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An inverse source problem in the modifiedHelmholtz equation is considered.We give a Tikhonov-
type regularization method and set up a theoretical frame to analyze the convergence of such
method. A priori and a posteriori choice rules to find the regularization parameter are given.
Numerical tests are presented to illustrate the effectiveness and stability of our proposed method.

1. Introduction

The Helmholtz equation often arises in the study of physical problems involving partial
differential equations (PDEs) in both space and time. It has a wide range of applications, for
example, radar, sonar, geographical exploration, and medical imaging. A kind of important
equations similar with the Helmholtz equation in science and engineering is

Δu
(
x, y
) − k2u

(
x, y
)
= f(x), (1.1)

where the constant k > 0 is the wave number and f(x) is the source term. This equation
is called the modified Helmholtz equation. It appears, for example, in the semi-implicit
temporal discretization of the heat or the Navier-Stokes equations [1] and in the linearized
Poisson-Boltzmann equation.

Inverse source problems have attracted great attention of many researchers over recent
years because of their applications to many practical problems such as crack determination
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[2, 3], heat source determination [4–6], inverse heat conduction [7–11], pollution source
identification [12], electromagnetic source identification [13], Stefan design problems [14],
sound source reconstruction [15], and identification of current dipolar sources in the so-called
inverse electroencephalography/magnetoencephalography (EEG/MEG) problems [16, 17].
Theoretical investigation on the inverse source identification problems can be found in the
works of [18–23].

The main difficulty of inverse source identification problems is that they are typically
ill posed in the sense of Hadamard [24]. In other words, any small error in the scattered
measurement data may induce enormous error to the solution. In general, the unknown
source can only be recovered from boundary measurements if some a priori knowledge is
assumed. For instances, if one of the products in the separation of variables is known [25, 26],
the base area of a cylindrical source is known [25], or a nonseparable type is in the form of a
moving front [26], then the boundary condition plus some scattered boundarymeasurements
can uniquely determine the unknown source term. Furthermore, when the unknown source
term is relatively smooth, some regularization techniques can be employed, see [5, 27–29]
for more details. In addition, due to the complexity and ill posedness of the inverse source
identification problems, some of the variational methods [6, 30] are also employed to deal
with them.

In this paper, we will consider the following problem (see [29]):

Δu
(
x, y
) − k2u

(
x, y
)
= f(x), 0 < x < π, 0 < y < ∞,

u
(
0, y
)
= u
(
π, y
)
= 0, 0 ≤ y < ∞,

u(x, 0) = 0, 0 ≤ x ≤ π,

u
(
x, y
)|y→∞ bounded, 0 ≤ x ≤ π,

u(x, 1) = g(x), 0 ≤ x ≤ π,

(1.2)

for determining the source term f(x) such that the solution u(x, y) of the modifiedHelmholtz
equation satisfies the given supplementary condition u(x, 1) = g(x), where the constant k > 0
is the wave number. In practice, the data g(x) is usually obtained through measurement and
the measured data is denoted by gδ(x).

To determine the source term f(x), we require the following assumptions:

(A) f(x) ∈ L2(0, π) and g(x) ∈ L2(0, π);

(B) there exists a relation between the function g(x) and the measured data gδ(x):

∥∥∥g − gδ
∥∥∥
L2

≤ δ, (1.3)

where ‖ · ‖L2 denotes the norm in the space L2(0, π) and δ > 0 is the noise level.

(C) The source term f(x) satisfies the a priori bound

∥∥f
∥∥
Hp ≤ E, p ≥ 0, (1.4)



Mathematical Problems in Engineering 3

where E is a positive constant, and ‖ · ‖Hp denotes the norm in Sobolev space
Hp(0, π) which is defined by [31] as follows:

∥
∥f(·)∥∥Hp =

( ∞∑

n=1

(
1 + n2

)p∣
∣〈f,Xn

〉∣∣2
)1/2

. (1.5)

We can refer to [31] for the details of the Sobolev space Hp(0, π).
Using the separation of variables, we can obtain the explicit solution of the modified

Helmholtz equation:

u
(
x, y
)
= −

∞∑

n=1

1 − e−
√
n2+k2y

n2 + k2
fnXn(x), (1.6)

where

⎧
⎨

⎩
Xn(x) =

√
2
π

sin(nx), n = 1, 2, . . .

