channel vector, i.e.,
�� � 	
��
�� �

������	������
�, where	����� is the 
th element

of����. The BS determines subcarrier and power allocation based on
the decoded quantized channel vector. In Fig. 1(a), when the capacity of
feedback channel is�� � �, the quantization error of the RVQ method
is

�
��������	������

�� �
�
��������

������	������
�� � �� ;

however, as �� increases, the performance of the RVQ method ap-
proaches the rate-distortion limit. In Fig. 1(b), at �� � 15 b/s/Hz, the
RVQ achieves 99% of the rate-distortion limit.

Finally, in Fig. 2, we simulate the system performance in the rate-dis-
tortion limit under different frequency-selective channels. We also con-
sider the case in which the BS has perfect CSI. In this simulation, we
assume that there are� � 32 subcarriers with transmit power 
� �� �
20 dB, and � � 8 users with equal weights �� � ���. In Fig. 2(a),
for a given quantization error, the required capacity of feedback channel
decreases with the subcarrier spacing. This is due to the fact that the cor-
relation between adjacent subcarriers becomes weaker as subcarriers
are more widely separated. Thus, we can see in Fig. 2(b) and (c) that
both throughput increase as the subcarrier spacing decreases for a given
feedback channel’s capacity. At �� � 15 kHz, the outage throughput
can achieve 99% of that with perfect CSI when the feedback capacity
is���� � 1.81 b/s/Hz, while the ergodic throughput can achieve 99%
of that with perfect CSI when ���� � 0.43 b/s/Hz. Thus, we can see
that although the feedback channel’s capacity is finite, a near ideal per-
formance can be achieved.

Fig. 2. Performance comparison under different frequency-selective fadings:
(a) RDF versus mean quantization error; (b) ergodic throughput versus capacity
of feedback channel; and (c) outage throughput versus capacity of feedback
channel.

V. CONCLUSION

In this correspondence, we investigated the downlink throughput
maximization for an OFDMA system with finite feedback rate. First,
assuming that the ZMCSCG channel information is fed back to the BS,
we derived the RDF for the CSI. According to the rate-distortion theory,
the RDF can give a lower bound on the capacity of feedback channel.
We also derived the test channel that achieves this RDF. This derived
test channel enables us to formulate the resource allocation problems
that maximize the ergodic throughput and outage throughput with a rate
constraint on feedback channel. Then, we proposed an iterative method
to solve the two throughput maximization problems, and showed that
the proposed method achieves the optimum for ergodic throughput and
a near-optimum for outage throughput. Through numerical results, we
found that by exploiting the correlations between subcarriers, the er-
godic throughput and outage throughput with a limited feedback rate
can approach that with perfect CSI.



446 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011

REFERENCES

[1] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp.
1986–1992, 1997.

[2] I. Bettesh and S. Shamai, “Outages, expected rates and delays in mul-
tiple-users fading channels,” in Proc. Conf. Information Science Sys-
tems, 2000, vol. 1, pp. WA4-7–WA4-15.

[3] Y. Sun and M. L. Honig, “Asymptotic capacity of multicarrier trans-
mission over a fading channel with feedback,” in Proc. IEEE ISIT,
2003, p. 40.

[4] Y. Sun and M. L. Honig, “Minimum feedback rates for multicarrier
transmission with correlated frequency-selective fading,” in Proc.
IEEE GLOBECOM, 2003, vol. 3, pp. 1628–1632.

[5] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Adaptive OFDM
techniques with one-bit-per-subcarrier channel-state feedback,” IEEE
Trans. Commun., vol. 54, no. 11, pp. 1993–2003, 2006.

[6] E. H. Choi, W. Choi, J. G. Andrews, and B. F. Womack, “Power loading
using order mapping in OFDM systems with limited feedback,” IEEE
Signal Process. Lett., vol. 15, pp. 545–548, 2008.

[7] R. Agarwal, V. Majjigi, H. Zhu, R. Vannithamby, and J. Cioffi, “Low
complexity resource allocation with opportunistic feedback over down-
link OFDMA networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 8,
pp. 1462–1472, 2008.

[8] J. Chen, R. A. Berry, and M. L. Honig, “Performance of limited feed-
back schemes for downlink OFDMA with finite coherence time,” in
Proc. IEEE ISIT, 2007, pp. 2751–2755.

