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Abstract This study presents a discriminant analysis-based method for prediction of

agriculture drought disaster risk. We selected the Chaoyang city in the Northeast China as

the study area. We employed multi-scale standard precipitation index (SPI) to reflect

drought hazard. We used the yield losses to indicate the drought disaster risk, which was

divided into no, low, or high drought risk. We used the multi-scale SPI and drought disaster

risk as the input factors for the discriminant analysis-based risk prediction model. The

results showed that the model’s prediction accuracy varied between 40 and 82.4 %. The

accuracy of high drought disaster risk category was higher than low and no drought

disaster risk category. The prediction accuracy of the milky maturity stage was highest. We

use leave-one-out cross-validation method to validate the model’s accuracy. And the

results showed that the model validation accuracy of high drought group could reach

70.6 % in milky maturity stage. This study showed discriminant analysis is an effective

and operable method for disaster risk prediction. This model can provide timely infor-

mation for decision makers to make effective measures for drought disaster management

and to reduce the drought effects to yields at the minimum level.

Keywords Dynamic risk prediction � Discriminant analysis � Drought disaster �
Multi-scale SPI � Yield

1 Introduction

Drought is one of the most common natural disasters around the world. It receives more

attention because of its unique characteristics, that is, the high frequency of occurrence,

global impacts, and the great losses. Drought is one of the most significant stress factors in
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crop production. It can lead to obvious yield reduction or complete crop failure (Hlavinka

et al. 2009). China is a major agriculture country with large population and easily affected

by agro-meteorological disasters especially drought and flood. Wheat, maize, and rice are

the three main crops in China. Liaoning province is the main maize-growing region in

China. Drought is the dominant disaster for maize production especially in the north-

western province of Liaoning. Drought disasters have influenced the food security and

sustainable development of the region. Consequently, it is important to analyze the rela-

tionship between drought and maize yield and to predict drought disaster risk in different

maize-growing stage. This is also the basis for early warning of drought disasters and

helping make effective measures to reduce the drought losses to the minimum.

Many reported studies used indices to describe droughts, such as standardized precip-

itation index (SPI) (McKee et al. 1993), palmer drought severity index (PDSI) (Palmer

1965), effective drought index (EDI) (Byun et al. 1999), etc. Those indices performed

differently because of the purpose of research and region of study. PDSI is the most

commonly used index. Because of its complex, empirical derivation and because the

underlying computation is based on the climate of the Midwestern United States, many

researchers have reported the low practicability of PDSI in other areas (Keyantash and

Dracup 2002; Kim et al. 2009). SPI is an index that precipitation is the only input data. SPI

can be calculated in different time scales and is sensitive to drought. It is widely used in

China. Huang et al. (2010) used SPI to reflect the spatial and temporal variation of seasonal

drought in South China during the past 58a. Logan et al. (2010) used multi-scale SPI to

assess spatiotemporal variability of drought over the Kansas River Basin region. The

results showed that many areas of increasing wetness throughout the region but only

isolated regions were drying.

Droughts can be predominantly distinguished into four types of meteorological, agri-

cultural, hydrological, and socio-economic according to the impacts and time scales (Heim

2002). In this study, we mostly focused on agricultural drought. Only when drought caused

agriculture losses, it could be called agriculture drought disaster. There are numerous

studies about agriculture drought disaster. The most common method is constructing

correlative relationship between drought index and corresponded yield losses to assess

agriculture drought disaster. Quiring and Papakryiakou (2003) compared four drought

indices and found Palmer’s Z-index was the most appropriate index for monitoring agri-

cultural drought and predicting red spring wheat yield in Canada. Trnka et al. (2007)

analyzed the relationship between detent yields of spring barley and droughts presented by

Palmer Z-index, the results found the growing season water balance significantly influ-

enced the spring barley production. Hlavinka et al. (2009) used sum of Z-index to quantify

agricultural drought and concluded drought resulted in significant yield losses of key crops

in the Czech Republic. They used the rainfall during the whole growing season. The results

could only reflect that whether drought was the main restrictive factor for agriculture

production in the certain area. If the fact has been known that drought was the main

restrictive factor, how to predict the final yield losses by using timely growth period

observation date? Remote sensing data-based methods were used to monitoring drought.

Combined with ground data, historical agriculture yield data, it can be used to predict final

yield losses timely. Unganai and Kogan (1998) used the advanced very high-resolution

radiometer (AVHRR)–based vegetation condition index (VCI) and temperature condition

index (TCI) to monitoring vegetation health and productivity. Domenikiotis et al. (2004)

used VCI to monitoring cotton agro-meteorological conditions and assess cotton yield

before the end of growing season. Vicente-Serrano et al. (2006) used both VCI and SPI to

predict crop yield at growing season. The results showed that SPI performed much better
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than VCI. However, satellite data are largely affected by various sources of error such as

satellite changes, satellite orbital drift, sensor degradation, atmospheric perturbation due to

aerosols and clouds, and surface nonuniformity change in equator crossing time. The

quality of satellite date needs improved when operational application.