⎫
⎬

⎭
(1.7)

is an orthogonal basis in L2(0, π), and

fn =

√
2
π

∫π

0
f(x) sin(nx)dx. (1.8)

According to (1.6) and the supplementary condition u(x, 1) = g(x), we have

g(x) = −
∞∑

n=1

1 − e−
√
n2+k2

n2 + k2
fnXn(x). (1.9)

Based on this relation, we can define an operator K on the space L2(0, π) as

(
Kf
)
(x) = −

∞∑

n=1

1 − e−
√
n2+k2

n2 + k2
fnXn(x). (1.10)

Thus, our inverse source problem is formulated as follows: give the data g(x) and the
operator K and then determine the unknown source term f(x) such that (1.10) holds.

It is straightforward that the operator K is invertible and then the exact solution of
(1.2) is

f(x) =
(
K−1g

)
(x) = −

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

gnXn(x), (1.11)
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with

gn =

√
2
π

∫π

0
g(x) sin(nx)dx. (1.12)

Note that the factor (n2 + k2)/(1 − e−
√
n2+k2) increases rapidly and tends to infinity as n → ∞,

so a small perturbation in the data g(x) may cause a dramatically large error in the solution
f(x). Therefore, this inverse source problem is mildly ill posed. It is impossible to obtain the
unknown source using classical methods as above.

In [29], the simplified Tikhonov regularization method was given for (1.2). In this
method, the regularization parameter is a priori chosen. It is well known that the ill-posed
problem is usually sensitive to the regularization parameter and the a priori bound is usually
difficult to be obtained precisely in practice. So the a priori choice rule of the regularization
parameter is unreliable in practical problems. In this paper, we will present a Tikhonov-type
regularization method to deal with (1.2) and show that the regularization parameter can be
chosen by an a posteriori rule based on the discrepancy principle in [27].

The rest of this paper is organized as follows. In Section 2, we establish a quasinormal
equation, which is crucial for proving the convergence of the Tikhonov-type regularization
method. In Section 3, we give the Tikhonov-type regularization method and then prove the
convergence of such method. Also, we give a priori and a posteriori choice rules to find
the regularization parameter in the regularization method. In Section 4, we demonstrate a
numerical example to illustrate the effectiveness of the method. In Section 5, we give some
conclusions.

2. Preparation

In this section, we give an auxiliary result which will be used in this paper.
We first define an operator T on L2(0, π) as follows:

(
Tf
)
(x) =

∞∑

n=1

(
1 + n2

)p
fnXn(x). (2.1)

Let us observe that the operator T is well defined and is a self-adjoint linear operator.
Next we give a lemma, which is important for discussing the regularization method.

For simplicity, we denote the spaces Hp(0, π) and L2(0, π) by X and Y , respectively.

Lemma 2.1. Let A : X → Y be a linear and bounded operator between two Hilbert spaces, and let T
be defined as in (2.1), α > 0. Then for any x ∈ X the following Tikhonov functional

Jα(x) :=
∥∥Ax − y

∥∥2
L2 + α‖x‖2Hp (2.2)

has a unique minimum xα ∈ X, and this minimum xα is the unique solution of the quasinormal
equation A∗Axα + αT2xα = A∗y.
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Proof. We divide the proof into three steps.

Step 1. The existence of a minimum of Jα(x) is proved. Let {xn}∞n=1 ⊂ X be a minimizing
sequence; that is, Jα(xn) → I := infx∈XJα(x) as n → ∞. We first need to show that {xn}∞n=1 ⊂ X
is a Cauchy sequence. According to the definition of Jα(x), we have

Jα(xn) + Jα(xm) − 2Jα
(xn + xm

2

)

=
∥
∥Axn−y

∥
∥2
L2+α‖xn‖2Hp+

∥
∥Axm−y

∥
∥2
L2+α‖xm‖2Hp−2

∥
∥
∥A
(xn+xm

2

)
− y
∥
∥
∥
2

L2
−2α
∥
∥
∥
xn+xm

2

∥
∥
∥
2

Hp

=
〈
Axn − y,Axn − y

〉
L2+
〈
Axm − y,Axm − y

〉
L2−2

〈
A
(xn+xm

2

)
−y,A

(xn+xm

2

)
− y
〉

L2

+ α‖xn‖2Hp + α‖xm‖2Hp − 2α
∥
∥
∥
xn + xm

2

∥
∥
∥
2

Hp

=
1
2
‖A(xn − xm)‖2L2 +

α

2

(
2‖xn‖2Hp + 2‖xm‖2Hp − ‖xn + xm‖2Hp

)

=
1
2
‖A(xn − xm)‖2L2 +

α

2
‖xn − xm‖2Hp .