[9] A. Kuehne and A. Klein, “Adaptive subcarrier allocation with imperfect
channel knowledge versus diversity techniques in a multi-user OFDM-
system,” in Proc. IEEE PIMRC, 2007, pp. 1–5.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed. New York: Wiley-Interscience, 2006.

[11] I. C. Wong and B. Evans, “Optimal resource allocation in the OFDMA
downlink with imperfect channel knowledge,” IEEE Trans. Commun.,
vol. 57, no. 1, pp. 232–241, 2009.

[12] Y. Sun and A. Baricz, “Inequalities for the generalized Marcum
Q-function,” Appl. Math. Comput., vol. 203, no. 1, pp. 134–141, 2008.

[13] M. K. Simon and M. S. Alouini, “Exponential-type bounds on the gen-
eralized Marcum Q-function with application to error probability anal-
ysis over fading channels,” IEEE Trans. Commun., vol. 48, no. 3, pp.
359–366, 2000.

[14] I. Wong and B. Evans, Resource Allocation in Multiuser Multicarrier
Wireless Systems. New York: Springer, 2008.

[15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Programming. Cam-
bridge, U.K.: Cambridge Univ. Press, 1992.

[16] Y. Yingwei and G. B. Giannakis, “Rate-maximizing power allocation
in OFDM based on partial channel knowledge,” IEEE Trans. Wireless
Commun., vol. 4, no. 3, pp. 1073–1083, 2005.

[17] S. Guocong and L. Ye, “Cross-layer optimization for OFDM wire-
less networks—Part II: Algorithm development,” IEEE Trans. Wireless
Commun., vol. 4, no. 2, pp. 625–634, 2005.

[18] Universal Mobile Telecommunications System (UMTS); Deployment
Aspects, 3rd Generation Partnership Project Std. 3GPP TR 25.943 Ver-
sion 7.0.0 Release 7, 2007.

[19] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060, 2006.

Robust Transceiver Optimization for Downlink
Multiuser MIMO Systems

Tadilo Endeshaw Bogale, Batu Krishna Chalise, and
Luc Vandendorpe

Abstract—This correspondence addresses the joint transceiver design
for downlink multiuser multiple-input multiple-output (MIMO) systems,
with imperfect channel state information (CSI) at the base station (BS)
and mobile stations (MSs). By incorporating antenna correlation at both
ends of the channel and taking channel estimation errors into account,
we solve two robust design problems: minimization of the weighted sum
mean-square-error (MSE) and minimization of the maximum weighted
MSE. These problems are solved as follows: first, we establish three kinds
of MSE uplink-downlink duality by transforming only the power alloca-
tion matrices from uplink channel to downlink channel and vice versa.
Second, in the uplink channel, we formulate the power allocation part of
each problem ensuring global optimality. Finally, based on the solution of
the uplink power allocation and the MSE duality results, for each problem,
we propose an iterative algorithm that performs optimization alternatively
between the uplink and downlink channels. Computer simulations verify
the robustness of the proposed design compared to the nonrobust/naive
design.

Index Terms—Downlink, duality, mean-square error, multiple-input
multiple-output (MIMO), multiuser, Robust Transceiver design.

I. INTRODUCTION

In a multiuser network the uplink-downlink duality approach for
solving the downlink optimization problems has received a lot of atten-
tion. The achievable sum rate of the broadcast channel (BC) obtained
by dirty paper precoding technique has been characterized for mul-
tiple-input single-output (MISO) systems [1]. The latter work has been
extended in [2] for multiple-input multiple-output (MIMO) systems.
These papers analyze the sum rate region of the BC channel by ex-
ploiting the duality between BC and multiple access channels (MAC).
In [3], the dirty paper rate region has shown to be the capacity re-
gion of the Gaussian MIMO BC channel. In [4] and [5], mean-square-
error (MSE) based uplink-downlink duality have been exploited. The
latter two papers utilize their duality results to solve MSE-based de-
sign problems. All of the aforementioned duality are established by
assuming that perfect channel state information (CSI) is available at
the base station (BS) and mobile stations (MSs). However, due to the
inevitability of channel estimation error, CSI can never be perfect. This
motivates [6] to establish the MSE duality under imperfect CSI for
MISO systems. The latter work is extended in [7] for MIMO case. None
of [6] and [7] incorporates antenna correlation in their channel model
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