The main objective of this study was to find a method to predict potential agriculture

losses caused by drought at each growing stage. The potential losses caused by drought

were called as drought disaster risk. This was a pre-disaster action. This could guide

farmers and decision makers to take emergency and effective actions to relief drought

impacts and reduce agriculture losses at the minimum level. Discriminant analysis was

introduced to predict potential agriculture losses before the end of growing season. Dis-

criminant analysis is originally developed by Fisher in 1936. It has been mostly used by

researchers to predict the group or category to which a subject belongs. It has been

successfully used in computer vision and pattern recognition, disease diagnosis, and facial

recognition. In recent years, some studies used this method to discriminate different

vegetation types in remote sensing image (Guo et al. 2003; Thessler et al. 2008). Thessler

et al. (2008) used discriminant analysis and k nearest neighbors method to classify tropical

lowland forests types from Landsat TM image. The results showed that this method could

distinguish floristically and structurally different of rain forest types accurately. Lin et al.

(2011) used elevation, slope, aspect, and soil depth data to classify land use type by using

discriminant analysis method, and the accuracy can reach 71.0 %. In this paper, we used

discriminant analysis to build a predictable relationship between growing stage precipi-

tation and final crop yield losses based on historical data. Then, we could predict potential

crop yield losses by using growing stage precipitation.

2 Materials and methods

2.1 Study area

Chaoyang city is situated in northwestern Liaoning province between 118�500–121�170E
and 40�250–42�220N. Annual mean temperature is 5.4–8.7 �C. Annual mean sunshine

duration is 2,850–2,950 h. Annual precipitation is 450–580 mm. Maize is the dominant

crop in agriculture production. Its growing season begins with planting in May and con-

tinues through September. The climate of Chaoyang is favorable for maize growing.

However, frequent agro-meteorological disasters, especially droughts, are the limitation

factors for maize growing. Since the region is affected by the monsoon climate, the

distribution of rainfall is uneven between years and months to this. Maize is susceptible to

drought (Fig. 1).

2.2 Data collection

The data consisted of ten-day precipitation data and maize yield recorded during

1970–2009 at Chaoyang city. The precipitation data were collected from China Meteo-

rological Data Sharing Service System, and the yield data collected from Social and

Economic Statistical Yearbook of Liaoning province. The precipitation data were used to

calculate SPI for indentifying drought hazard. The most commonly used time scale of the

SPI is month. However, monthly scale is too long for maize growth. We used 10-day time

scale instead. The yield losses data were used to identifying drought disaster.
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2.3 Data analysis

2.3.1 Drought hazard index

Over 40 countries are using SPI for drought monitoring and research. It can be used to monitor

drought and flood over a wide spectrum of time scale, allowing users the opportunity to choose

the time scale most appropriate for their study (Wu and Wilhite 2004). The SPI at a high-

frequency time scales reflects precipitation supply more precisely than that with a lower

frequency. In this study, multi-scale SPI was used to describe agricultural drought hazard. The

time scales of the SPI include 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 days, represent as

SPI10d, SPI20d, …, SPI110d, respectively. We selected five critical maize-growing stages for

drought risk prediction including pre-planting, jointing, tasseling, milky maturity, and matu-

rity. Stage 1 denoted pre-planting as the last 10 days of April. Stage 2 denoted jointing as the

last 10 days of June. Stage 3 denoted tasseling as the middle 10 days of July. Stage 4 denoted

milky maturity as the last 10 days of August. Stage 5 denoted maturity as the middle 10 days

of September. As such, the rainfalls during the last 10 days of April were used to calculate

SPI10d of stage 1. The SPI20d of stage 1 calculated by the rainfall from 11 April to 30 April, etc.

2.3.2 Drought disaster index

We define drought disaster as the losses caused by drought. Crop yield losses were the direct

effects of agro-meteorological hazards. In this study, we used yield losses as the index of drought

disaster. However, yield losses could be resulted from many agro-meteorological hazards which

happened during growing season, such as drought, flood, hail disaster, and chilling damage. It is

difficult to divide how many yield losses were caused by drought instead of other agro-mete-

orological hazards. Drought is the dominant disaster for maize production in Chaoyang and other

agro-meteorological hazards present little impact on maize production. Figure 2 illustrated that

the inter-annual fluctuation has an obvious consistency between maize yield and precipitation in

maize-growing season, the correlation coefficient could reach 0.497 at 0.01 significant levels.

Therefore, it is reasonable to reflect drought disaster by using yield losses.