(2.3)

This implies that Jα(xn)+Jα(xm) ≥ 2I+(α/2)‖xn + xm‖2Hp . Since the left-hand side converges to
2I as n,m tend to infinity. This shows that {xn}∞n=1 is a Cauchy sequence and thus convergent.
Let limn→∞xn = xα, noting that xα ∈ X. From the continuity of Jα(x), we conclude that
Jα(xn) → Jα(xα), that is, Jα(xα) = I. This proves the existence of a minimum of Jα(x).

Step 2. The equivalence of the quasinormal equation with the minimization problem for Jα(x)
is shown. According to the definition Jα(x) and (2.1), we can obtain the following formula:

Jα(x) − Jα(xα)

=
∥∥Ax − y

∥∥2
L2 + α‖x‖2Hp −

∥∥Axα − y
∥∥2
L2 − α‖xα‖2Hp

=
〈
Ax − y,Ax − y

〉
L2 −

〈
Axα − y,Axα − y

〉
L2 + α〈x, x〉Hp − α〈xα, xα〉Hp

= ‖A(x − xα)‖2L2 + 2Re
〈
x − xα,A∗(Axα − y

)
+ αT2xα

〉

L2
+ α‖T(x − xα)‖2L2 ,

(2.4)

for all x ∈ X. If xα satisfies A∗Axα + αT2xα = A∗y, then Jα(x) − Jα(xα) = ‖A(x − xα)‖2L2 +
α‖T(x − xα)‖2L2 ≥ 0, that is, xα minimizes Jα(x).

Conversely, if xα minimizes Jα(x), then we substitute x − xα = tξ for any t > 0 and
ξ ∈ X, and then we can arrive at

2tRe
〈
ξ,A∗(Axα − y

)
+ αT2xα

〉

L2
+ t2
(
‖Aξ‖2L2 + α‖Tξ‖2L2

)
≥ 0. (2.5)
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Dividing both sides of the above inequality by t > 0 and taking t → 0, we get

Re
〈
ξ,A∗(Axα − y

)
+ αT2xα

〉

L2
≥ 0, (2.6)

for all ξ ∈ X. This implies that A∗(Axα − y) + αT2xα = 0. It follows that xα solves the
quasinormal equation. From this, the equivalence of the quasinormal equation with the
minimization problem for Jα(x) is shown exactly.

Step 3. We show that the operatorA∗A+αT2 is one-one for every α > 0. Let (A∗A+αT2)x = 0.
Multiplication by x yields 〈Ax,Ax〉L2 + α〈Tx, Tx〉L2 = 0, that is, x = 0.

3. A Tikhonov-Type Regularization Method

In this section, we first present a Tikhonov-type regularization method to obtain the
approximate solution of (1.2) and then consider an a priori strategy and a posteriori choice
rule to find the regularization parameter. Under each choice of the regularization parameter,
the corresponding estimate can be obtained.

Since (1.2) is an ill-posed problem, we give its regularized solution fα,δ(x) which
minimizes the Tiknonov functional

Jα
(
f(x)

)
:=
∥∥∥Kf − gδ

∥∥∥
2

L2
+ α
∥∥f
∥∥2
Hp , (3.1)

where the operator K is defined as in (1.10), and α > 0 is a regularization parameter.
According to Lemma 2.1, this minimum fα,δ(x) is the unique solution of the

quasinormal equation K∗Kfα,δ(x) + αT2fα,δ(x) = K∗gδ(x), that is, fα,δ(x) = (K∗K +
αT2)−1K∗gδ(x). Because K is a linear self-adjoint operator, that is, K∗ = K, we have the
equivalent form of fα,δ(x) as

fα,δ(x) =
(
K2 + αT2

)−1
Kgδ(x). (3.2)

Further, the function fα,δ(x) can be reduced to

fα,δ(x) = −
∞∑

n=1

(
n2 + k2)/

(
1 − e−

√
n2+k2

)

1 + α
(
(1 + n2)p

(
(n2 + k2)/

(
1 − e−

√
n2+k2

)))2 g
δ
nXn(x). (3.3)

Now we are ready to formulate the main results of this paper. Before proceeding, the
following lemmas are needed.

Lemma 3.1. For any n ∈ N+, k > 0, it holds n2 + k2 ≤ (n2 + k2)/(1 − e−
√
n2+k2) ≤ 1 + n2 + k2.

Proof. The proof is elementary and is omitted.
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Table 1: Relative errors reff(f(x)) with ε = 0.01, k = 2, p = 2, and N = 10 for differentM.

M 10 50 100 200 400 800 1600
reff
(
f(x)

)
0.0471 0.0141 0.0116 0.0036 0.0039 0.0020 0.0018

Lemma 3.2. For k > 0, p ≥ 0, h ∈ L2(0, π) and the operator K defined in (1.10), one has

∥
∥
∥K−1h

∥
∥
∥
L2

≤
(
1 + k2

)p/(p+2)
‖h‖p/(p+2)

L2

∥
∥
∥K−1h

∥
∥
∥
2/(p+2)

Hp
. (3.4)

Proof. By the Hölder inequality and Lemma 3.1, we have

∥∥∥K−1h
∥∥∥
2

L2
=

∞∑

n=1

(
n2 + k2

1 − e−
√
n2+k2

|hn|
)2

=
∞∑

n=1

(
n2 + k2

1 − e−
√
n2+k2

)2

|hn|4/(p+2)|hn|2p/(p+2)

≤

⎛

⎜
⎝

∞∑

n=1

⎛

⎝
(

n2 + k2

1 − e−
√
n2+k2

)2

|hn|4/(p+2)
⎞

⎠

(p+2)/2
⎞

⎟
⎠

2/(p+2)

×
( ∞∑

n=1

(
|hn|2p/(p+2)

)(p+2)/p
)p/(p+2)

=

⎛

⎝
∞∑

n=1

(
n2 + k2

1 − e−
√
n2+k2

)p+2

|hn|2
⎞

⎠

2/(p+2)

‖h‖2p/(p+2)
L2

=

⎛

⎝
∞∑

n=1

(
n2 + k2

1 − e−
√
n2+k2

)p(
n2 + k2

1 − e−
√
n2+k2

|hn|
)2
⎞

⎠

2/(p+2)

‖h‖2p/(p+2)
L2

≤
⎛

⎝
∞∑

n=1

(
1 + n2

)p
(

1 + n2 + k2

1 + n2

)p(
n2 + k2

1 − e−
√
n2+k2

|hn|
)2
⎞

⎠

2/(p+2)

‖h‖2p/(p+2)
L2

≤
(
1 + k2

)2p/(p+2)
‖h‖2p/(p+2)

L2

∥∥∥K−1h
∥∥∥
4/(p+2)

Hp
.

(3.5)

The proof is completed.

In the following we give the corresponding convergence results for an a priori choice
rule and an a posteriori choice rule.
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Table 2: Relative errors reff(f(x)) with ε = 0.01, k = 2, p = 2 andM = 100 for differentN.

N 1 5 10 20 40 80 100
reff(f(x)) 3.8681e − 004 0.0055 0.0040 0.0081 0.0067 0.0054 0.0046

Table 3: Relative errors reff(f(x))with k = 2,M = 100, and N = 10, for different p and ε.

reff(f(x)) p = 0 p = 1/2 p = 1 p = 2 p = 4 p = 8 p = 10
ε = 0.1 0.1660 0.1345 0.0564 0.0241 0.0097 0.0076 0.0223
ε = 0.01 0.0283 0.0308 0.0221 0.0040 0.0063 0.0033 0.0021
ε = 0.001 0.0026 0.0048 0.0030 0.0018 0.0011 1.4765e − 004 1.3137e − 004

3.1. An A Priori Choice Rule

Choose the regularization parameter α1 as

α1 =
(
δ

E

)2

. (3.6)

The next theorem shows that the choice (3.6) is valid under suitable assumptions.

Theorem 3.3. Let fα1,δ(x) be the minimizer of Jα1(f(x)) defined by (3.1) and f(x) be the exact
solution of (1.2), and let assumptions (A), (B), and (C) hold. If α1 is chosen by (3.6), then fα1,δ(x)
is convergent to the exact solution f(x) as the noise level δ tends to zero. Furthermore, one has the
following estimate:

∥∥∥fα1,δ − f
∥∥∥
L2

≤
(√

2 + 1
)(

1 + k2
)p/(p+2)

δp/(p+2)E2/(p+2). (3.7)

Proof. Since fα1,δ(x) is the minimizer of Jα1(f(x)) defined by (3.1), we can obtain

∥∥∥fα1,δ
∥∥∥
2

Hp
≤ 1

α1
Jα1

(
fα1,δ(x)

)
≤ 1

α1
Jα1

(
f(x)

) ≤ 2E2,

∥∥∥Kfα1,δ − gδ
∥∥∥
2

L2
≤ Jα1

(
fα1,δ(x)

)
≤ Jα1

(
f(x)

) ≤ 2δ2.