Fig. 1 Study area
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The actual yield of crop per unit area (AY) is mainly influenced by weather, culti-

vation technology and management, agricultural policies, and innovations. While weather

is the most ‘‘random’’ factor, the others have relatively continuous trend. So, the AY can

be divided into two parts according to the factors that influence the crop yield, that is,

the trend yield (TY), which is mainly influenced by continuous factors such as culti-

vation technology and management, agricultural policies, innovations, and climate yield

(CY), which is mainly influenced by random factor such as weather (Zhang 2004). The

trend yield can be calculated by linear moving average method, it is a commonly used

method for fitting crop trend yield. Correspondingly, the climate yield can be expressed

by:

CYi ¼ AYi � TYi; ð1Þ

where, i is the year. A positive value of CY denotes that the climate is favorable for maize

production. On the contrary, a negative CY value denotes climate condition is unfavorable.

For Chaoyang city, most of the negative values were caused by drought. The rate of yield

losses (R) was used as a factor of drought disaster, R can be expressed by:

Ri ¼ CYi=AYi ¼ ðAY i � TYiÞ=AY i; ð2Þ
According to actual local conditions and disaster statistical habit, classification of

drought disaster risk based on R was as flows:

• No drought disaster risk: R C 0.1;

• Low drought disaster risk: 0.1 [ R C -0.1;

• High drought disaster risk: R \ -0.1.

2.3.3 Model building

There are two steps for building the discriminant analysis-based risk prediction model.

Firstly, we need a large number of training samples to help understand the relationship

between a dependent variable and one or more independent variables. SPIs are the inde-

pendent variables, and drought disaster risks are dependent variables. We used the data

from 1970 to 2009, so there were 40 training samples. Then, discriminant functions and
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Fig. 2 Precipitation and maize yield in Chaoyang City during 1970–2009. AY is the annual actual maize
yield. Precipitation is rainfall from April to September in each year
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territorial map were built to reflect the relationship between independent and dependent

variables. The basic form of the function is as follows:

D ¼ b1ðX1Þ þ b2ðX2Þ þ b3ðX3Þ þ � � � þ C ð3Þ

where D is discriminant function score, b is the function coefficient, C is intercept. X is the

value of independent variable. The territorial map is divided into several sections, each

section represents a dependent variable category. Usually, there are two discriminant

functions. The function scores are used as the coordinates on the territorial map. Second,

we input the independent variables and calculate the function scores, then to see the

position on territory map to predict this case’s category. Those two steps can be calculated

in statistical package for the social sciences (SPSS).

3 Results and discussions

3.1 Model in each growing stage

Each growing stage has its risk prediction model. The following two functions were for

Pre-planting stage. The corresponding territorial map was illustrated in Fig. 3. The values

of SPI10d–SPI110d were used to calculate D1 and D2. They were used to find the position on

the territorial map to define its category. Take 2001a as an example, we putted the values

of SPIs into functions 4 and 5 to calculate D1 and D2, which were 0.48 and -0.09

respectively. We could found (0.48, –0.09) located in high drought risk area (Fig. 3). The

function coefficients for other stages were showed in Table 1.

Fig. 3 Territorial map for pre-planting stage
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D1 ¼ 0:036� SPI10d þ 1:483� SPI20d � 1:262� SPI30d þ 1:373� SPI40d

þ 2:995� SPI50d � 4:561� SPI60d þ 0:849� SPI70d � 5:096� SPI80d

þ 4:733� SPI90d � 4:7� SPI10d þ 4:274� SPI110d

ð4Þ

D2 ¼ 1:148� SPI10d � 0:25� SPI20d � 0:441� SPI30d þ 0:052� SPI40d

� 0:248� SPI50d � 4:18� SPI60d þ 3:779� SPI70d � 6:121� SPI80d

þ 5:065� SPI90d � 11:836� SPI100d þ 13:363� SPI110d

ð5Þ

3.2 Classification accuracies of drought disaster

From Table 2, we could see that there were 13 years with no drought risk from 1970 to

2009. Among those 13 years, 7 years were divided into no drought risk group by the

prediction model. The accuracy for no drought risk was 53.8 %. The classification accu-

racies of the three drought risk levels varied between 40 and 53.8 % in pre-planting stage.

The accuracy rate was low in this stage. Table 3 showed the accuracies in other stages.

From pre-planting to milky maturity, the average accuracy of those three classes increased

gradually from 47.5 to 77.5 %. The interpretation was that the subsequent weather con-

dition was unknown when predicting in previous stages, it could not reflect the final yield.

The accuracy could reach 72.5 % in tasseling stage. That is to say this model could predict

the final risk effectively almost 2 month before the end of growing stage.