(3.8)

Furthermore, we get

∥∥∥fα1,δ − f
∥∥∥
Hp

≤
∥∥∥fα1,δ

∥∥∥
Hp

+
∥∥f
∥∥
Hp ≤

(√
2 + 1

)
E,

∥∥∥Kfα1,δ − g
∥∥∥
L2

≤
∥∥∥Kfα1,δ − gδ

∥∥∥
L2

+
∥∥∥gδ − g

∥∥∥
L2

≤
(√

2 + 1
)
δ.

(3.9)
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Table 4: Relative errors reff(f(x))with p = 2, M = 100, and N = 10, for different k and ε.

reff(f(x)) k = 1 k = 2 k = 4 k = 8
ε = 0.1 0.0412 0.0548 0.0304 0.0245
ε = 0.01 0.0133 0.0174 0.0064 0.0036
ε = 0.001 0.0032 0.0031 8.2509e − 004 5.2171e − 004

Table 5: Relative errors reff(f(x)) with ε = 0.01, k = 2, p = 2, and N = 10 for differentM.

M 10 50 100 200 400 800 1600
reff
(
f(x)

)
0.0364 0.0239 0.0194 0.0093 0.0074 0.0060 0.0045

By Lemma 3.2, we have

∥∥∥fα1,δ − f
∥∥∥
L2

=
∥∥∥K−1

(
Kfα1,δ − g

)∥∥∥
L2

≤
(
1 + k2

)p/(p+2)∥∥∥Kfα1,δ − g
∥∥∥
p/(p+2)

L2

∥∥∥fα1,δ − f
∥∥∥
2/(p+2)

Hp

≤
(√

2 + 1
)(

1 + k2
)p/(p+2)

δp/(p+2)E2/(p+2).

(3.10)

The proof is completed.

3.2. An A Posteriori Choice Rule

Choose the regularization parameter α2 as the solution of the equation

∥∥∥Kfα2,δ − gδ
∥∥∥
L2

= τδ, (3.11)

where the operator K is defined by (1.10) and τ > 1.
In the following theorem, an a posteriori rule based on the discrepancy principle [27]

is considered in the convergence estimate.

Theorem 3.4. Let fα2,δ(x) be the minimizer of Jα2(f(x)) defined by (3.1) and f(x) be the exact
solution of (1.2), and let assumptions (A), (B), and (C) hold. If α2 is chosen as the solution of (3.11),
then fα2,δ(x) is convergent to the exact solution f(x) as the noise level δ tends to zero. Furthermore,
one has the following estimate:

∥∥∥fα2,δ − f
∥∥∥
L2

≤ 2
(
1 + k2

)p/(p+2)
δp/(p+2)E2/(p+2). (3.12)

Proof. Since fα2,δ(x) is the minimizer of Jα2(f(x)) defined by (3.1), we can obtain

∥∥∥Kfα2,δ − gδ
∥∥∥
2

L2
+ α2

∥∥∥fα2,δ
∥∥∥
2

Hp
= Jα2

(
fα2,δ(x)

)
≤ Jα2

(
f(x)

)
=
∥∥∥g − gδ

∥∥∥
2

L2
+ α2
∥∥f
∥∥2
Hp . (3.13)
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Table 6: Relative errors reff(f(x)) with ε = 0.01, k = 2, p = 2, and M = 200 for differentN.

N 1 5 10 20 40 80 100
reff
(
f(x)

)
1.0000 0.0041 0.0071 0.0086 0.0098 0.0094 0.0090

Table 7: Relative errors reff(f(x)) with k = 2, M = 200, and N = 10, for different p and ε.

reff(f(x)) p = 0 p = 1/2 p = 1 p = 2 p = 4 p = 8 p = 10
ε = 0.1 0.1160 0.1849 0.1986 0.1230 0.0179 0.0170 0.0337
ε = 0.01 0.0292 0.0128 0.0227 0.0026 0.0031 0.0040 5.9243e − 004
ε = 0.001 0.0017 0.0027 0.0010 0.0025 1.3769e − 004 0.0028 1.1640e − 004

Consequently, it has

∥∥∥fα2,δ
∥∥∥
2

Hp
≤ ∥∥f∥∥2Hp +

1
α2

(∥∥∥g − gδ
∥∥∥
2

L2
− τ2δ2

)
≤ ∥∥f∥∥2Hp +

1
α2

(
1 − τ2

)
δ2 <

∥∥f
∥∥2
Hp ≤ E2.

(3.14)

This leads to ‖fα2,δ − f‖Hp ≤ ‖fα2,δ‖Hp + ‖f‖Hp ≤ 2E. It follows from Lemma 3.2 that the
assertion of this theorem is true.

4. Numerical Tests

In this section, we present an example to illustrate the effectiveness and stability of our
proposed method. The numerical results verify the validity of the theoretical results for the
two cases of the a priori and a posteriori parameter choice rules.

Substituting (1.8) into (1.9), and then using trapezoid’s rule to discretize (1.9) can
result in the following discrete form:

− 2
π

M+1∑

i=1

N∑

n=1

1 − e−
√
n2+k2

n2 + k2
f(xi) sin(nxi) sin

(
nxj

) π
M

= g
(
xj

)
, (4.1)

where xi = (i − 1)M/π , i = 1, 2, . . . ,M + 1, and j = 1, 2, . . . ,M + 1.
We conduct two tests, and the tests are performed in the following way: first, from

(1.6) and (1.11), we can select the source term f(x) = −(1 + k2) sinx and then u(x, y) =
(1 − e−

√
1+k2y) sinx. Consequently, the data function g(x) = (1 − e−

√
1+k2) sinx, and

∥∥f
∥∥
Hp =

( ∞∑

n=1

(
1 + n2

)p∣∣fn
∣∣2
)1/2

= 2p/2
(
1 + k2

)√
π/2. (4.2)

We choose E = 2p/2(1 + k2)
√
π/2. Next, we add a random distributed perturbation to each

data function, giving the vector

gδ = g + εrandn
(
size
(
g
))
. (4.3)
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Table 8: Relative errors reff(f(x))with p = 2, M = 200, and N = 10, for different k and ε.

reff(f(x)) k = 1 k = 2 k = 4 k = 8
ε = 0.1 0.0250 0.0190 0.0315 0.0516
ε = 0.01 0.0076 0.0074 0.0030 0.0536
ε = 0.001 0.0047 0.0013 5.6243e − 004 0.0071

The function randn(·) generates arrays of random numbers whose elements are normally
distributed with mean 0 and variance 1. Thus, the total noise level δ can be measured in the
sense of root mean square error according to

δ =
∥
∥
∥gδ − g

∥
∥
∥
2
:=

⎛

⎝ 1
M + 1

M+1∑

j=1

(
gδ(xj

) − g
(
xj

))2
⎞

⎠

1/2

. (4.4)

And gδ
n can be obtained according to (1.12). Our error estimates use the relative error, which

is given as follows:

reff
(
f(x)

)
:=

∥∥fα,δ − f
∥∥
2∥∥f

∥∥
2

, (4.5)

where ‖ · ‖2 is given by (4.4).

Test 1. In the case of the a priori choice rule, we, respectively, compute reff(f(x)) with
different parameters M, N, p, k, and ε. Tables 1 and 2 show that M and N have small
influence on reff(f(x)) when they become larger. So, we always take M = 100 and N = 10
in this test. Table 3 shows reff(f(x)) for p = 0, 1/2, 1, 2, 4, 8, and 10 with the perturbation
ε = 0.1, 0.01, and 0.001. Table 4 shows reff(f(x)) for k = 1, 2, 4, and 8 with the perturbation
ε = 0.1, 0.01, and 0.001. In conclusion, the regularized solution fα,δ well converges to the
exact solution f(x) when ε tends to zero.

Test 2. In the case of the a posteriori choice rule (3.11), by taking τ = 1.5, we also give the
corresponding results as described in Test 1. The results can be easily seen from Tables 5, 6, 7,
and 8.

From Tests 1 and 2, we conclude that the proposed regularization method is effective
and stable.

5. Conclusion

In this paper, we proposed a Tikhonov-type regularization method to deal with the inverse
source identification for the modified Helmholtz equation and set up a theoretical frame
to analyze the convergence of such method. For instance, we provided the quasinormal
equation to obtain the regularized solution. Moreover, besides the a priori parameter choice
rule we studied an a posteriori rule for choosing the regularization parameter. Finally, we
presented a numerical example whose results seem to be in excellent agreement with the
convergence estimates of the method.
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