Table 1 Discriminant function coefficients

Jointing Tasseling Milky maturity Maturity

D1 D2 D1 D2 D1 D2 D1 D2

SPI10d -0.194 0.691 -0.052 -0.024 0.173 0.684 0.073 0.071

SPI20d 0.825 -0.491 0.600 -0.290 -0.012 -0.174 0.294 1.192

SPI30d -3.237 0.630 -1.163 -0.441 -0.574 -0.917 0.235 -1.683

SPI40d 0 0 2.335 0.576 -0.023 0.527 0.245 0.837

SPI50d 0.517 1.488 -4.587 -1.972 0.324 0.446 -0.720 0.579

SPI60d 3.501 -1.194 -0.048 5.285 0.408 -0.334 0.329 -0.475

SPI70d -0.350 1.452 2.287 0.052 -1.586 -0.314 -0.338 -0.156

SPI80d -3.021 -3.742 1.138 -3.465 2.625 -0.202 0.678 -0.499

SPI90d 2.807 2.125 0.088 3.707 -5.271 1.178 -1.471 0.649

SPI100d 2.802 1.025 0.164 -2.581 2.333 3.713 2.655 1.611

SPI110d -3.581 -0.945 -0.164 -0.571 2.164 -4.284 -0.783 -1.853

Table 2 Classification accuracies for pre-planting stage

Actual risk level Predicted risk by discriminant analysis Classification
accuracy (%)

No drought Low drought High drought Total

No drought 7 4 2 13 53.8

Low drought 2 4 4 10 40

High drought 2 7 8 17 47.1
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The accuracy for high drought risk group was much higher than the other two classes,

which reached 82.4 %. That indicated the model was suitable for regions with frequent

droughts. This is because the drought disaster risk used in the model was calculated by yield

losses. Although there was no drought disaster occurred but hail, freeze, and other disasters

might also influence the final yield. Given that drought was the dominant disaster which

influenced the final yield greatly, the accuracy of the model could reach the requirement.

Results in Table 3 showed that from pre-planting to milky maturity the average accu-

racy increased from 47.5 to 77.5 %. From milky maturity to maturity, the accuracy

decreased to 72.5 %. That indicated inputting the precipitation data of stage 5 did not

contribute to the accuracy of the model. Comparing to other growing stages, whether

drought happened or not in maturity stage did not influence the final yield. This conclusion

is consistent with maize physiology.

3.3 Model validation

We used leave-one-out cross-validation method to validate the model’s accuracy. Cross-

validation is a very important verification technology for discrimination effect. When

creating the discriminant function, we removed one case a time and then used the rest cases

to establish the discriminant function. Table 4 showed the validation accuracy was low in

previous stages. This indicated that the model was unstable in previous stages. This was

caused by the correspondence between precipitation, and final yield was not obvious in

previous stage. For example, although the precipitation was enough in previous growing

stages, the finial yield losses still could be large when drought happened in the following

stages. In this condition, the model will misjudge. But as the growing stage advanced and

precipitation data added, the model’s accuracy of high drought group could reach 70.6 %

in milky maturity stage, it performed well.

Table 3 Model’s accuracy in
each growing stage

Growing stage Accurate rate (%)

No
drought

Low
drought

High
drought

Average

Pre-planting 53.8 40.0 47.1 47.5

Jointing 76.9 40.0 64.7 62.5

Tasseling 69.2 70.0 76.5 72.5

Milky maturity 76.9 70.0 82.4 77.5

Maturity 61.5 70.0 82.4 72.5

Table 4 Model validation
assessed by leave-one-out cross-
method

Growing stage Accuracy rate by leave-one-out cross-validation
(%)

No
drought

Low
drought

High
drought

Pre-planting 23.1 20 29.4

Jointing 38.5 20 29.4

Tasseling 61.5 20.0 41.2

Milky maturity 30.8 40.0 70.6

Maturity 38.5 10.0 64.7
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4 Conclusions

The SPI has been used extensively around the world. Multiple time scale SPI has

advantage to reflect how crop influenced by drought that happened in different growing

stages and fitted to be used in agriculture drought research. This study introduced dis-

criminant analysis into risk prediction field combined with multi-scale SPI, yield losses

analysis to establish the prediction model. The findings reflected that this prediction model

has a good performance. The accuracy of the model could reach 82.4 %. This model

should be appropriate for areas where drought happens frequently and is the dominant

disaster.

This model could predict the final yield losses at each maize-growing stages, it provided

timely information for decision makers to make effective management to reduce drought

losses at the maximum level. The final results of this model related to maize yield directly,

compared to other models it is more intuitive. Precipitation is the only input date in this

model, it can be easily obtained. However, additional research could be studied to improve

this drought risk prediction model. For example, how to get rid of the impacts of other

disasters on the final yield losses could be studied.
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